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Stochastic Ontogenetic Allometry: The Statistical
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Abstract

Background: In the absence of stochasticity, allometric growth throughout ontogeny is axiomatically described by the
logarithm-transformed power-law model, 0, =log, b+k ¢,, where 0,=0(z) and ¢,=¢(¢) are the logarithmic sizes of two
traits at any given time t. Realistically, however, stochasticity is an inherent property of ontogenetic allometry. Due to the
inherent stochasticity in both 6, and ¢, the ontogenetic allometry coefficients, log, b and k, can vary with t and have
intricate temporal distributions that are governed by the central and mixed moments of the random ontogenetic growth
functions, 0; and ¢,. Unfortunately, there is no probabilistic model for analyzing these informative ontogenetic statistical
moments.

Methodology/Principal Findings: This study treats 0, and ¢, as correlated stochastic processes to formulate the exact
probabilistic version of each of the ontogenetic allometry coefficients. In particular, the statistical dynamics of relative
growth is addressed by analyzing the allometric growth factors that affect the temporal distribution of the probabilistic
version of the relative growth rate, k=D, (u<Q,))/D,(v{Q;)), where {Q,) is the expected value of the ratio of stochastic 6,
to stochastic ¢,, and u{Q;> and v{Q,> are the numerator and the denominator of {Q,), respectively. These allometric
growth factors, which provide important insight into ontogenetic allometry but appear only when stochasticity is
introduced, describe the central and mixed moments of 6, and ¢, as differentiable real-valued functions of t.

Conclusions/Significance: Failure to account for the inherent stochasticity in both 0, and ¢, leads not only to the
miscalculation of k, but also to the omission of all of the informative ontogenetic statistical moments that affect the size of
traits and the timing and rate of development of traits. Furthermore, even though the stochastic process 6; and the
stochastic process ¢, are linearly related, k can vary with t.
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where y; and X, are the sizes of two ontogenetically related traits
at any given ¢ [4]. In reality, however, y; and X, are inherently
correlated stochastic processes, which are correlated random
variables that depend on the deterministic variable ¢ It is not known
with certainty the value of y, and the value of x; untl after their
measurements have taken place. Thus, f(x,;;b,k) is exact, but
unrealistic, only as a deterministic model. Subsequently, when the
relationship between the realizations of stochastic y, and the
realizations of stochastic X; is described by f', the probabilistic version

Introduction

The most notable contributor to the mathematical analysis of
allometry is J. S. Huxley, who in 1924 published a seminal paper
in which he proposed that the power-law function (f) be used to
describe allometric growth [1]:

y=/(x;b.k)=bx",

where y is the size of a trait, x is the size of another trait, and b and &
are useful descriptors of allometric growth ([1,2]. Since then,
numerous papers that support f(x;b,k) as a model for allometric
growth have been published. One paper, in particular, shows that f is
an axiomatic functional form of allometry [3]. In theory, this suggests
that the composite model f(x(?); b,k), in which extrinsic time ¢ is
treated explicitly, yields an exact correspondence between y, = ()
and x; = x(¢), assuming that there is no stochasticity in f(x;; b,k) [4]:

Ye=f(xs; b,k) =bxlfa
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of either 4 or £ is not always constant with # In fact, as this paper will
show, the statistical moments of the random ontogenetic growth
function for y; and for x; affect the temporal distribution of both &
and £. This phenomenon has significant implications with regard to
organismal form and function. And so the objectives of this study are
to first incorporate stochasticity into f(x;; b,k) by treating y, and x;
as correlated stochastic processes, thereby formulating an exact
probabilistic model for allometric growth that applies throughout the
ontogeny of any organism, and then to analyze the ontogenetic
statistical moments that specifically govern the temporal distribution
of k.
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Unlike 4, £ is an important descriptor of relative growth [1,5-7].
In ontogenetic studies of allometry, £ is the coeflicient of interest
because it describes the specific growth rate of y; relative to the
specific growth rate of x; [1,5-7]. Thus, the dimensionless
ontogenetic allometry coeflicient, £, is commonly referred to as
the relative growth rate. Since allometric growth is inherently a
stochastic process, £ must be defined via stochastic analysis; but
before this is done, it is necessary to first discuss important
mathematical concepts, definitions, and notations used throughout
this paper.

Definitions and notations

Suppose S is a probability space on which the stochastic process
0,=0(¢) is defined. If <0, is the expected value (also known as the
first statistical moment or the probability average) of 9,, then the
nth central moment of 0, is <0”> {"0,>), where 6,=0,—<0,>,
<00> 20,5y =1 at every t€[0,+ ), and 0,>= << 9 »>=0
at every 1€[0,4 00). Now suppose ¢, =¢(r) is another stochastic
process defined on the probability space S. Then the probability
covariance between 0, and ¢, is {0; ¢,> =<0, #,>>; an obvious
extension to this relation is the important identity <{0; ¢,>=
KOy, ¢ > +<0,><¢,>. Thus, the nth mixed moment of 0, and ¢}
is <0; 97> =<0, ¢7>>+<0,><{"Pp,>>. All of the stochastic
processes involved in this study are defined implicitly as
evolutionary, not stationary, random functions of ¢ With regard
to the variable ¢, {t) equals ¢, and {{"t)) equals zero for every
neN,. These equivalences hold for any deterministic process.

