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Abstract

Several reports have demonstrated a role for aberrant NOTCH signaling in melanoma genesis and progression, prompting
us to explore if targeting this pathway is a valid therapeutic approach against melanoma. We targeted NOTCH signaling
using RO4929097, a novel inhibitor of gamma secretase, which is a key component of the enzymatic complex that cleaves
and activates NOTCH. The effects of RO4929097 on the oncogenic and stem cell properties of a panel of melanoma cell lines
were tested both in vitro and in vivo, using xenograft models. In human primary melanoma cell lines, RO4929097 decreased
the levels of NOTCH transcriptional target HES1. This was accompanied by reduced proliferation and impaired ability to
form colonies in soft agar and to organize in tridimensional spheres. Moreover, RO4929097 affected the growth of human
primary melanoma xenograft in NOD/SCID/IL2gammaR-/- mice and inhibited subsequent tumor formation in a serial
xenotransplantation model, suggesting that inhibition of NOTCH signaling suppresses the tumor initiating potential of
melanoma cells. In addition, RO4929097 decreased tumor volume and blocked the invasive growth pattern of metastatic
melanoma cell lines in vivo. Finally, increased gene expression of NOTCH signaling components correlated with shorter post
recurrence survival in metastatic melanoma cases. Our data support NOTCH inhibition as a promising therapeutic strategy
against melanoma.
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Introduction

The incidence of melanoma has been constantly increasing

during the last decades [1]. Adjuvant therapy after complete

resection is recommended for thick primary melanoma with

lymph node metastases, because recurrence rates are relatively

high and overall survival is poor [2]. However, IFNalpha remains

the only approved adjuvant therapy, which provides a modest

disease-free survival benefit [3]. Furthermore, it is especially

concerning that the conventionally used drugs for metastatic

melanoma include dacarbazine and IL-2, both of which cause

poor (,15% of cases) and transient responses [4]. Although

promising therapeutic responses have been observed in recent

clinical trials using the BRAF inhibitor Vemurafenib (PLX4032)

and the monoclonal antibody against CTLA-4 Ipilimumab, both

recently approved by the FDA, emergence of resistance and severe

side effects have already been confronted [5,6,7,8,9,10].

The NOTCH signaling pathway, which plays a role in

organogenesis and cell fate determination during embryogenesis,

involves four NOTCH transmembrane receptors (NOTCH 1-4)

[11]. Binding of DELTA (DLL 1/3/4) or JAGGED (JAG 1/2)

ligands makes the receptors susceptible to metalloprotease- and

gamma secretase-mediated proteolytic cleavage. This cleavage results

in the release of NOTCH intracellular domain (NIC) from the plasma

membrane and its translocation into the nucleus. Here, NIC mediates

the transcription of target genes, including basic helix-loop-helix

transcription factors of the hairy and enhancer of split (HES) family

and the HES-related repressor protein (HERP/HRT/HEY) family.

Aberrant NOTCH signaling has been recently linked to many

malignancies including melanoma, where it plays a role in

progression and possibly in development [12,13]. Mechanistically,

NOTCH signaling relies on crosstalk with the Wnt/b-catenin, the

MAPK/AKT, the BRN2/MITF and the NODAL pathways in

order to elicit its biological functions [12,14,15,16,17].
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Aberrant NOTCH signaling has also been shown to confer stem

cell-like properties in different cancer types, such as breast cancer

and glioma (reviewed in ref. [18]). Identification of stem cell-like

tumor initiating cells has been of major interest in melanoma.

Although there is an ongoing debate about the frequency and

identity of melanoma initiating cells [19,20,21,22,23], the inability

to eradicate this subpopulation is thought to be a reason for the

failure of current treatment strategies [24]. Therefore, NOTCH

inhibition in melanoma, possibly through the targeting of tumor

initiating cells, can be foreseen as a new and promising therapeutic

strategy.

