
Stochastic Ontogenetic Allometry: The Statistical
Dynamics of Relative Growth
Anthony Papadopoulos*

Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America

Abstract

Background: In the absence of stochasticity, allometric growth throughout ontogeny is axiomatically described by the
logarithm-transformed power-law model, ht~loga bzk wt, where ht:h(t) and wt:w(t) are the logarithmic sizes of two
traits at any given time t. Realistically, however, stochasticity is an inherent property of ontogenetic allometry. Due to the
inherent stochasticity in both ht and wt, the ontogenetic allometry coefficients, loga b and k, can vary with t and have
intricate temporal distributions that are governed by the central and mixed moments of the random ontogenetic growth
functions, ht and wt. Unfortunately, there is no probabilistic model for analyzing these informative ontogenetic statistical
moments.

Methodology/Principal Findings: This study treats ht and wt as correlated stochastic processes to formulate the exact
probabilistic version of each of the ontogenetic allometry coefficients. In particular, the statistical dynamics of relative
growth is addressed by analyzing the allometric growth factors that affect the temporal distribution of the probabilistic
version of the relative growth rate, k:Dt uSVtTð Þ=Dt vSVtTð Þ, where SVtT is the expected value of the ratio of stochastic ht

to stochastic wt, and uSVtT and vSVtT are the numerator and the denominator of SVtT, respectively. These allometric
growth factors, which provide important insight into ontogenetic allometry but appear only when stochasticity is
introduced, describe the central and mixed moments of ht and wt as differentiable real-valued functions of t.

Conclusions/Significance: Failure to account for the inherent stochasticity in both ht and wt leads not only to the
miscalculation of k, but also to the omission of all of the informative ontogenetic statistical moments that affect the size of
traits and the timing and rate of development of traits. Furthermore, even though the stochastic process ht and the
stochastic process wt are linearly related, k can vary with t.
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Introduction

The most notable contributor to the mathematical analysis of

allometry is J. S. Huxley, who in 1924 published a seminal paper

in which he proposed that the power-law function (f ) be used to

describe allometric growth [1]:

y~f (x; b,k)~bxk,

where y is the size of a trait, x is the size of another trait, and b and k

are useful descriptors of allometric growth [1,2]. Since then,

numerous papers that support f (x; b,k) as a model for allometric

growth have been published. One paper, in particular, shows that f is

an axiomatic functional form of allometry [3]. In theory, this suggests

that the composite model f (x(t); b,k), in which extrinsic time t is

treated explicitly, yields an exact correspondence between yt:y(t)
and xt:x(t), assuming that there is no stochasticity in f (xt; b,k) [4]:

yt~f (xt; b,k)~bxk
t ,

where yt and xt are the sizes of two ontogenetically related traits

at any given t [4]. In reality, however, yt and xt are inherently

correlated stochastic processes, which are correlated random

variables that depend on the deterministic variable t. It is not known

with certainty the value of yt and the value of xt until after their

measurements have taken place. Thus, f (xt; b,k) is exact, but

unrealistic, only as a deterministic model. Subsequently, when the

relationship between the realizations of stochastic yt and the

realizations of stochastic xt is described by f , the probabilistic version

of either b or k is not always constant with t. In fact, as this paper will

show, the statistical moments of the random ontogenetic growth

function for yt and for xt affect the temporal distribution of both b

and k. This phenomenon has significant implications with regard to

organismal form and function. And so the objectives of this study are

to first incorporate stochasticity into f (xt; b,k) by treating yt and xt

as correlated stochastic processes, thereby formulating an exact

probabilistic model for allometric growth that applies throughout the

ontogeny of any organism, and then to analyze the ontogenetic

statistical moments that specifically govern the temporal distribution

of k.
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Unlike b, k is an important descriptor of relative growth [1,5–7].

In ontogenetic studies of allometry, k is the coefficient of interest

because it describes the specific growth rate of yt relative to the

specific growth rate of xt [1,5–7]. Thus, the dimensionless

ontogenetic allometry coefficient, k, is commonly referred to as

the relative growth rate. Since allometric growth is inherently a

stochastic process, k must be defined via stochastic analysis; but

before this is done, it is necessary to first discuss important

mathematical concepts, definitions, and notations used throughout

this paper.

Definitions and notations
Suppose S is a probability space on which the stochastic process

ht:h(t) is defined. If ShtT is the expected value (also known as the

first statistical moment or the probability average) of ht, then the

nth central moment of ht is S~hhn
t T~SSnhtTT, where ~hht~ht{ShtT,

S~hh0
t T~SS0htTT~1 at every t [ ½0,z?), and S~hhtT~SS1htTT~0

at every t [ ½0,z?). Now suppose wt:w(t) is another stochastic

process defined on the probability space S. Then the probability

covariance between ht and wt is S~hht
~wwtT~SSht, wtTT; an obvious

extension to this relation is the important identity Sht wtT~

SSht, wtTTzShtT:SwtT. Thus, the nth mixed moment of ht and ~wwn
t

is Sht
~wwn

t T~SSht, ~wwn
t TTzShtT:SSnwtTT. All of the stochastic

processes involved in this study are defined implicitly as

evolutionary, not stationary, random functions of t. With regard

to the variable t, StT equals t, and SSntTT equals zero for every

n [N2. These equivalences hold for any deterministic process.