Ratio of first-order deterministic t-derivatives

Let X; be the set of all deterministic or stochastic ratios of
differentiable functions of ¢, and let £),{X,) be the set of all ratios
of first-order deterministic t-derivatives. Then, for any
Q) elXs), ), is defined by

D, (u<Q;))
D,(v{Q)

where u{Q,> and v{€Q,) are the numerator and the denominator
of {Q;), respectively. Therefore, ), is a multivalued differential
operator defined as the ratio of the standard first-order differential
operator D;:

DiQ>= Dy (v{Q»)#0 |,
(B #0)

_ Dy(u
Dr= D,(<>)

An important property of ), is that it operates linearly on sums of
ratios of differentiable deterministic functions in which the
denominators are common. For example, ,@,(%0, +2co,> equals
D, oy+ D, o) if Qo) and Cay) are expressed with a

common denominator.

The mathematical analysis of k

Let 0,=log,y; and ¢,=log,x, each be a deterministic
ontogenetic growth function such that 0,=log,[f(x;;b,k)]=
log,b+k ¢, and ¢, are deterministic variables that depend on &
Also, let Q, =0, (]5, be the ratio of 0, to ¢,. Then the first-order
derivative of the deterministic ontogenetic growth function 6, with
respect to the deterministic ontogenetic growth function ¢, is [1,5-7]

D,0,
D¢,

do,
dg,’

k=D <KQ>= ( D¢, 7&0)
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where 0, and ¢, are differendable real-valued functions of # Note:
d0;/d¢, is a parametric derivative in which 0, and ¢, are
differentiable deterministic functions. The temporal distribution of &
has been a subject of intense interest (see [6] and [7]). The reason for
this is that ontogenetic processes govern the size of traits and the
timing and rate of development of traits [7-11]. Thus, 4 can vary with
¢ [5-7]; this implies that the relationship between 0, and ¢, may not
always be linear [5-7]. When 6, and ¢, are linearly related, D6, is
proportional to D;¢, [1]; kis constant with 4 and so the relationship
between 0, and ¢, is descrlbed by log, f. In contrast, when 0, and ¢,
are nonlinearly related, D,0; is not proportional to D,¢, [5]; k varies
with 4 and so the relationship between 0; and ¢, is not described by
log, f. Both cases have been observed experimentally (see [12] and
[13]). Although deterministic log-linear allometric growth trajectories
are always the result of D,(u{Q;»)=D,0, being proportional to
D,(v{Q;>)=D,¢,, the proportionality between D,(u<€Q;») and
D,(v{€,) is not always expected to hold under stochastic log-linear
allometric growth trajectories because 8, and ¢, are correlated
stochastic processes; their probability distributions interact in ways
that are not intuitively obvious. The following is a case in point.

Since 0; and ¢, are inherently correlated stochastic processes,
<€) contains the central and mixed moments of those processes
(Methods, equations 6-8). These statistical moments are described
by the allometric growth factors (see Methods, equation 9) that
affect the temporal distribution of (€, ). Of course, {Q;) must be
transformed into its probabilistic derivative, £,{€;>, in order to
analyze the allometric growth factors that affect the temporal
distribution of £ These allometric growth factors, which only
appear in the probabilistic version of k= %),{(Q,), are essential
because they provide important insight into ontogenetic allometry.
Failure to account for the inherent stochasticity in Q, leads not
only to the miscalculation of £, but also to the omission of all of the
informative central and mixed moments of the random ontoge-
netic growth functions that govern the statistical dynamics of £.
Therefore, by treating 0, and ¢, as correlated stochastic processes,
this study reveals and analyzes the allometric growth factors that
affect the temporal distribution of £.

The probabilistic derivative, 5),{€;>, in which €, is a ratio of
correlated stochastic processes, is newly presented in this study as
the inner mean derivative of a random function with respect to a
random function. This derivative implies the differentiation of the
expected value of a random function with respect to the expected
value of a random function, whereas the outer mean derivative of
a random function with respect to a random function—for
instance, {D,0,;/D,$,>—implies the expected value of a ratio of
correlated stochastlc t-derivatives. In other words, £),{€), i
which Q;=0, (f), is a stochastic process, defines £ as a
deterministic variable, whereas {(D,0,/D,¢,>, in which D,0, and
D,¢, are stochastic, is the deterministic coeflicient k). Although
all of the statistical moments of & can be derived from D,0;/D,¢,,
Cky or {({"k)) for any neNj, cannot vary with ¢ because
D,0,/D,¢, is simply a random variable, not a stochastic process.
Thus, only 4),{€;>, by which the deterministic variable £ is
defined, can vary with ¢ This distinction between the inner mean
derivative §),{€;) and the outer mean derivative {D;0;/D¢,) is
important and is further addressed in the Discussion.