Essential to NOTCH signaling is the catalytic cleavage of

NOTCH receptor by the gamma secretase complex. Different

inhibitors of gamma secretase have been developed (see ref. [18]

for a list). These inhibitors have been tested in vitro on a variety of

cell lines, including melanoma [12,13,18,25]. Clinical data have

been supplied mostly by trials in adult T Cell leukemia (ALL), but

efficacy has been hindered by significant gastrointestinal toxicities

associated with treatment [26]. However, RO4929097 is a novel

gamma secretase inhibitor with an improved clinical toxicity

profile [27]. Here, we report the preclinical effects of RO4929097

on both primary and metastatic melanoma cells. In particular, we

show for the first time that the inhibition of NOTCH signaling has

an impact on the tumor initiating properties of melanoma cells.

Results

RO4929097 affects the oncogenic and stem cell-like
properties of primary melanoma cells in vitro

In order to evaluate the potential use of RO4929097 in the

adjuvant setting, the drug was initially tested on a panel of primary

melanoma cell lines. WM35, WM98.1, WM115, WM983A and

WM3248 were chosen because of their aggressive phenotype, as

indicated by their ability to form colonies in soft agar and to

organize in spheres (Figure S1), which are nonadherent 3D

structures enriched in melanoma initiating cells and characterized

by increased differentiation capacity in vitro and tumorigenic

potential in vivo [28,29].

Upon RO4929097 treatment, the selected melanoma cell lines

showed downregulation of NOTCH downstream effector HES1

(Figure 1A), confirming the ability of the drug to affect the

NOTCH signaling pathway. The impairment of NOTCH

signaling was associated with a significant reduction in cell

proliferation (Figure 1B) and in anchorage independent growth

(Figure 1C). We then tested the ability of RO4929097 to impair

the formation of melanospheres. We indeed found a decrease in

the amount of melanospheres formed upon RO4929097 treatment

in primary melanoma cell lines (Figure 1D).

Taken together these results suggest that RO4929097 is able to

affect the oncogenic and stem cell-like properties of melanoma

cells in vitro.

RO4929097 impairs the growth of primary melanoma
cells in vivo

To further validate the effects of NOTCH pathway inhibition,

we investigated the effects of RO4929097 on the growth of the

primary melanoma cell line WM3248 in NOD/SCID/IL2gam-

maR-/- (NOG) mice. Once measurable tumors were established,

we randomly distributed the mice into groups to receive either

vehicle control or RO4929097 by daily oral administration (Figure

S2A). In accordance with our in vitro data, we found a decrease in

tumor growth with RO4929097 treatment, which was more

appreciable after tumors were extracted for weight assessment

(Figure 2A, B). RO4929097-treated tumors also displayed lower

expression of putative melanoma stem cell markers CD166, CD271

and JARID1B [19,21,30] compared to vehicle-treated ones

(Figure 2C). In order to formally prove that the decrease in these

markers is associated with a diminished tumor-initiating ability, we

used a serial xenotransplantation assay [31]. We resected primary

tumors from RO4929097- or vehicle-treated mice and dissociated

the cells for re-implantation into NOG mice. We compared two

different cellular concentrations, 105 and 104 cells per flank.

Secondary tumors did not receive any further treatment with

either vehicle or RO4929097, while their intrinsic growth

properties were monitored (Figure S2A). At the concentration of

105 injected cells per flank, we did not find a significant difference

between vehicle- and RO4929097-treated cells in time to

secondary tumor formation. However, the percentage of second-

ary tumors formed by RO4929097-treated cells was lower

(Figure 2D, left). Furthermore, the secondary tumors formed by

RO4929097-treated cells were smaller (Figure 2E, F). Strikingly, a

significant delay in tumor formation by the RO4929097-treated

cells compared to the vehicle-treated ones was observed in mice

injected with 104 cells (Figure 2D, right). Nearly 40 days after

implantation, only 1/8 flanks injected with RO4929097-treated

cells had developed measurable tumors as compared to 6/8

injected with vehicle-treated cells. All together these results

indicate that RO4929097 is able to affect the tumorigenic

potential of melanoma cells in vivo.