Ratio of first-order deterministic t-derivatives
Let Xt be the set of all deterministic or stochastic ratios of

differentiable functions of t, and let tSXtT be the set of all ratios

of first-order deterministic t-derivatives. Then, for any

SVtT [SXtT, t is defined by

tSVtT~
Dt uSVtTð Þ
Dt vSVtTð Þ

����Dt vSVtTð Þ=0

� �
,

where uSVtT and vSVtT are the numerator and the denominator

of SVtT, respectively. Therefore, t is a multivalued differential

operator defined as the ratio of the standard first-order differential

operator Dt:

tS:T:
Dt uS:Tð Þ
Dt vS:Tð Þ :

An important property of t is that it operates linearly on sums of

ratios of differentiable deterministic functions in which the

denominators are common. For example, tS
1vtz

2vtT equals

tS
1vtTz tS

2vtT if S1vtT and S2vtT are expressed with a

common denominator.

The mathematical analysis of k
Let ht~loga yt and wt~loga xt each be a deterministic

ontogenetic growth function such that ht~loga½f (xt; b,k)�~
loga bzk wt and wt are deterministic variables that depend on t.

Also, let Vt:ht w{1
t be the ratio of ht to wt. Then the first-order

derivative of the deterministic ontogenetic growth function ht with

respect to the deterministic ontogenetic growth function wt is [1,5–7]

k: tSVtT~
Dtht

Dtwt

����Dtwt=0

� �
~

dht

dwt

,

where ht and wt are differentiable real-valued functions of t. Note:

dht=dwt is a parametric derivative in which ht and wt are

differentiable deterministic functions. The temporal distribution of k

has been a subject of intense interest (see [6] and [7]). The reason for

this is that ontogenetic processes govern the size of traits and the

timing and rate of development of traits [7–11]. Thus, k can vary with

t [5–7]; this implies that the relationship between ht and wt may not

always be linear [5–7]. When ht and wt are linearly related, Dtht is

proportional to Dtwt [1]; k is constant with t, and so the relationship

between ht and wt is described by loga f . In contrast, when ht and wt

are nonlinearly related, Dtht is not proportional to Dtwt [5]; k varies

with t, and so the relationship between ht and wt is not described by

loga f . Both cases have been observed experimentally (see [12] and

[13]). Although deterministic log-linear allometric growth trajectories

are always the result of Dt uSVtTð Þ~Dtht being proportional to

Dt vSVtTð Þ~Dtwt, the proportionality between Dt uSVtTð Þ and

Dt vSVtTð Þ is not always expected to hold under stochastic log-linear

allometric growth trajectories because ht and wt are correlated

stochastic processes; their probability distributions interact in ways

that are not intuitively obvious. The following is a case in point.

Since ht and wt are inherently correlated stochastic processes,

SVtT contains the central and mixed moments of those processes

(Methods, equations 6–8). These statistical moments are described

by the allometric growth factors (see Methods, equation 9) that

affect the temporal distribution of SVtT. Of course, SVtT must be

transformed into its probabilistic derivative, tSVtT, in order to

analyze the allometric growth factors that affect the temporal

distribution of k. These allometric growth factors, which only

appear in the probabilistic version of k: tSVtT, are essential

because they provide important insight into ontogenetic allometry.

Failure to account for the inherent stochasticity in Vt leads not

only to the miscalculation of k, but also to the omission of all of the

informative central and mixed moments of the random ontoge-

netic growth functions that govern the statistical dynamics of k.

Therefore, by treating ht and wt as correlated stochastic processes,

this study reveals and analyzes the allometric growth factors that

affect the temporal distribution of k.

The probabilistic derivative, tSVtT, in which Vt is a ratio of

correlated stochastic processes, is newly presented in this study as

the inner mean derivative of a random function with respect to a

random function. This derivative implies the differentiation of the

expected value of a random function with respect to the expected

value of a random function, whereas the outer mean derivative of

a random function with respect to a random function—for

instance, SDtht=DtwtT—implies the expected value of a ratio of

correlated stochastic t-derivatives. In other words, tSVtT, in

which Vt:ht w{1
t is a stochastic process, defines k as a

deterministic variable, whereas SDtht=DtwtT, in which Dtht and

Dtwt are stochastic, is the deterministic coefficient SkT. Although

all of the statistical moments of k can be derived from Dtht=Dtwt,

SkT or SSnkTT for any n [N2 cannot vary with t because

Dtht=Dtwt is simply a random variable, not a stochastic process.

Thus, only tSVtT, by which the deterministic variable k is

defined, can vary with t. This distinction between the inner mean

derivative tSVtT and the outer mean derivative SDtht=DtwtT is

important and is further addressed in the Discussion.

The concept of an inner mean derivative and an outer mean

derivative only applies to the ratio of stochastic t-derivatives. The

expected value of a stochastic t-derivative, such as SDtwtT~

DtSwtT, is simply referred to as a mean t-derivative (see equation

4.62 in [14]). Nelson [15] introduced mean derivatives (albeit

based on the conditional expectation) to address issues in

stochastic mechanics (see [16] and [17] for details).

Stochastic Ontogenetic Allometry
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The probabilistic version of k: tSVtT is not readily

calculable because the numerator and the denominator of Vt

are correlated stochastic processes; the expected value of a ratio of

correlated stochastic processes is generally not equal to the ratio of

expected values of the stochastic processes [18]. Therefore, this

study equates SVtT to its Taylor series expansion in order to reveal

the central and mixed moments of the stochastic processes on

which t operates (Methods, equations 6–8). Although SVtT can

be expanded as ut:SSht, w{1
t TTzShtT:Sw{1

t T (which is not the

Taylor series for SVtT), t ut, like its identity tSVtT, is not

readily calculable because w{1
t is stochastic. Subsequently, the

Taylor series expansion of SVtT is essential for evaluating the

probabilistic version of k: tSVtT. Also, SVtT contains the term

Qt:~wwtSwtT
{1, which is the ratio of ~wwt to SwtT (Methods, equation

8). Naturally, Qt and ~wwt share similar statistical properties; for

example, SQtT equals zero at every t, and SQn
t T equals SSnQtTT for

every n [N2.