The concept of an inner mean derivative and an outer mean
derivative only applies to the ratio of stochastic #-derivatives. The
expected value of a stochastic /-derivative, such as {(D;},>=
D {¢,>, is simply referred to as a mean /-derivative (see equation
4.62 in [14]). Nelson [15] introduced mean derivatives (albeit
based on the conditional expectation) to address issues in
stochastic mechanics (see [16] and [17] for details).
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The probabilistic version of k=7%),{Q;> is not readily
calculable because the numerator and the denominator of
are correlated stochastic processes; the expected value of a ratio of
correlated stochastic processes is generally not equal to the ratio of
expected values of the stochastic processes [18]. Therefore, this
study equates (€, ) to its Taylor series expansion in order to reveal
the central and mixed moments of the stochastic processes on
which ), operates (Methods, equations 6-8). Although (€, ) can
be expanded as v, = {{0;, ¢l_l>>+<9,><¢l_l> (which is not the
Taylor series for (), ), v,, like its identity %),{€;), is not
readily calculable because ¢, ! is stochastic. Subsequently, the
Taylor series expansion of () is essential for evaluating the
probabilistic version of k= ),{€;>. Also, (€, contains the term
0,=¢,{¢$,>", which is the ratio of ¢, to {¢,> (Methods, equation
8). Naturally, ¢, and ¢, share similar statistical properties; for
example, (¢, equals zero at every ¢, and {¢/) equals {{"¢,) ) for
every neN,.

Results: The statistical dynamics of k

Using the definitions and notations described above, the inner
mean derivative of the random ontogenetic growth function 0,
with respect to the random ontogenetic growth function ¢, is (see
Methods, equations 6-11, for derivation)

=L (= 1)" DO,y
= Q5= 2 2 DL, —
k== 3 (S by 0
= (=D)"dO09)\ &
> (SEE) -3k

where <0, ¢'> and {¢,) are differentiable real-valued functions of
t. Equation (1) is the exact probabilistic version of . This equation
is also the exact general solution for the inner mean derivative of a
random function with respect to a random function and can thus
be applied to any ratio of correlated stochastic #derivatives; no
simplifying assumptions were made to derive equation (1). Note:
k,=(—1)"d<0, ¢?>/d<¢,> for each meNj is a parametric
derivative in which {0,¢}) and <{¢,) are differentiable determi-
nistic functions.

Each of the nth terms in equation (1) is the statistical relative
growth rate, k,, which can be expanded as (se¢ Methods, equations
12 and 13, for derivation)

(=11 d<<0:, 077> (=D dl{"¢:»>

7 S C A 77 5 S o
(1O
oy I,

where the summed terms

1y (=1D)"dLO0L 000 a0
S, =T A&y §, =<0

and *F, =gy 7S

describe the allometric growth factors that affect the temporal
distribution of k£ The 0™ term in equation (1) is

ko=1F,+2F,+°F, (where 'F =0 at every ¢ and *F,=0 at

every /), which becomes £ either when €; is deterministic or when

(=1 d{{"¢:»>
d<¢;» ’

>0y ky is zero at every t. Traditionally, ko =" is calculated as
k and is the ratio of D,{0;) to D,{¢,> [19]. Note, however, that
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ky is not zero does not yield an
ki, ka,....kn
considered. Thus neglecting Y7 | k,#0 clearly leads to a

evaluating only ko when > 7,
exact £ because the other terms must also be
miscalculated k. Moreover, £ (or k, for every neNg) can vary
with # nonlinear allometries can occur, even though the stochastic
process 0; and the stochastic process ¢, are linearly related.

The statistical dynamics of £ can be readily analyzed by the
summed terms (lgn, 23)17 and 38"n) in equation (2). Consider the
following example: let the stochastic processes, y; and Xx;, belong to
the finite family of ge'’—the exponential growth-law functions in
which only 7 is a random variable—such that the random
ontogenetic growth function 0, is 0;=s,+r,t and the random
ontogenetic growth function ¢, is ¢,=sy+ryt. Then, if
sy =10g, g, equals zero, equation (2) is (sec Methods, equations
14-16, for derivation)