RO4929097 impairs the growth of metastatic melanoma
cells in vivo

We also tested the effects of RO4929097 on metastatic

melanoma cell lines using two in vivo xenograft models. We first

assessed the impact of RO4929097 on tumor onset by treating

NOG mice with the compound for 12 days, starting 7 days after

flank injection of 5B1 melanoma cells (Figure S2B). In this

experimental setting, we found a significant delay in tumor

formation in RO4929097-treated mice compared to vehicle

treated ones (Figure 3A). RO4929097-treated tumors were

characterized by reduced proliferative index, as revealed by Ki-

67 staining (Figure 3B). We then assessed the impact of

RO4929097 treatment on the growth of pre-existing tumors, by

initiating the treatment only after measurable tumors were

established (Figure S2C). RO4929097 treatment negatively

affected the volume (Figure 3C) and especially the weight

(Figure 3D) of A375 tumors xenografted into NOG mice, without

increasing the number of apoptotic cells (Caspase 3 staining on

resected tumors, not shown). A different in vivo growth pattern

associated with RO4929097 treatment was also observed:

compound-treated tumors grew along the subcutaneous dermal

borders, as opposed to vehicle-treated tumors that consistently

invaded the peritoneum (Figure 3E). The expression of the

NOTCH targets HES1 and HEY1 was reduced in RO4929097-

treated tumors, together with that of putative melanoma stem cell

markers (Figure 3F). Previous studies have shown significant

toxicity, particularly secretory diarrhea, associated with gamma

secretase inhibition. In contrast, we did not observe any significant

weight changes or overt abnormalities in the organs of

RO4929097-treated mice compared to vehicle-treated ones

(Figure S3).

NOTCH activity predicts melanoma patient outcome
The analysis of gene expression arrays recently published by our

group and others [32,33,34] shows that several NOTCH signaling

pathway components are overexpressed in primary as well as in

metastatic melanoma compared to melanocytic controls (Figure 4A

and Figure S4), confirming the notion that NOTCH signaling
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pathway is upregulated in melanoma [35,36]. However, to our

knowledge, a potential association between aberrant NOTCH

signaling and prognosis in melanoma patients has not been shown.

Using the Affymetrix expression profile of 44 metastatic melanoma

samples from patients followed clinically for a median of 20

months (2–38 months range) [37], we examined whether NOTCH

Figure 1. RO4929097 inhibits proliferation, anchorage independent growth, and sphere formation of primary melanoma cells in
vitro. (A) RO4929097 causes a decrease in the levels of NOTCH downstream target HES1. WM35, WM98.1, WM115, WM983A and WM3248 cells were
treated with DMSO (white bars) or 10 uM RO492907 (black bars) for 24 h. At that time, RNA was collected and HES1 levels were measured by qRT-
PCR. The mean6s.d. of 3 independent experiments is reported. (B) RO4929097 inhibits cell proliferation. The indicated cell lines were treated with
DMSO (white circles) or 10 uM RO4929097 (black circles). A representative curve of three independent experiments is reported. (C) RO4929097
inhibits anchorage independent growth. White bars: DMSO treated cells; black bars: RO4929097 treated cells. The mean6s.d. of three independent
experiments is reported. Right panels show representative images of WM983A cells. (D) RO4929097 impairs the formation of melanospheres.
Representative pictures of one among 3 independent experiments are shown. T test, *p,0.05; **p,0.005; ***p,0.001.
doi:10.1371/journal.pone.0025264.g001