Results: The statistical dynamics of k
Using the definitions and notations described above, the inner

mean derivative of the random ontogenetic growth function ht

with respect to the random ontogenetic growth function wt is (see

Methods, equations 6–11, for derivation)

k: tSVtT~
X?
n~0

({1)n DtShtQ
n
t T

DtSwtT

����DtSwtT=0

� �
~

X?
n~0

({1)n dShtQ
n
t T

dSwtT

� �
~
X?
n~0

kn,

ð1Þ

where Sht Qn
t T and SwtT are differentiable real-valued functions of

t. Equation (1) is the exact probabilistic version of k. This equation

is also the exact general solution for the inner mean derivative of a

random function with respect to a random function and can thus

be applied to any ratio of correlated stochastic t-derivatives; no

simplifying assumptions were made to derive equation (1). Note:

kn~({1)ndSht Qn
t T
�

dSwtT for each n [N0 is a parametric

derivative in which Sht Qn
t T and SwtT are differentiable determi-

nistic functions.

Each of the nth terms in equation (1) is the statistical relative

growth rate, kn, which can be expanded as (see Methods, equations

12 and 13, for derivation)

kn~
({1)n dSSht, Qn

t TT
dSwtT

zShtT:
({1)n dSSnQtTT

dSwtT
z

SSnQtTT:
({1)n dShtT

dSwtT
,

ð2Þ

where the summed terms

1
n
~

({1)n dSSht, Qn
t TT

dSwtT
, 2

n
~ShtT:

({1)n dSSnQtTT
dSwtT

,

and 3
n
~SSnQtTT:

({1)n dShtT
dSwtT

describe the allometric growth factors that affect the temporal

distribution of k. The 0th term in equation (1) is

k0~
1

0
z2

0
z3

0
(where 1

0
~0 at every t and 2

0
~0 at

every t), which becomes k either when Vt is deterministic or whenP?
n~1 kn is zero at every t. Traditionally, k0~

3
0

is calculated as

k and is the ratio of DtShtT to DtSwtT [19]. Note, however, that

evaluating only k0 when
P?

n~1 kn is not zero does not yield an

exact k because the other terms—k1, k2,…,kn—must also be

considered. Thus neglecting
P?

n~1 kn=0 clearly leads to a

miscalculated k. Moreover, k (or kn for every n [N0) can vary

with t; nonlinear allometries can occur, even though the stochastic

process ht and the stochastic process wt are linearly related.

The statistical dynamics of k can be readily analyzed by the

summed terms (1
n
, 2

n
, and 3

n
) in equation (2). Consider the

following example: let the stochastic processes, yt and xt, belong to

the finite family of qert—the exponential growth-law functions in

which only r is a random variable—such that the random

ontogenetic growth function ht is ht~syzry t and the random

ontogenetic growth function wt is wt~sxzrxt. Then, if

sx~loge qx equals zero, equation (2) is (see Methods, equations

14–16, for derivation)

kn~
({1)n SSry, ~rrn

xTT
SrxTnz1

z
({1)n SSnrxTT

SrxTn
: SryT
SrxT

: ð3Þ

The allometric growth factors in equation (3) are

1
n
~

({1)n SSry, ~rrn
xTT

SrxTnz1
, 2

n
~0,

and 3
n
~

({1)n SSnrxTT
SrxTn

: SryT
SrxT

:

Equation (3) is an example of equation (2) in which the derivatives

are explicitly defined. The appeal of this example (besides that it

can be realistic for a particular organism) is that the allometric

growth factors (1
n

and 3
n
) contain the slopes (ry and rx) from ht

and wt, thus making it easy to interpret the biology of 1
n

and
3

n
. For instance, k0~

3
0

is simply SryT:SrxT{1; it is the ratio of

SryT (the expected value of the specific growth rate of yt) to SrxT
(the expected value of the specific growth rate of xt). So, naturally,

when the mean growth rate of yt increases relative to the mean

growth rate of xt, k0 also increases. Note that k differs from k0

because
P?

n~1
1

n
and

P?
n~2

3
n

are nonzero sums. If k0 is 1

and
P?

n~1
1

n
and

P?
n~2

3
n

were both zero sums, then relative

growth would be isometric [2]; however, since
P?

n~1
1

n
andP?

n~2
3

n
are really nonzero sums, relative growth deviates from

isometry. This is a simple and yet realistic example illustrating the

fact that k can be miscalculated if
P?

n~1
1

n
=0 andP?

n~2
3

n
=0 are not taken into account.

The statistical relative growth rate, k1~
1

1
z3

1
(where

3
1
~0), in equation (3) is

k1~
1

1
~

{SSry, rxTT
SrxT2

:

The nonzero coefficient, SSry, rxTT, is the probability covariance

between the random variable ry and the random variable rx; it is a

measure of the joint distribution of ry and rx. The more closely ry

and rx are positively associated, the lower the value of k1 because

{SSry, rxTT is less than zero. In contrast, the more closely ry and

rx are negatively associated, the higher the value of k1 because

{SSry , rxTT is greater than zero. And so whether k0 is being

subtracted or added by k1 solely depends on the direction of

association between ry and rx.