P P (1R <n)
A B RN S

The allometric growth factors in equation (3) are

g o CU ) he

Gy
T R
and S, =T ey

Equation (3) is an example of equation (2) in which the derivatives
are explicitly defined. The appeal of this example (besides that it
can be realistic for a particular organism) is that the allometric
growth factors (! , and 38"”) contain the slopes (r, and ry) from 0,

and ¢,, thus making it easy to interpret the biology of 'S"ﬂ and

33)1. For instance, ko 2330 1s simply (ry>~<rx>71; it is the ratio of
{ry) (the expected value of the specific growth rate of y;) to {ry)
the expected value of the specific growth rate of x;). So, naturall
p P g > Y,
when the mean growth rate of y; increases relative to the mean
growth rate of X;, ko also increases. Note that £ differs from ko
because > 7, lgn and Y7, 3371 are nonzero sums. If ko is 1
and Zle 13’1 and Z;C:Z 33n were both zero sums, then relative
. . . . o ]
grovyth would be isometric [2]; however, since >/ '§§, and
S, 33}7 are really nonzero sums, relative growth deviates from
1sometry. This is a simple and yet realistic example illustrating the
ry p Y p g
. . o 1
fact that £ can be miscalculated if ), _, 3’1 #0 and
S, 3311 #0 are not taken into account.
The statistical relative growth rate, k= 13 | +3 3 | (where
331 =0), in equation (3) is

k1=131= *<§:ta>;’x>>

The nonzero coefficient, {{ry, rx), is the probability covariance
between the random variable r), and the random variable ry; it is a
measure of the joint distribution of r,, and r,. The more closely r,
and r, are positively associated, the lower the value of k| because
— <1y, rxy) is less than zero. In contrast, the more closely r,, and
ry are negatively associated, the higher the value of k; because
— {1y, Fxp) is greater than zero. And so whether ko is being
subtracted or added by k; solely depends on the direction of
association between r, and ry.

The allometric growth factor (33,7) contains the term {{"p,>>,
which in equation (3) is
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K> L'
<¢t>n " '

Clearly, ga,:i,((rx)*l is a random variable, not a stochastic

o>=

process. Thus, for instance, {{’@,>> is a nonzero positive
coefficient that represents the ratio of {{?r,»> (the probability
variance of ry) to reH? (the squared expected value of ry).
Consequently, {{?¢,>> describes the ontogenetic variance of x;,
and {(3p,>> describes the ontogenetic asymmetry of x;. Both
genetic and environmental factors can affect {(?p,>> and
{3p,>>, and these two ontogenetic statistical moments (or
biological processes) influence £ in a manner that is not intuitively
obvious unless equation (1) is used.

It is important to note that the allometric growth factor, 2%}1, is
zero in equation (3) only because ¢, is a random variable, not a
stochastic process; ¢, = ?x<rx>71 does not vary with ¢ because sy 13
constrained to zero, and thus D,{<{"¢,)) equals zero at every .
Since §y 1s constrained to zero, £ does not vary with ¢.

Now suppose only s, and sy are random variables in the
random ontogenetic growth functions, 0,=s,+r,¢ and
¢, =sx+ryt. Then, if {sy)=<log, g,y equals zero, equation (2)
is (see Methods, equations 17-19, for derivation)

_ (=D sy, SOy !

kl‘l r§+1 +
(1 n —n—1
e S S 2k )
rX
(="t 1y
" e

X

where {0;>={s,»+ry t is a deterministic process and sy =35, is a
mean-centered random variable. In this case, ¢, =87 It-1isa
stochastic process because <{"¢,>) for each neN, does not vary
with 4 and yet {¢@,) increases with ¢ since there is growth. The
allometric growth factors in equation (4) are

El

g - 2Dy, s e

n+1
rX

— (=D nsy !

n+1
rx

5.
and g = SV

" I'x

<'9t>'

s

It is apparent that, unlike equation (3), equation (4) contains the
deterministic variable ¢ Thus, £ varies with # and its values can
either be greater than 1 (that is, positively allometric at every ) or
less than 1 (that is, negatively allometric at every # or an
arrangement of both (that is, reversal in ontogenetic polarity) [10].
Note that ko =3§O=}’yr; ! in equation (4) is constant with £ this
implies that {0, and {¢,> are linearly related, and so the
relationship between {6,) and {¢,) is described by log, f. All other
statistical relative growth rates (k, for every neN;), however, are
derived from relationships that are not described by log, f* and
therefore vary with & For example, {{0;, ¢,>)=<{{sy, 5:))
r7't~! and (¢,>=r, t are nonlinearly related, and so k; = 131,
which is derived from the relationship between {{6,, ,>)> and
{¢,>, varies with . Consequently, nonlinear allometries occur in
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this case, even though the stochastic process 0; and the stochastic
process @, are linearly related.