Figure 2. RO4929097 impairs the growth of primary melanoma cells in vivo. (A–C) Primary tumor formation of vehicle- and RO4929097-
treated WM3248 cells. (A) 56106 WM3248 primary melanoma cells were injected in the flank of NOG mice (n = 20). Once the tumors became
measurable, mice were randomized in two groups and vehicle (n = 10) or RO4929097 (n = 10) was administered orally at 10 mg/Kg/day for 30 days.
Tumor volume was measured every 2–3 days. White circles: vehicle-treated mice; black circles: RO4929097-treated mice. (B) At the end of the
treatment period, tumors were excised and weighed. White bar: vehicle-treated mice; black bar: RO4929097-treated mice. (C) Levels of melanoma
stem cell markers CD166, CD271 and JARID1B in WM3248 xenografts measured by qRT-PCR. White bars: vehicle-treated tumors; black bars:
RO4929097-treated tumors. (D–F) Secondary tumor formation of vehicle and RO4929097-treated WM3248 cells. (D) White bars: secondary tumors
formed by vehicle-treated primary tumors; black bars: secondary tumors formed by RO4929097-treated primary tumors. (E) Volume and (F) weight of
the secondary tumors formed by 105 WM3248 cells previously treated with vehicle (white circles/bar) or RO4929097 (black circles/bar). Tumor volume
was measured every 2–3 days starting at 30 days post injection. At 45 days after the injection, tumors were excised and the weight was measured. T
test, *p,0.05; **p,0.005; ***p,0.001.
doi:10.1371/journal.pone.0025264.g002
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Figure 3. RO4929097 impairs the growth of metastatic melanoma cells in vivo. (A–B) 106 5B1 metastatic melanoma cells were injected in
the flank of NOG mice (n = 20). Before tumors became measurable, mice were randomized in two groups and vehicle (n = 10) or RO4929097 (n = 10)
was administered orally at 10 mg/Kg/day for 12 days. (A) Tumor volume, measured every 2–3 days starting 3 days after the end of the treatment.
White circles: vehicle-treated mice; black circles: RO4929097-treated mice. (B) Percentage of Ki-67-positive cells in vehicle-treated (white circles) and
RO4929097-treated (black circles) tumors. Immunohistochemistry was performed on tumor excised twenty-five days after the end of the treatment.
(C–F) 26106 A375 metastatic melanoma cells were injected in the flanks of NOG mice (n = 12). As soon as tumors became measurable, mice were
randomized in two groups, and vehicle (n = 6) or RO4929097 (n = 6) was administered orally at 10 mg/Kg/day for 2 weeks. (C) Tumor volume,
measured every 2–3 days during the two weeks of treatment. White circles: vehicle-treated mice; black circles: RO4929097-treated mice. (D) Tumor
weight, measured when the tumors were excised at the end of the 2 weeks of treatment. White bar: vehicle-treated mice; black bar: RO4929097-
treated mice. (E) Invasive features (dermal attachment versus peritoneal invasion) of vehicle-treated and RO4929097-treated tumors. (F) qRT-PCR
analysis of NOTCH downstream effectors HES1 and HEY1 and of melanoma stem cell markers CD166, CD271 and JARID1B in vehicle-treated (white
bars) and RO4929097-treated (black bars) tumors. T test, *p,0.05; **p,0.005; ***p,0.001.
doi:10.1371/journal.pone.0025264.g003
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Figure 4. NOTCH pathway is upregulated in human melanoma metastasis and correlates with worse prognosis. (A) mRNA array
analysis of NOTCH pathway members. Affymetrix U133A 2.0 array performed on 4 melanocyte controls (2 normal human melanocytes and 2
immortalized melanocytes), 4 primary and 14 metastatic cell lines [34] reveals the upregulation of NOTCH pathway members, such as JAG1, JAG2,
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signaling components can be prognostic markers in metastatic

melanoma. We indeed found that higher HES1 and DLL3 levels

were significantly associated with decreased post recurrence

survival as continuous predictors in Cox regression analysis

(Figure 4B).

Discussion

The aggressiveness of melanoma, which is surprisingly high

considering that it is among a handful of cancers whose

dimensions are reported in millimeters, is due to the high degree

of heterogeneity and plasticity combined with the chemoresistance

of melanoma cells [38,39,40]. Therefore, new treatment strategies

that selectively target the most resistant cells within the tumors,

potentially the stem cell-like melanoma initiating cells, are urgently

needed [41,42].

