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Abstract

Protein evolution includes the birth and death of structural motifs. For example, a zinc finger or a salt bridge may be present
in some, but not all, members of a protein family. We propose that such transitions are manifest in sequence phylogenies as
concerted shifts in substitution rates of amino acids that are neighbors in a representative structure. First, we identified rate
shifts in a quartet from the Fpg/Nei family of base excision repair enzymes using a method developed by Xun Gu and
coworkers. We found the shifts to be spatially correlated, more precisely, associated with a flexible loop involved in bacterial
Fpg substrate specificity. Consistent with our result, sequences and structures provide convincing evidence that this loop
plays a very different role in other family members. Second, then, we developed a method for identifying latent protein
structural characters (LSC) given a set of homologous sequences based on Gu’s method and proximity in a high-resolution
structure. Third, we identified LSC and assigned states of LSC to clades within the Fpg/Nei family of base excision repair
enzymes. We describe seven LSC; an accompanying Proteopedia page (http://proteopedia.org/wiki/index.php/Fpg_Nei_
Protein_Family) describes these in greater detail and facilitates 3D viewing. The LSC we found provided a surprisingly
complete picture of the interaction of the protein with the DNA capturing familiar examples, such as a Zn finger, as well as
more subtle interactions. Their preponderance is consistent with an important role as phylogenetic characters. Phylogenetic
inference based on LSC provided convincing evidence of independent losses of Zn fingers. Structural motifs may serve as
important phylogenetic characters and modeling transitions involving structural motifs may provide a much deeper
understanding of protein evolution.
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Introduction

For many protein families the sequences of hundreds of

members, as well as the high-resolution structure of at least one

member, are available. It is clear from inspection of those data sets

that structural features vary during protein family evolution even

when the overall fold is conserved. Such variation is reflected in

amino acid substitutions that are correlated as well as substitution

rates that are inhomogeneous, that is, sites exhibit heterotachy [1].

However, the most commonly applied models of protein sequence

evolution do not capture these features. Our goal is to use explicit

identification of transitions between states of structural characters

for studying the evolution of protein sequence, structure, and

function.

Amino acid substitutions reflect constraints imposed by the

structural context of amino acids along reaction paths. In the case

of base-excision repair proteins, first-shell residues interact directly

with DNA backbone, to functional groups specific to a damage, or

the opposite base. Substitutions of such amino acids are rare.

Multiple second or third-shell amino acids may interact directly

with first or second-shell residues respectively [2]. Amino acids in

the second or third shell typically vary more quickly than first shell

amino acids and might vary in concert, perhaps reflecting the

existence of multiple ways to position a first shell residue.

Concerted transitions involving such residues are nonetheless

more rare than most other sequence substitutions. As such they

may serve as important phylogenetic characters that vary more

slowly than nucleotide or amino acid characters but more rapidly

than catalytic residues or domain structure and thus aid

phylogenetic inference related to distant times.

Many computational approaches [3,4,5,6,7,8,9,10,11,12,13,14,

15,16,17,18,19,20] try to identify amino acid sequence positions

that are under functional evolutionary constraints (functional sites).

These methods differ in that they may use structural information,

employ models based on information theory, phylogenetic trees,

energetic calculations, or incorporate information about amino

acid chemical properties.

In addition, other methods identify shifts between conservation

patterns that result in subfamily-specific sites. These are functional

sites within a group of homologous protein subfamilies that confer
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the corresponding difference in function or structure. Most of

these methods take advantage of the fact that the subfamily-

specific sites will vary in their rate of evolution and/or tolerated

amino acid frequencies between the paralogs. Heterotachous sites

need not be related to subfamily-specific functions [1]. Gu and

coworkers [21,22,23,24,25] developed a method [26] for finding

subfamily-specific sites based on the idea that functional sites can

be identified by changes in the evolutionary rate or the

biochemical nature of the amino acids (type I and type II changes

respectively). Other methods [3,15,27,28,29,30,31,32,33,34,35]

have also been developed to find the subfamily specific sites and in

some cases the subfamilies themselves.

It is understood that residues in a protein do not work in

isolation but rather within a context as part of a cooperating

system [36] that positions the substrate and residues required for

binding and catalysis. Salt-bridges, zinc-fingers and catalytic units

work together in order for the protein to function. Structural

information can be used to identify conserved regions of the

protein [37], and several authors have taken advantage of that.

Panchenko et al. [38] identified functional sites by taking into

account the conservation between structurally neighboring amino

acids; Landgraf et al. [39] devised a method to identify functional

clusters: groups of amino acids with some degree of conservation

relative to the rest of the protein.

Studies have found evidence that stabilizing residues are more

likely to be conserved and cluster structurally [40]. Approaches to

establish statistical significance of clustering of functional diver-

gence sites have been done on evolutionary trace sites [41], finding

that they do form structural clusters. The sites found by the

evolutionary trace method are sites that are highly conserved

within each subfamily, but different between them. Other

approaches have also recognized the structural cooperativity of

important amino acids, and focused on conserved structural

clusters among protein binding sites [42], on protein-protein

interaction interfaces and their evolution [43,44], and on

conserved clusters of a single subfamily [45,46,47]. No approach

has looked at the formation of structural clusters of rate-shift sites,

nor has any study investigated using those clusters as characters

phylogenetic inference.