Intricate temporal distributions of £ can arise from the case
d.escribf.:d. by equation (4). For2 example, suppose Y .3 ky atevery
¢is negligible compared to ), _, k, at every £. Then equation (1) is

k=DLQ>xko+y t 2 —y,173,

where ;= [({sy, 550> —ko(Csad)] 12 and p, =2[<(<sy, 530 +
<Sy>-<<2sx>>] r;3 are probabilistic coefficients. Now there could
be a condition in which the temporal distribution of £ is not
monotonic and is either positively allometric or negatively

allometric: £ has a stationary point at fs=§"/z“/1_ U (set Dk=0

4
and solve for /), where the stationary value of & is ky = ko +ﬁy? V2 2

(substitute f; for ¢ in £); thus, the temporal distribution of £ is not
monotonic. This is an interesting case because £, which could be
either greater than 1 or less than 1 at every ¢, increases with ¢
reaches k; (the maximum rate of relative growth), and then
decreases with ¢ This is classic case of accelerated and decelerated
rates of relative growth within a given ¢ period. Note that kg
depends on the probabilistic coefficients, ko, 71, and ,. When Q,
is deterministic, k; is undefined. Since, however, €, is inherently
stochastic, the terms in y; and in 7y, affect k; and #,. For instance, if
{8y, Sx») increases while ko, y,, and all other terms in y; remain
constant, then k; increases, assuming y; and ), are positive.
Moreover, increasing {{sy, Sy)) decreases the ¢ at which kj is
reached; this is because f; is inversely proportional to y;, which is
directly related to {<s,, sx»>. If stochasticity disappears, then 7,
and 7y, also vanish and f; becomes undefined. So ko, y;, and 7,
affect not only kj, but also the ¢ at which k; is reached. This is a
clear case of how y; and y,—coefficients that only appear in the
probabilistic version of k= §),{€; )—affect the timing and rate of
development of traits. Thus, ignoring the effects of stochasticity on
both 6; and ¢, omits all of the informative ontogenetic statistical
moments (e.g., {{sy, $x) that govern the temporal distribution
of k. Furthermore, even though the relationship between the
realizations of stochastic 0; and the realizations of stochastic ¢, is
described by log, f, k differs from ky and can vary with ¢ This
important fact should always be considered when analyzing
allometric growth.

It is interesting to note that as ¢ approaches infinity, equation (4)

or any of its approximations reaches an asymptotic value of
ko= tlirg (ko+y1172—7,t7%). The ¢ at which this asymptotic
value is first reached is an indication of the cessation of the
variability of £ with respect to & In other words, nonlinear
allometries disappear as ¢ approaches infinity. So as the allometric
growth process evolves over ¢, two distinct phases are observed: the
first phase is a non-uniform temporal distribution of %, and the
second phase is a uniform temporal distribution of £. This two-
phase allometric growth process may be more realistic than a
growth process that exclusively corresponds to either the first or
second phase. It should be made clear, though, that only the
second phase is indicative to a log-linear allometric growth
trajectory, since ko (not k) is constant with ¢ And so the
probabilistic coefficients, y; and y,, essentially have an insignif-
icant impact on only the second phase of the allometric growth
process. Clearly, the first phase of the allometric growth process
can entail an intricate temporal distribution of £, such as the one
provided in the previous paragraph.

Equations (3) and (4) are realistic examples of the types of
temporal distributions of £ that may arise from the random
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exponential growth-law function, ge'’, to which the stochastic
processes, ¥; and x;, belong. The important distinction between
equations (3) and (4) is the type of variable ¢, E¢[<¢[>71 assumes:
¢, 13 a random variable (not a stochastic process) in equation (3); ¢,
is a stochastic process in equation (4). As a result, £ defined by
equation (3) does not vary with ¢, whereas £ defined by equation (4)
varies with # In either case, it is ¢ or 7 that is a random variable.
Nonetheless, it is entirely possible to have a case in which ¢ and r
are both random variables. .

With regard to the convergence of equation (1), ¢, =¢,{¢,>
has an important role: equation (1) is guaranteed to converge at
every ¢ if the realizations of stochastic ¢, are between —1 and 1 at
every 4 this is because the realizations of ¢/ =¢7<{¢,> " approach
zero at every ¢ as n approaches infinity.

Discussion

Although statistical models for relative growth have been
developed (see [7] and [20]), their models, which show variability in
k=ko with respect to # are not probabilistic because they do not
incorporate actual stochasticity into f(x,; b,k); they do not treat y,
and X, as correlated random functions. Also, although a probabilistic
model for static (not ontogenetic) allometry, in which x is treated as an
independent random variable (not as a stochastic process), has been
proposed (see [21]), their model cannot address the statistical moments
that govern the temporal distribution of £ because their model
is used to analyze the effects of stochasticity only on Df(x; b,k).
Consequently, equation (1) is entirely new and has no analog to any
statistical model for relative growth previously developed.