RO4929097 has been previously shown to be a potent and

selective gamma secretase inhibitor with promising antitumoral

activity in vivo and without the toxicity associated with other

gamma secretase inhibitors [27]. Here, RO4929097 was shown

for the first time to affect the tumor initiating ability of melanoma

cells. We found that RO4929097 suppresses the oncogenic

properties of several primary melanoma cell lines, as indicated

by the decrease in proliferation and in the number of colonies

formed in soft agar by RO4929097-treated cells. More impor-

tantly, we found that RO4929097 impairs the formation of

melanospheres (Figure 1). In order to confirm in vivo that

RO4929097 can affect the tumor initiating ability of melanoma

cells, we used the serial xenotransplantation assay. This assay is the

gold standard in assessing self-renewal, which is the defining

property of cancer stem cells [31]. Strikingly, the serial

xenotransplantation assay showed a significant delay in tumor

formation by the RO4929097-treated cells compared to the

vehicle-treated ones (Figure 2). The decrease in size and incidence

and the increase in latency of the secondary tumors formed by

RO4929097-treated cells are particularly remarkable since we did

not sort these cells for any specific marker, such as CD271 and

ABCB5 [19,20]. Individual markers of tumor initiating cells have

been challenged by the experimental evidence that most

melanoma cells harbor tumorigenic capacity, irrespective of their

phenotypic characteristics [22]. Our data indicating that

RO4929097 can affect the tumorigenicity of melanoma cells

further support the inhibition of NOTCH signaling as a promising

therapeutic strategy for the eradication of melanoma, as suggested

for breast cancer and glioma [43,44,45].

Although it is important to understand alterations essential to

primary transformation, the clinical obstacle in melanoma

treatment is the dearth of effective therapeutics in the metastatic

setting. In addition to its role in melanomagenesis, aberrant

NOTCH signaling has been shown to promote metastasis in

melanoma and other cancers [12,46]. Due to all these findings, we

decided to test the efficacy of RO4929097 in vivo on metastatic

melanoma cell lines. We observed that RO4929097 not only

interferes with the ability of metastatic melanoma cells to form

tumors when injected into nude mice, but also impairs the growth

of pre-existing tumors (Figure 3). All together, these data lend

further support to the notion that NOTCH signaling can play a

role in advanced melanoma and offer a rationale to explore the

therapeutic potential of NOTCH inhibition in the metastatic

setting.

Finally, the analysis of gene expression arrays recently published

by our group and others showed that several NOTCH signaling

pathway components are overexpressed in metastatic cell lines in

comparison to melanocytes. Furthermore, we report for the first

time that aberrant NOTCH signaling can predict clinical outcome

in melanoma, with high HES1 and DLL3 levels associated with

shorter post recurrence survival (Figure 4). These results are in

agreement with data previously reported in other tumor types,

such as breast cancer [47,48] and neuroblastoma [49].

Molecular classification of melanoma is an emerging theme in

melanoma therapeutics, with BRAF and c-KIT mutation status

determining novel treatment options [50,51]. Although

RO4929097 shows antitumor activity in both primary and

metastatic cell lines, response to RO4929097 is not universal.

Not all melanoma cell lines are (equally) sensitive in all the assays,

as exemplified by the fact that some of the melanoma cell lines we

tested were not responsive to the compound (data not shown) and

by the different degree of reduction in proliferation and colony

formation in soft agar showed by the 5 responsive cell lines

reported in Figure 1. This differential sensitivity may be dependent

on a unique molecular signature. The signature of responders to

RO4929097 will emerge as clinical data accumulate from ongoing

trials with this compound in melanoma, and will help to define the

subset of patients that will benefit the most from RO4929097

treatment. These studies may also help to conceive combinatorial

treatments of RO4929097, which, even when effective, does not

cause a profound inhibition of tumor growth (Figure 1B, 2A,

3A, 3C), but is able to affect tumor initiating ability (Figure 2D),

with other drugs that, conversely, are more effective at preventing

tumor growth, but fail to decrease the tumor initiating ability.

Alternatively, RO4929097 could also be effective in the adjuvant

setting to prevent metastatic spread.

In summary, our preclinical studies support the gamma

secretase inhibition as a novel approach that is able to target the

melanoma initiating pool and offer insights into the clinical

potential of this new treatment strategy.

Materials and Methods

Human melanoma cell lines
Primary melanoma cell lines WM35, WM98.1, WM115,

WM983A and WM3248 were purchased from the Wistar Institute

(Philadelphia, PA) and cultured in Mel 2% medium [28]. A375

metastatic melanoma cell line was purchased from ATCC and

cultured in DMEM +10% FBS. WM239A/131/4-5B1 (5B1)

metastatic melanoma cell line, a kind gift from Robert S. Kerbel

(University of Toronto), was cultured in DMEM+10% FBS.

Quantitative real time PCR (qRT-PCR)
Total RNA was extracted using Trizol reagent according to the

manufacturer’s instructions. It was then subjected to DNase

treatment and retrotranscription (1ug RNA in a 20 ul reaction).