The allometric growth factor (3
n
) contains the term SSnQtTT,

which in equation (3) is

Stochastic Ontogenetic Allometry
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SSnQtTT:
SSnwtTT
SwtT

n ~
SSnrxTT
SrxTn :

Clearly, Qt~~rrxSrxT{1 is a random variable, not a stochastic

process. Thus, for instance, SS2QtTT is a nonzero positive

coefficient that represents the ratio of SS2rxTT (the probability

variance of rx) to SrxT2 (the squared expected value of rx).

Consequently, SS2QtTT describes the ontogenetic variance of xt,

and SS3QtTT describes the ontogenetic asymmetry of xt. Both

genetic and environmental factors can affect SS2QtTT and

SS3QtTT, and these two ontogenetic statistical moments (or

biological processes) influence k in a manner that is not intuitively

obvious unless equation (1) is used.

It is important to note that the allometric growth factor, 2
n
, is

zero in equation (3) only because Qt is a random variable, not a

stochastic process; Qt~~rrxSrxT{1 does not vary with t because sx is

constrained to zero, and thus DtSSnQtTT equals zero at every t.

Since sx is constrained to zero, k does not vary with t.

Now suppose only sy and sx are random variables in the

random ontogenetic growth functions, ht~syzry t and

wt~sxzrx t. Then, if SsxT~Sloge qxT equals zero, equation (2)

is (see Methods, equations 17–19, for derivation)

kn~
{({1)n n SSsy, sn

xTT t{n{1

rnz1
x

z

ShtT:
{({1)n n SSnsxTT t{n{1

rnz1
x

z

({1)n SSnsxTT t{n

rn
x

: ry

rx

,

ð4Þ

where ShtT~SsyTzry t is a deterministic process and sx~~ssx is a

mean-centered random variable. In this case, Qt~sx r{1
x t{1 is a

stochastic process because SSnwtTT for each n [N2 does not vary

with t, and yet SwtT increases with t since there is growth. The

allometric growth factors in equation (4) are

1
n
~

{({1)n n SSsy, sn
xTT t{n{1

rnz1
x

,

2
n
~ShtT:

{({1)n n SSnsxTT t{n{1

rnz1
x

,

and 3
n
~

({1)n SSnsxTT t{n

rn
x

: ry

rx

:

It is apparent that, unlike equation (3), equation (4) contains the

deterministic variable t. Thus, k varies with t, and its values can

either be greater than 1 (that is, positively allometric at every t) or

less than 1 (that is, negatively allometric at every t) or an

arrangement of both (that is, reversal in ontogenetic polarity) [10].

Note that k0~
3

0
~ryr{1

x in equation (4) is constant with t; this

implies that ShtT and SwtT are linearly related, and so the

relationship between ShtT and SwtT is described by loge f . All other

statistical relative growth rates (kn for every n [N1), however, are

derived from relationships that are not described by loge f and

therefore vary with t. For example, SSht, QtTT~SSsy, sxTT
r{1

x t{1 and SwtT~rx t are nonlinearly related, and so k1~
1

1
,

which is derived from the relationship between SSht, QtTT and

SwtT, varies with t. Consequently, nonlinear allometries occur in

this case, even though the stochastic process ht and the stochastic

process wt are linearly related.

Intricate temporal distributions of k can arise from the case

described by equation (4). For example, suppose
P?

n~3 kn at every

t is negligible compared to
P2

n~0 kn at every t. Then equation (1) is

k: tSVtT&k0zc1 t{2{c2 t{3,

where c1~½SSsy, sxTT{k0SS2sxTT� r{2
x and c2~2½SSsy, s2

xTTz

SsyT:SS2sxTT� r{3
x are probabilistic coefficients. Now there could

be a condition in which the temporal distribution of k is not

monotonic and is either positively allometric or negatively

allometric: k has a stationary point at ts~
3

2
c2c{1

1 (set Dtk~0

and solve for t), where the stationary value of k is ks~k0z
4

27
c3

1c{2
2

(substitute ts for t in k); thus, the temporal distribution of k is not

monotonic. This is an interesting case because k, which could be

either greater than 1 or less than 1 at every t, increases with t,

reaches ks (the maximum rate of relative growth), and then

decreases with t. This is classic case of accelerated and decelerated

rates of relative growth within a given t period. Note that ks

depends on the probabilistic coefficients, k0, c1, and c2. When Vt

is deterministic, ks is undefined. Since, however, Vt is inherently

stochastic, the terms in c1 and in c2 affect ks and ts. For instance, if

SSsy, sxTT increases while k0, c2, and all other terms in c1 remain

constant, then ks increases, assuming c1 and c2 are positive.

Moreover, increasing SSsy, sxTT decreases the t at which ks is

reached; this is because ts is inversely proportional to c1, which is

directly related to SSsy, sxTT. If stochasticity disappears, then c1

and c2 also vanish and ts becomes undefined. So k0, c1, and c2

affect not only ks, but also the t at which ks is reached. This is a

clear case of how c1 and c2—coefficients that only appear in the

probabilistic version of k: tSVtT—affect the timing and rate of

development of traits. Thus, ignoring the effects of stochasticity on

both ht and wt omits all of the informative ontogenetic statistical

moments (e.g., SSsy, sxTT) that govern the temporal distribution

of k. Furthermore, even though the relationship between the

realizations of stochastic ht and the realizations of stochastic wt is

described by loge f , k differs from k0 and can vary with t. This

important fact should always be considered when analyzing

allometric growth.