Equation (1) is the exact general solution for the inner mean
derivative of the random ontogenetic growth function 6, with
respect to the random ontogenetic growth function ¢,. This
equation, which is the exact probabilistic version of £, is general
because it does not entail any simplifying assumptions. Thus, the
generality of equation (1) makes it possible to analyze all of the
informative ontogenetic statistical moments (or biological pro-
cesses) that govern the temporal distribution of 4:

) (=1 Dt<9r¢?>
k=D =3, (W

D,<¢,>¢0)-

This expression makes it apparent that £ is composed of an
infinite series of ratios of first-order #derivatives. The statistical
complexity of £ arises from the derivative in the numerator, which
is the ¢-derivative of the nth mixed moment of 0, and ¢/. Each of
these nth statistical moments is governed by the interactions
between 0, and ¢}. So most of the informative ontogenetic
statistical moments are captured by the mean ¢derivative,
D0, ¢"y; this is evident by expanding (—1)" D;<0,¢!> (see
Methods, equations 12 and 13, for derivation):

(=)' D09} ) = 5)
(= 1)"[Dik00 975>+ 0> D9 0> + <0 > >-Di0:) ]

The summed terms in equation (5) compose the allometric
growth factors (! e 28"”, and 3;3’”) in equation (2). These
allometric growth factors are important to interpret because they
describe the central and mixed moments of the random
ontogenetic growth functions that govern the statistical dynamics
of k. Clearly, equation (5) is calculable, since each of the nth terms
of {0,¢}> is a differentiable deterministic function of ¢
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To biologically interpret equation (5), one must specify the finite
family of functions to which the stochastic processes, y; and x;,
belong (see, for example, equations 3 and 4).

Equations (3) and (4) are examples of how to model and analyze
the statistical dynamics of £ These examples are derived from the
random exponential growth-law function that is theoretically
assumed for a particular organism. Thus relaxing this assumption
leads to the practical (experimental) side of modeling the statistical
dynamics of k. Traditionally, <0,> and <{¢,> are experimentally
measured, plotted with respect to each other, and then related by a
differentiable function from which ky is derived [19]. This study,
however, shows that ko is not the only statistical relative growth rate
that needs to be considered when evaluating £ (see equations 1 and
2). The other statistical relative growth rates (k, for every neNj)
should also be quantified in a similar manner. For example, {60,¢,>
and {¢,> can be experimentally measured, plotted with respect to
each other, and then related by a differentiable function from which
ky can be derived. Thus, the probabilistic version of k= ),{€;) is
a very practical metric: it only requires measuring the mixed and
central moments of 0; and ¢,.

The ontogenetic growth functions, 0, and ¢,, must be linearly
related in order to satisfy the log-linear allometric function, log, 1"
Thus, 0, and ¢, can be generalized as 0;=s,+r,A, and
¢, =5x+7ryl, where deterministic or stochastic 4, is any
differentiable function of # In equations (3) and (4), 4, is simply
t; but, to describe more intricate ontogenetic growth distributions,
¢ could also be Y o _ (" for any zeNa, where {,, for each
meN)] is a deterministic or stochastic parameter. Note that D,6,
and D¢, equals D4, and ry D, A, respectively; this is true for
any distribution of 4,. Subsequently, <k)=<{D,0,/D;¢,> equals
<ryrx_1>, which is the expected value of the ratio of r, to ry.

For most organisms, ko =D,<{0,>/D;{¢, is constant with 4 this
implies that {{ry, 4, and {{ry, ;) are typically zero at every /. In
equations (3) and (4), where /; is ¢ {r), 1)) and {ry, t)) are
naturally zero because ¢ is naturally deterministic; thus, ko is naturally
constant with ¢ in these equations. There are some organisms
(predominately plants) that show k =kq varying with ¢ [22]. Indeed,
this case, in which k¢ varies with ¢ is interesting to study, but
complicates the biological analysis of k= 4),{€Q;> because the
biological interpretation of {{ry, 4;)»#0 or {{ry, 4> #0 cannot
explicitly be defined. Therefore, when analytically modeling
k=74,{Q;>, there is good reason to assume that {<{ry, 4,>) and
{ryy Ayyy are zero at every ¢ Keep in mind, though, that while
stochastic 0, and stochastic ¢, are linearly related, ko can vary with £

It is important to note that if ¢, =¢,{¢,> ! is not a stochastic
process, then & (which differs from ko) does not vary with ¢ (see
equation 3). If, however, (p,5¢,<¢,>_1 is a stochastic process,
then £ not only differs from ko, but also varies with ¢ (se¢ equation
4); this implies that the statistical relative growth rates (k, for every
neN)) are derived from relationships that are not described by
log, f, even though the stochastic process 0, and the stochastic
process ¢, are linearly related.