Real-time PCR of HES1, HEY1, CD166, CD271, and JARID1B

was performed using Sybr green fluorescence. 2 ul of RT were

used in a 20 ul reaction. GAPDH was used as an internal standard.

Relative quantification of gene expression was performed with the

DLL3, NOTCH3, HES1, HES2, HEY1 and HEY2 in melanoma. (B) Post recurrence survival of melanoma patients showing low and high levels of NOTCH
pathway members HES1 (left) and DLL3 (right). Previously published gene expression data of 44 metastatic melanoma tissue samples [37] were used
to define ‘‘low’’ and ‘‘high’’ expressor groups (upper panels, Wilcoxon test, ***p,0.001) and to generate Kaplan-Meier curves (lower panels, log-rank
test).
doi:10.1371/journal.pone.0025264.g004
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comparative CT method [52]. The sequences of the primers used

are described in Table S1.

Proliferation assay
Cells were seeded at 2.56103 cells per well on a 12-well dish in

triplicate. The day after (day 0), the medium was replaced, and

DMSO or 10 uM RO4929097 was added and changed every 3–4

days. At the indicated time points, cells were fixed in 10% formalin

solution and stored in PBS at 4uC. At day 18–24, all the plates

were stained with crystal violet. After color elution with 10% acetic

acid, optical density was read at 590 nm. A representative curve of

three independent experiments is reported.

Growth in semisolid medium
The bottom layer was obtained by covering 6-well dishes with

3 ml of 0.6% agar in MCDB 153 medium [28]. The day after,

56104 cells pre-treated for 24 h with 10 uM RO4929097 or

vehicle were seeded in triplicate in 2 ml Mel 2% medium

containing 0.3% agar and 10 uM RO4929097 or vehicle.

Colonies were counted after 3–4 weeks.

Melanosphere formation assay
Cells were seeded at a density of 56105 per 6 cm dish in Mel

2% medium. The day after, the medium was switched to ES cell

medium (hESCM4, Invitrogen) containing either DMSO or

10 uM RO4929097. The medium was left unchanged for two

weeks, and then half of the medium was changed once a week,

refreshing the drug. Spheres were visible in the DMSO treated

dishes after 6–12 weeks.

Serial xenotransplantation assay of WM3248 cells
56106 WM3248 primary melanoma cells were injected in the

flank of NOG mice (n = 20). Once the tumors became measurable,

mice were randomized in two groups and vehicle (n = 10) or

RO4929097 (n = 10) was administered orally at 10 mg/Kg/day

according to the protocol described in [27]. Tumor volume was

measured every 2–3 days for a total of 30 days (Figure S2A). At the

end of the treatment period, tumors were excised and weighed. A

piece of the excised tumors was cut and used for RNA extraction

and qRT-PCR. The rest of the tumor was mechanically

dissociated and passed through 100 um and 40 um strainers (BD

Falcon). Viable cells were counted and 105 and 104 cells were re-

injected in the flanks of NOG mice (n = 8) without any further

treatment with RO4929097. At the indicated time points, the

presence of tumor was checked. Tumor volume was measured

every 2–3 days starting at 30 days post injection. At 45 days after

the injection, tumors were excised and the weight was measured.

Xenograft assay of 5B1 and A375 cells
106 5B1 cells were injected in the flank of NOG mice (n = 20).

Before tumors became measurable, mice were randomized in two

groups and vehicle (n = 10) or RO4929097 (n = 10) was admin-

istered orally at 10 mg/Kg/day for 12 days (Figure S2B). Twenty-

five days after the end of the treatment, tumor were excised,

formalin fixed and paraffin embedded.

26106 A375 cells were injected in the flanks of NOG mice

(n = 12). As soon as tumors became measurable (60–100 mm3),

mice were randomized in two groups, and vehicle (n = 6) or

RO4929097 (n = 6) was administered orally at 10 mg/Kg/day for

2 weeks (Figure S2C). Tumor volume was measured every 2–3

days during the two weeks of treatment. Tumor weight was

measured when the tumors were excised at the end of the 2 weeks

of treatment.

Ethics statement
Experiments were conducted following protocols approved by

the NYU Institutional Animal Care Use Committee (IACUC)

(protocol number 080109).