It is interesting to note that as t approaches infinity, equation (4)

or any of its approximations reaches an asymptotic value of

k0~ lim
t??

k0zc1t{2{c2t{3
� �

. The t at which this asymptotic

value is first reached is an indication of the cessation of the

variability of k with respect to t. In other words, nonlinear

allometries disappear as t approaches infinity. So as the allometric

growth process evolves over t, two distinct phases are observed: the

first phase is a non-uniform temporal distribution of k, and the

second phase is a uniform temporal distribution of k. This two-

phase allometric growth process may be more realistic than a

growth process that exclusively corresponds to either the first or

second phase. It should be made clear, though, that only the

second phase is indicative to a log-linear allometric growth

trajectory, since k0 (not k) is constant with t. And so the

probabilistic coefficients, c1 and c2, essentially have an insignif-

icant impact on only the second phase of the allometric growth

process. Clearly, the first phase of the allometric growth process

can entail an intricate temporal distribution of k, such as the one

provided in the previous paragraph.

Equations (3) and (4) are realistic examples of the types of

temporal distributions of k that may arise from the random

Stochastic Ontogenetic Allometry
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exponential growth-law function, qert, to which the stochastic

processes, yt and xt, belong. The important distinction between

equations (3) and (4) is the type of variable Qt:~wwtSwtT
{1 assumes:

Qt is a random variable (not a stochastic process) in equation (3); Qt

is a stochastic process in equation (4). As a result, k defined by

equation (3) does not vary with t, whereas k defined by equation (4)

varies with t. In either case, it is q or r that is a random variable.

Nonetheless, it is entirely possible to have a case in which q and r

are both random variables.

With regard to the convergence of equation (1), Qt:~wwtSwtT
{1

has an important role: equation (1) is guaranteed to converge at

every t if the realizations of stochastic Qt are between 21 and 1 at

every t; this is because the realizations of Qn
t :

~wwn
t SwtT

{n approach

zero at every t as n approaches infinity.

Discussion

Although statistical models for relative growth have been

developed (see [7] and [20]), their models, which show variability in

k:k0 with respect to t, are not probabilistic because they do not

incorporate actual stochasticity into f (xt; b,k); they do not treat yt

and xt as correlated random functions. Also, although a probabilistic

model for static (not ontogenetic) allometry, in which x is treated as an

independent random variable (not as a stochastic process), has been

proposed (see [21]), their model cannot address the statistical moments

that govern the temporal distribution of k because their model

is used to analyze the effects of stochasticity only on Dxf (x; b,k).
Consequently, equation (1) is entirely new and has no analog to any

statistical model for relative growth previously developed.

Equation (1) is the exact general solution for the inner mean

derivative of the random ontogenetic growth function ht with

respect to the random ontogenetic growth function wt. This

equation, which is the exact probabilistic version of k, is general

because it does not entail any simplifying assumptions. Thus, the

generality of equation (1) makes it possible to analyze all of the

informative ontogenetic statistical moments (or biological pro-

cesses) that govern the temporal distribution of k:

k: tSVtT~
X?
n~0

({1)n DtShtQ
n
t T

DtSwtT

����DtSwtT=0

� �
:

This expression makes it apparent that k is composed of an

infinite series of ratios of first-order t-derivatives. The statistical

complexity of k arises from the derivative in the numerator, which

is the t-derivative of the nth mixed moment of ht and Qn
t . Each of

these nth statistical moments is governed by the interactions

between ht and Qn
t . So most of the informative ontogenetic

statistical moments are captured by the mean t-derivative,

DtSht Qn
t T; this is evident by expanding ({1)n DtSht Qn

t T (see

Methods, equations 12 and 13, for derivation):

({1)n DtShtQ
n
t T~

({1)n DtSSht, Qn
t TTzShtT:DtSSnQtTTzSSnQtTT:DtShtT

� 	
:
ð5Þ

The summed terms in equation (5) compose the allometric

growth factors (1
n
, 2

n
, and 3

n
) in equation (2). These

allometric growth factors are important to interpret because they

describe the central and mixed moments of the random

ontogenetic growth functions that govern the statistical dynamics

of k. Clearly, equation (5) is calculable, since each of the nth terms

of ShtQ
n
t T is a differentiable deterministic function of t.

To biologically interpret equation (5), one must specify the finite

family of functions to which the stochastic processes, yt and xt,

belong (see, for example, equations 3 and 4).

Equations (3) and (4) are examples of how to model and analyze

the statistical dynamics of k. These examples are derived from the

random exponential growth-law function that is theoretically

assumed for a particular organism. Thus relaxing this assumption

leads to the practical (experimental) side of modeling the statistical

dynamics of k. Traditionally, ShtT and SwtT are experimentally

measured, plotted with respect to each other, and then related by a

differentiable function from which k0 is derived [19]. This study,

however, shows that k0 is not the only statistical relative growth rate

that needs to be considered when evaluating k (see equations 1 and

2). The other statistical relative growth rates (kn for every n [N1)

should also be quantified in a similar manner. For example, ShtQtT
and SwtT can be experimentally measured, plotted with respect to

each other, and then related by a differentiable function from which

k1 can be derived. Thus, the probabilistic version of k: tSVtT is

a very practical metric: it only requires measuring the mixed and

central moments of ht and wt.