Another important point to note is that 4),{€,) is mathema-
tically different from the expected value of a ratio of correlated
stochastic t-derivatives. If D,0, and D,¢, are correlated stochastic ¢
derivatives, then the outer mean derivative, <k)=<D,0,/D,$,>, is
generally not identical with equation (1). Stated more explicitly,

D,0,
D¢,

2 (—1)DO(Dh)"> &
= D,
ZO (D" ! Zf ’

<ky= << >

D> # 0) =
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and

(— 1" <D0, (D)">>  (—1Y<D,0,> {(Dihp)">
(D" (D"

are generally not identical with equations (1) and (2), respectively.
Note: <k) and <k}, are derived in exactly the same manner as
Q) (see Methods, equation 8) and <€), (se¢e Methods, equation
9). Now compare the following limits: the outer mean derivative is

<k =

Clim A0/AL o AO/AL O+ AD =00

ASOAG, AL T A0 Ag, JAT A0 p(1+ A — o0

whereas the inner mean derivative is

AdQY) /At
S0AGKQD) At

uQ(t+ At)> —ud Q1)

D= = A50 WQU+ ALy — QDY

Thus, in (k), the limit operates on the ratio of stochastic Af; to
stochastic Ad,; but in k= 4),{Q,), the limit operates on the ratio
of deterministic A(u{€;») to deterministic A(v{Q;»). So
k=7%),{Q;) is identical with <k)=<D,0,/D,$,> when both 6,
and ¢, are deterministic or when only 0; is stochastic. When,
however, only ¢, is stochastic or when both 0; and ¢, are
stochastic, %),{€;) is generally not identical with {D,0,/D,¢,>
(see equation 4); the only exception is the special case when

(p,E¢,<¢,>_1 is not a stochastic process, but a random variable
(see equation 3). As a result, the outer mean derivative

{D,0;/D,$,> is a special case of the inner mean derivative
DKQ>. Also, <kpo=<(D:0,>/<{Dy¢;> is equal to ko=
Di<0:>/Dil$,>.

In conclusion, equation (1) is completely versatile and has much
to offer with regard to analyzing the allometric growth factors
(lgn, 28"”, and 38"”) that affect the temporal distribution of £.
When the derivatives in equation (2) are defined explicitly via
specifying the random ontogenetic growth functions (0; and ¢,),
the allometric growth factors become biologically interpretable;
they also become tractable in simulations, which are useful for
modeling the statistical rates of relative growth for various
distributions of A; (see Methods, Simulating the probabilistic
version of £). Thus, each of the statistical relative growth rates (ko,
ki,..., k), which are infinitely summed to form equation (1), can
be analyzed in detail to reveal new insight into the statistical
dynamics of relative growth.

Lastly, this study ignored the statistical dynamics of & because
only £ 1s an important descriptor of relative growth. But to obtain a
complete characterization of the statistical dynamics of allometric
growth, b or log,b=f must also be considered. Since the
stochastic analysis of £ has been fully developed in this study (see
Methods, equations 6-11), the exact probabilistic version of § can
easily be formulated:

P=DEN= Y (DD@M

t<¢,‘1>¢o>=

n=0 Dt<¢z >
NGO R AANRS
Zo( dg; "> ) Z%ﬁ

\f/here E,EQ,(gbfl) !
6o

is the ratio of Q, to ¢;1 and @, =

!'is the ratio of (]3:1 to <¢,71> Each of the nth terms
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of f is the allometric growth descriptor, f3,:

=n d<<2t’ CD7>> + <Qt>.w
d<p; "> d<¢,
dg; "y

The summed terms in f, describe the allometric growth factors
that affect the temporal distribution of f. The equation (f,)
contains all of the ontogenetic statistical moments that govern the
temporal distribution of f. And just like £, one could analyze the
statistical dynamics of f§ simply by examining the summed terms in
B,- Note that, like ¢, in equation (1), if @, is a stochastic process,
then f§ varies with £

ﬁn =

LD )

Methods: The stochastic analysis of k

Let 0, =1log, y, and ¢, =log, x; each be a random ontogenetic
growth function such that 0, and ¢, are correlated stochastic
processes. Then, if Q,=0,¢, " is the ratio of 0, to ¢,, the expected
value of Q; is

(@)l o

Equation (6) contains the central and mixed moments of 0, and (}5;'
These statistical moments can be revealed by expanding equation
(6) using the Taylor series generated by the function, g, defined by
the denominator [{¢,> ‘H}[] - =g({b,) when o equals zero at
every t€[0,+ o0):

o+h) =3 PEDG g Z‘ S @

n=0

where ¢,Eq~5[<¢,>71 is the ratio of J)t to <{¢,>. Substituting
equation (7) into equation (6) yields

() (=17 <0y _
o= (g)0)= 2 g5

where each of the nth terms in equation (8) is {Q;),:

Z Qs (8)

(=10 93> | (=10 S8
2% 2%

<Qt>n = (9)

The summed terms in equation (9) are the allometric growth
factors that affect the temporal distribution of {Q,>. Rice and
Papadopoulos [23] use a similar mathematical approach (that is,
the Taylor series expansion of the expected value of the change in
mean phenotype) to reveal important biological factors governing
evolution.