Immunohistochemistry (IHC)
Ki-67 IHC was performed using mouse anti-human Ki-67

monoclonal antibody (Neomarkers/Lab Vision, Fremont, CA,

USA). Sections were deparaffinized in xylene (3 changes),

rehydrated through graded alcohols (3 changes 100% ethanol, 3

changes 95% ethanol) and rinsed in distilled water. Heat-induced

epitope retrieval was performed in a 1200-Watt microwave oven

at 100% power in 10 mM citrate buffer pH 6.0 for 20 min.

Sections were allowed to cool down for 30 min and then rinsed in

distilled water. Antibody incubation and detection were carried

out at 37uC on a NEXes instrument (Ventana Medical Systems

Tucson, Arizona) using Ventana’s reagent buffer and detection

kits. Endogenous peroxidase activity was blocked with hydrogen

peroxide. Ki-67 was diluted 1:400 and incubated for 30 min at

room temperature. Biotinylated goat anti-mouse followed by

application of streptavidin-horseradish-peroxidase conjugate was

used to detect the primary antibody. The complex was visualized

with 3,3-diaminobenzidene and enhanced with copper sulfate.

Slides were washed in distilled water, counterstained with

hematoxylin, dehydrated and mounted with permanent media.

Appropriate positive controls were included with the study

sections. Blinded to mouse groups, an attending pathologist

(F.D.) scored the percentage of Ki-67-positive cells in each slide.

Analysis of previously published datasets
Gene expression data of 44 metastatic melanoma tissue samples

previously published by our group [37] were used to define ‘‘low’’

and ‘‘high’’ expressor groups for HES1 and DLL3 (Wilcoxon test)

and to generate Kaplan-Meier curves (log-rank test). The binary

classification of gene expression uses a cut-off point derived using

the statistical method described in [53], which is based on

maximizing the absolute value of log-rank statistic. Expression

values for both HES1 and DLL3 are statistically significant as

continuous predictors of survival in Cox proportional hazard

regression models (p values,0.03).

Supporting Information

Figure S1 Primary melanoma cell lines form spheres
when switched to ES medium. WM35, WM98.1, WM115,

WM983A and WM3248 (left panels) organize in three-dimen-

sional melanospheres (right panels, arrows) when switched to ES

medium.

(TIF)

Figure S2 Schemes of drug treatment and toxicity. (A)

Scheme of treatment for WM3248 xenograft. 56106 WM3248

primary melanoma cells were injected in the flanks of NOG mice

(10 per group). Once tumors were measurable, vehicle or

RO4929097 was administered orally at 10 mg/Kg/day for 30

days. At day 42, mice were sacrificed and the tumors dissected and

mechanically dissociated. 104 and 105 cells from vehicle and

compound treated tumors were injected in the flank of NOG mice

(8 flanks/group) and tumor formation was followed for 45 days. (B)

Scheme of treatment for 5B1 xenograft. 106 5B1 metastatic

melanoma cells were injected in the flank of NOG mice (10 per

group). Before tumors became measurable, vehicle or RO4929097

was administered orally at 10 mg/Kg/day for 12 days. Treatment

was stopped and tumor volume was started to be measured. (C)
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Scheme of treatment for A375 xenograft. 26106 A375 metastatic

melanoma cells were injected in the flank of NOG mice (6 per

group). After the tumor became measurable, vehicle or RO4929097

was administered orally at 10 mg/Kg/day for 2 weeks.

(TIF)

Figure S3 Toxicity of RO4929097. Throughout the treat-

ment period, mice treated with RO4929097 (black circles) did not

show any weight loss compared with the vehicle treated ones

(white circles).

(TIF)

Figure S4 Expression of Notch related genes in previ-
ously published data sets. (A) mRNA expression of the

NOTCH ligand DLL3 (left) and the NOTCH target gene HEY1

(right). One-way variance ANOVA test was applied. (B) mRNA

expression of the ligand DLL3 (up, left) and the targets HEY1 (up,

right), HEY2 (down, left) and N-Cadherin (down, right). Unpaired

t test with Welch’s correction was applied. NHEM indicates the

expression in the melanocytic lineage.

(TIF)

Table S1 Real time PCR primers. List of primer pairs used

to amplify the indicated mRNAs by quantitative PCR.

(TIF)
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