The ontogenetic growth functions, ht and wt, must be linearly

related in order to satisfy the log-linear allometric function, loga f .

Thus, ht and wt can be generalized as ht~syzrylt and

wt~sxzrxlt, where deterministic or stochastic lt is any

differentiable function of t. In equations (3) and (4), lt is simply

t; but, to describe more intricate ontogenetic growth distributions,

lt could also be
Pz

m~1 fmtm for any z [N2, where fm for each

m [N1 is a deterministic or stochastic parameter. Note that Dtht

and Dtwt equals ry
:Dtlt and rx

:Dtlt, respectively; this is true for

any distribution of lt. Subsequently, SkT~SDtht=DtwtT equals

Sryr{1
x T, which is the expected value of the ratio of ry to rx.

For most organisms, k0~DtShtT=DtSwtT is constant with t; this

implies that SSry, ltTT and SSrx, ltTT are typically zero at every t. In

equations (3) and (4), where lt is t, SSry, tTT and SSrx, tTT are

naturally zero because t is naturally deterministic; thus, k0 is naturally

constant with t in these equations. There are some organisms

(predominately plants) that show k:k0 varying with t [22]. Indeed,

this case, in which k0 varies with t, is interesting to study, but

complicates the biological analysis of k: tSVtT because the

biological interpretation of SSry, ltTT=0 or SSrx, ltTT=0 cannot

explicitly be defined. Therefore, when analytically modeling

k: tSVtT, there is good reason to assume that SSry, ltTT and

SSrx, ltTT are zero at every t. Keep in mind, though, that while

stochastic ht and stochastic wt are linearly related, k0 can vary with t.

It is important to note that if Qt:~wwtSwtT
{1 is not a stochastic

process, then k (which differs from k0) does not vary with t (see

equation 3). If, however, Qt:~wwtSwtT
{1 is a stochastic process,

then k not only differs from k0, but also varies with t (see equation

4); this implies that the statistical relative growth rates (kn for every

n [N1) are derived from relationships that are not described by

loge f , even though the stochastic process ht and the stochastic

process wt are linearly related.

Another important point to note is that tSVtT is mathema-

tically different from the expected value of a ratio of correlated

stochastic t-derivatives. If Dtht and Dtwt are correlated stochastic t-

derivatives, then the outer mean derivative, SkT~SDtht=DtwtT, is

generally not identical with equation (1). Stated more explicitly,

SkT~ S
Dtht

Dtwt

T
����SDtwtT=0

� �
~

X?
n~0

({1)nSDtht
:(Dt

~wwt)
nT

SDtwtT
nz1

~
X?
n~0

SkTn
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and

SkTn~
({1)nSSDtht, (Dt

~wwt)
nTT

SDtwtT
nz1

z
({1)nSDthtT :S(Dt

~wwt)
nT

SDtwtT
nz1

are generally not identical with equations (1) and (2), respectively.

Note: SkT and SkTn are derived in exactly the same manner as

SVtT (see Methods, equation 8) and SVtTn (see Methods, equation

9). Now compare the following limits: the outer mean derivative is

S lim
Dt?0

Dht=Dt

Dwt=Dt
T~ lim

Dt?0
S
Dht=Dt

Dwt=Dt
T: lim

Dt?0
S

h(tzDt){h(t)

w(tzDt){w(t)
T,

whereas the inner mean derivative is

tSVtT~ lim
Dt?0

D uSVtTð Þ=Dt

D vSVtTð Þ=Dt
: lim

Dt?0

uSV(tzDt)T{uSV(t)T
vSV(tzDt)T{vSV(t)T

:

Thus, in SkT, the limit operates on the ratio of stochastic Dht to

stochastic Dwt; but in k: tSVtT, the limit operates on the ratio

of deterministic D uSVtTð Þ to deterministic D vSVtTð Þ. So

k: tSVtT is identical with SkT~SDtht=DtwtT when both ht

and wt are deterministic or when only ht is stochastic. When,

however, only wt is stochastic or when both ht and wt are

stochastic, tSVtT is generally not identical with SDtht=DtwtT
(see equation 4); the only exception is the special case when

Qt:~wwtSwtT
{1 is not a stochastic process, but a random variable

(see equation 3). As a result, the outer mean derivative

SDtht=DtwtT is a special case of the inner mean derivative

tSVtT. Also, SkT0~SDthtT=SDtwtT is equal to k0~

DtShtT=DtSwtT.

In conclusion, equation (1) is completely versatile and has much

to offer with regard to analyzing the allometric growth factors

(1
n
, 2

n
, and 3

n
) that affect the temporal distribution of k.

When the derivatives in equation (2) are defined explicitly via

specifying the random ontogenetic growth functions (ht and wt),

the allometric growth factors become biologically interpretable;

they also become tractable in simulations, which are useful for

modeling the statistical rates of relative growth for various

distributions of lt (see Methods, Simulating the probabilistic

version of k). Thus, each of the statistical relative growth rates (k0,

k1,…, kn), which are infinitely summed to form equation (1), can

be analyzed in detail to reveal new insight into the statistical

dynamics of relative growth.