Equation (8), which is the Taylor (or Maclaurin) series
expansion of <>, can also be expressed as >, ,(—1)"
60,97 /<9, Y+ This particular expression, however, has no
explicit common denominator, as its denominator has an unfixed
exponent; thus, £), cannot operate linearly on this expression, and
consequently fails to define £ from this expression. In contrast,
equation (1), in which %), operates specifically on equation (8),
uniquely defines the probabilistic version of £. Equation (8) is thus
essential for evaluating 3),{Q;): the /-derivative of the numerator
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in equation (8) is

o0

Q) = Z — 1Y D0}, (10)

and the #derivative of the denominator in equation (8) is

Dt(V<Qt>):Dt<(/5z>~ (11)

Therefore, equation (1) (that is, the inner mean derivative of the
random ontogenetic growth function 6, with respect to the
random ontogenetic growth function ¢,)
(10) to equation (11):

is the ratio of equation

1)" Di<(0,"
=g (L0

S (=1 dO9D\ &
> (SEE) -3k

Now the identity <0,¢])=<{{0;, ¢/>>+<0,><{{"p,>) can be
used to expand (—1)" D,{0,¢">:

D,<¢,>¢o) _

(= D" D09} =
(=1)"[D; L0 @55+ Dy (<0< "0, 0)) 5

the product rule is used to expand D,(£0,><{"p,>>):

(12)

Dy(K0,> <", >>) =

Substituting equation (13) into equation (12) and dividing by
D,{¢,) yields the expanded form of the statistical relative growth
rate, ky=(—1)"d<{0:p}>/d{,>:

0> DL )+ 00> DiOry. (13)

(=1 d<<0:, 017> (=D dl{"¢;»>

7 S A 77 5 S
oy I,

which is identical with equation (2). The summed terms in
equation (2) are the allometric growth factors (13’1, 28"", and 3;3:”)
that affect the temporal distribution of 4:

iz =Y <00 @1y _ (=1 DilLOr 91>y _

" A, Di$y

(—1)"K,> "D L0;, 5> +LL0,, $15>Dil > "]
D{$,y ’

2 _ g (DALY (1 D)y

775 S My ¥ %

(Z1)"<0> K" DiCC" 32>+ 90> D> ™"
D{d,y

and

o (C1PdC0Y (<> (—1) DO
I 773 S 7 iy e
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When ¢, E$t<¢z>_l

quotient rule can be used in lgn and in 23” to calculate their

derivatives. Note that D,(<0,, ¢7>>=D,(<<0,, (}57>>~<¢,>*")
and D {{"p,>>=D;(K{"¢,>>{¢,>™") represent deterministic ¢

derivatives of the product of two deterministic functions.

Now suppose for a particular organism the random ontogenetic
growth functions, 0, and ¢,, are defined by 6;=s,+r,t and
¢, = Sx+rxt|s\.:o2l="xl in which only r, and r, are random
variables. Then the allometric growth factors, which are the
summed terms in equation (2), are as follows:

is a stochastic process, the product or

13 _ (=1 Dt<<sy+rvl <rv> n>>

D (ryty
(€ P> <> ~"e) _ (=1, )
D ({rypt) <Vx>n+1

(=1)" D,

s

e (' DLCECS Y
8, =<oFn R -

(=1 DL ELrD ™)) (15)
D({re> 1)

[sy +<ry> 1)

(=" [sy+<ry> 20

—0
ey '

and

Dy +nty
Dt<rxt> B
'y (=1 Di(sy+ <)1)
% Di({rey 1)
D) Ly L)
o’ Ly’

3T =ESr T

_ (16)

where (ﬂ;=7’x<”x>71 is a random variable, not a stochastic
process. Summing cquations (14), (15), and (16) then yields
equation (3):

(=1 Ly, PO
<rx>n+1

(=D)LL <y
<" {rey’

kn =

If, however, 0, and ¢, are defined by 0,=s,+r,¢ and
q5,=(sx+rxt|<‘qx>:0> =38¢+r,t in which only s, and s, are

random variables, then the allometric growth factors are

13 _ (71)’1 D,<<Sy+ry[’ Sfl\‘rx_nt_n>> _
D {se+rit)
(7 1)/1 Dt (<<Sy, SZ>> r;'ltfn)
Dt(rx [)
—(= 1y nd<sy, shyy !

it ’
X

= (17)
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(=1 D s 1)) _
D {sy+ryt)

—1)y Dt n » ;ntfn
(=l soy !

n+1
rX

2T =Sty

<0:»

s
and

s g 1ty (D DSy rpty

T, =< W—

sy 17" (=1 Dy({sy> +1y0)
r D, (ry1)

" Iy

- (19)

s

where ¢, =s,r;1t*1 is a stochastic process and sy =5, is a mean-
centered random variable. Summing equations (17), (18), and (19)

then yields equation (4):

_ (=) sy, sy
r;tﬁl
(=D KL seppt™" 1y

r Iy

1y n —n—1
(=D"nl{{"s:>>1 N

kn +0,y — T

Methods: Simulating the probabilistic version of k
Simulating k= %),{€;> using 0;=s,+r,A; and ¢, =55 +rcl
as correlated random functions can easily be done: first specify the
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