Lastly, this study ignored the statistical dynamics of b because

only k is an important descriptor of relative growth. But to obtain a

complete characterization of the statistical dynamics of allometric

growth, b or loga b~b must also be considered. Since the

stochastic analysis of k has been fully developed in this study (see

Methods, equations 6–11), the exact probabilistic version of b can

easily be formulated:

b: tSJtT~
X?
n~0

({1)n DtSVtW
n
t T

DtSw{1
t T

�����DtSw{1
t T=0

 !
~

X?
n~0

({1)n dSVtW
n
t T

dSw{1
t T

 !
~
X?
n~0

bn,

where Jt:Vt(w
{1
t ){1 is the ratio of Vt to w{1

t and Wt:
~ww{1

t Sw{1
t T{1 is the ratio of ~ww{1

t to Sw{1
t T. Each of the nth terms

of b is the allometric growth descriptor, bn:

bn~
({1)n dSSVt, W

n
t TT

dSw{1
t T

z SVtT:
({1)n dSSnWtTT

dSw{1
t T

z

SSnWtTT:
({1)n dSVtT

dSw{1
t T

:

The summed terms in bn describe the allometric growth factors

that affect the temporal distribution of b. The equation (bn)

contains all of the ontogenetic statistical moments that govern the

temporal distribution of b. And just like k, one could analyze the

statistical dynamics of b simply by examining the summed terms in

bn. Note that, like Qt in equation (1), if Wt is a stochastic process,

then b varies with t.

Methods: The stochastic analysis of k
Let ht~loga yt and wt~loga xt each be a random ontogenetic

growth function such that ht and wt are correlated stochastic

processes. Then, if Vt:htw
{1
t is the ratio of ht to wt, the expected

value of Vt is

SVtT:
ht

wt

����SwtT=0

� �
~

ht

SwtTz~wwt

: ð6Þ

Equation (6) contains the central and mixed moments of ht and ~wwn
t .

These statistical moments can be revealed by expanding equation

(6) using the Taylor series generated by the function, g, defined by

the denominator ½SwtTz~wwt�{1
~g(~wwt) when a equals zero at

every t [ ½0,z?):

½SwtTz~wwt�{1
~
X?
n~0

Dng(a)

n!
½~wwt{a�n~

X?
n~0

({1)n Qn
t

SwtT
, ð7Þ

where Qt:~wwtSwtT
{1 is the ratio of ~wwt to SwtT. Substituting

equation (7) into equation (6) yields

SVtT:
ht

wt

����SwtT=0

� �
~
X?
n~0

({1)nShtQ
n
t T

SwtT
~
X?
n~0

SVtTn, ð8Þ

where each of the nth terms in equation (8) is SVtTn:

SVtTn~
({1)nSSht, Qn

t TT
SwtT

z
({1)nShtT:SSnQtTT

SwtT
: ð9Þ

The summed terms in equation (9) are the allometric growth

factors that affect the temporal distribution of SVtT. Rice and

Papadopoulos [23] use a similar mathematical approach (that is,

the Taylor series expansion of the expected value of the change in

mean phenotype) to reveal important biological factors governing

evolution.

Equation (8), which is the Taylor (or Maclaurin) series

expansion of SVtT, can also be expressed as
P?

n~0 ({1)n

Sht
~wwn

t T
.

SwtT
nz1. This particular expression, however, has no

explicit common denominator, as its denominator has an unfixed

exponent; thus, t cannot operate linearly on this expression, and

consequently fails to define k from this expression. In contrast,

equation (1), in which t operates specifically on equation (8),

uniquely defines the probabilistic version of k. Equation (8) is thus

essential for evaluating tSVtT: the t-derivative of the numerator
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in equation (8) is

Dt uSVtTð Þ~
X?
n~0

({1)n DtShtQ
n
t T, ð10Þ

and the t-derivative of the denominator in equation (8) is

Dt vSVtTð Þ~DtSwtT: ð11Þ

Therefore, equation (1) (that is, the inner mean derivative of the

random ontogenetic growth function ht with respect to the

random ontogenetic growth function wt) is the ratio of equation

(10) to equation (11):

k: tSVtT~
X?
n~0

({1)n DtShtQ
n
t T

DtSwtT

����DtSwtT=0

� �
~

X?
n~0

({1)n dShtQ
n
t T

dSwtT

� �
~
X?
n~0

kn:

Now the identity ShtQ
n
t T~SSht, Qn

t TTzShtT:SSnQtTT can be

used to expand ({1)n DtShtQ
n
t T:

({1)n DtShtQ
n
t T~

({1)n Dt SSht, Qn
t TTzDt ShtT:SSnQtTTð Þ

� 	
;

ð12Þ

the product rule is used to expand Dt ShtT:SSnQtTTð Þ:

Dt ShtT:SSnQtTTð Þ~ShtT:DtSSnQtTTzSSnQtTT:DtShtT: ð13Þ

Substituting equation (13) into equation (12) and dividing by

DtSwtT yields the expanded form of the statistical relative growth

rate, kn~({1)n dShtQ
n
t T
�

dSwtT:

kn~
({1)n dSSht, Qn

t TT
dSwtT

zShtT:
({1)n dSSnQtTT

dSwtT
z

SSnQtTT:
({1)n dShtT

dSwtT
,

which is identical with equation (2). The summed terms in

equation (2) are the allometric growth factors (1
n
, 2

n
, and 3

n
)

that affect the temporal distribution of k:

1
n
~

({1)n dSSht, Qn
t TT

dSwtT
~

({1)n DtSSht, Qn
t TT

DtSwtT
~

({1)n½SwtT
{n:DtSSht, ~wwn

t TTzSSht, ~wwn
t TT:DtSwtT

{n�
DtSwtT

,

2
n
~ShtT:

({1)n dSSnQtTT
dSwtT

~ShtT:
({1)n DtSSnQtTT

DtSwtT
~

({1)n ShtT ½SwtT
{n:DtSSnwtTTzSSnwtTT:DtSwtT

{n�
DtSwtT

,

and

3
n
~SSnQtTT:

({1)n dShtT
dSwtT

~
SSnwtTT
SwtT

n
: ({1)n DtShtT

DtSwtT
:

When Qt:~wwtSwtT
{1 is a stochastic process, the product or

quotient rule can be used in 1
n

and in 2
n

to calculate their

derivatives. Note that DtSSht, Qn
t TT~Dt SSht, ~wwn

t TT:SwtT
{n


 �
and DtSSnQtTT~Dt SSnwtTT:SwtT

{nð Þ represent deterministic t-

derivatives of the product of two deterministic functions.

Now suppose for a particular organism the random ontogenetic

growth functions, ht and wt, are defined by ht~syzryt and

wt~ sxzrxtjsx~0


 �
~rxt in which only ry and rx are random

variables. Then the allometric growth factors, which are the

summed terms in equation (2), are as follows:

1
n
~

({1)n DtSSsyzryt, ~rrn
xSrxT{nTT

DtSrxtT
~

({1)n Dt SSry, ~rrn
xTT:SrxT{nt

� �
Dt SrxTtð Þ ~

({1)nSSry, ~rrn
xTT

SrxTnz1
,

ð14Þ

2
n
~SsyzrytT:

({1)n DtSSn(~rrxSrxT{1)TT
DtSrxtT

~

½syzSryT t�: ({1)n DtSSn(~rrxSrxT{1)TT
Dt SrxT tð Þ ~

({1)n ½syzSryT t�:0
SrxT

~0,

ð15Þ

and

3
n
~SSn(~rrxSrxT{1)TT:

({1)n DtSsyzrytT
DtSrxtT

~

SSnrxTT
SrxTn

: ({1)n Dt syzSryT t
� �

Dt SrxT tð Þ ~

({1)n SSnrxTT
SrxTn

: SryT
SrxT

,

ð16Þ

where Qt~~rrxSrxT{1 is a random variable, not a stochastic

process. Summing equations (14), (15), and (16) then yields

equation (3):

kn~
({1)n SSry, ~rrn

xTT
SrxTnz1

z
({1)n SSnrxTT

SrxTn
: SryT
SrxT

:

If, however, ht and wt are defined by ht~syzryt and

wt~ sxzrxtjSsxT~0


 �
~~ssxzrxt in which only sy and sx are

random variables, then the allometric growth factors are

1
n
~

({1)n DtSSsyzryt, sn
xr{n

x t{nTT
DtSsxzrxtT

~

({1)n Dt SSsy, sn
xTT r{n

x t{n
� �

Dt rx tð Þ ~

{({1)n n SSsy, sn
xTT t{n{1

rnz1
x

,

ð17Þ
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2
n
~SsyzrytT:

({1)n DtSSn(sxr{1
x t{1)TT

DtSsxzrxtT
~

½SsyTzryt�:
({1)n Dt SSnsxTT r{n

x t{n
� �
Dt rxtð Þ ~

ShtT:
{({1)n n SSnsxTT t{n{1

rnz1
x

,

ð18Þ

and

3
n
~SSn(sxr{1

x t{1)TT:
({1)n DtSsyzrytT

DtSsxzrxtT
~

SSnsxTT t{n

rn
x

: ({1)n Dt SsyTzryt
� �

Dt rxtð Þ ~

({1)n SSnsxTT t{n

rn
x

: ry

rx

,

ð19Þ

where Qt~sxr{1
x t{1 is a stochastic process and sx~~ssx is a mean-

centered random variable. Summing equations (17), (18), and (19)

then yields equation (4):

kn~
{({1)n n SSsy, sn

xTT t{n{1

rnz1
x

zShtT:
{({1)n n SSnsxTT t{n{1

rnz1
x

z

({1)n SSnsxTT t{n

rn
x

: ry

rx

:

Methods: Simulating the probabilistic version of k
Simulating k: tSVtT using ht~syzrylt and wt~sxzrxlt

as correlated random functions can easily be done: first specify the

terms in ht and in wt that are stochastic and then provide their

(joint) probability distributions. Because the stochastic process ht

and the stochastic process wt are linearly related and because

SSry, ltTT and SSrx, ltTT are assumed to be zero at every t,

k0~DtShtT=DtSwtT is constant with t. Thus, the parametric

derivative, k0~SryT:SrxT{1, is readily calculable, since SryT and

SrxT are known from the distribution of ry and the distribution of

rx, respectively. In contrast, kn for each n [N1 is not readily

calculable, but can easily be assessed in simulations by first

evaluating Sht Qn
t T for each n [N1 and then relating Sht Qn

t T to

SwtT by a differentiable function from which the derivative (i.e.,

kn) can be calculated. So, for example, k1 is the parametric

derivative, DtShtQtT=DtSwtT; to evaluate ShtQtT properly in

simulations, the following identity of ShtQtT should be used:

ShtQtT~ ShtwtT{ShtT:SwtTð ÞSwtT
{1; this is because SwtT is

evaluated together with (not separate from) ShtwtT and ShtT in

simulations. Therefore, the binomial expansion of ShtQ
n
t T is useful

for numerically evaluating ShtQ
n
t T:

ShtQ
n
t T~

Xn

i~0

n

i

� �
({1)iShtw

n{i
t T:SwtT

i

SwtT
n :
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