The cooperating nature of amino acids is latent, or not

immediately apparent, in the multiple sequence alignment. There-

fore, we would like to extend the notion of functional and subfamily

specific sites to latent structural characters (LSCs). We reasoned that

subfamily-specific sequence/structure motifs could be identified by

combining sequence-based identification of changes in selection

pressure with information about proximity of amino acids in space.

An LSC is then informally defined as a set of amino acids that are

near each other in the protein structure and exhibit concerted

changes in selection pressure. Our work is distinct from that of Gu

and coworkers in that we calculate changes in amino acid frequency

and substitution rate to explicitly infer shifts in the selection pressure

on sets of amino acids based on a high-resolution structure. Our

emphasis on detection of groups of neighboring amino acids that

change concertedly in selection pressure lies at the heart of the novelty

of our approach and reflects the assumption that amino acids do not

work in isolation but rather cooperate in function. Our results can be

easily viewed in three dimensions on the accompanying website

(http://proteopedia.org/wiki/index.php/Fpg_Nei_Protein_Family),

which intends to serve as a repository of information on LSCs in the

Fpg/Nei protein family.

Genome integrity affects survival of cells and the organism and

several pathways have evolved for protection against damages

[48,49,50,51]. The main protection against endogenous oxidative

DNA damage (such as reactive oxygen species produced by

metabolism) is the base excision repair system [52,53,54,55,56]. Its

association with human disease and aging (for review see [57] and

47–49) is consistent with its importance. The Fpg/Nei base-

excision repair family recognizes a wide range of DNA damages

[58,59,60,61,62,63,64,65,66]. Its phylogeny is not well under-

stood, presumably because their ancient origin makes phylogenetic

inference difficult [58,65], furthermore, its core domain is not

related to any other known protein family. Organisms vary not

only in the kinds of damages recognized by their Fpg/Nei

enzymes, but also by their number of homologs: the actinomycetes

phyla has four different paralogs, the eukaryotes have three, and

proteobacteria two. With respect to substrate discrimination, we

have some understanding on bacterial Fpg [67,68,69] and

Escherichia coli Nei [70] but none on the other orthologous

clades (see proteopedia page for substrate specificity information).

Therefore, given the functional importance, unknown phylogeny,

and the fact that the structural conservation amongst its members

is high [71] we decided to apply our methods to this family.

We first showed how a group of rate-shift sites cluster

structurally in the enzyme and how these sites cooperate to

perform an important functional role. We then identified seven

LSCs in this protein family, including both familiar structural

features and those that have not previously been discussed. We

propose how the amino acid roles between states of these

characters relate to each other (for example, compensation) and

how they are distributed in the phylogeny. We have also used

them to resolve previously unresolved deep branches of the family.

We found that the majority of amino acids exhibit a statistically

significant change in amino acid propensities or substitution rates,

presumably reflecting surprising fluidity of the interactions that

stabilize protein structures. Finally, we found substantial variation

in overall evolutionary substitution rates among homologous

subfamilies, presumably a result of changing functional roles. We

found that studying LSC, rather than individual amino acids, as

well as focusing on events such as changes in rate or amino acid

frequency rather than individual substitutions, can shed new light

on evolution and function.

Results

Type I transitions are associated with a change in the
mechanism of substrate recognition

For one quartet we rejected (p = 0.002) the null hypothesis that

the type I transitions are not spatially correlated. More precisely,

we permuted edge assignments of type I transitions occurring

along the BaFpg1-PFNei or AcNei1-AcNei2 edges of the quartet

and employed a test statistic reflecting amino acid proximity (see

the Methods section). Inspection of the type I transitions suggests

that the spatial association results from the fact that many of them

belong to the bF-a10 loop (Figure 1). The bF-a10 loop plays a

critical role in substrate recognition of 8-oxoG in BaFpg1 by

making important hydrogen bonds with O6, N1, N7 and N2 of 8-

oxoG [67]. BaFpg1 discriminates between 8-oxoG and G by

exploiting the difference in the protonation state of N7 caused by

the extra carbonyl group in 8-oxoG [67]. FapyG recognition is

accomplished by the same loop, but in a strikingly different way

[68].

The role of this loop is unknown in every clade except BaFpg1.

It corresponds to a helix in the human Neil1 crystal structure [65],

a much shorter loop in Mimivirus [72], and a disordered region in

the bound EcoNei structure [70]. In particular, aligned regions in

other clades contain gaps. This observation would appear to

validate our result, that is, that the bF-a10 loop plays an important

Identification of Latent Structural Characters
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role in substrate specificity in BaFpg1 that it does not play in other

clades.

Our observations suggest treating the bF-a10 loop as one

structural character. Just as type I amino acids are identified after

quantifying substitution counts at one aligned position relative to

the number of substitutions in the remainder of the protein, a

change in the summary substitution rate of a region relative to the

rest of the protein may indicate a change in its role. We rejected

the null hypothesis (Table 1) that the mean substitution rate in the

BaFpg1 recognition loop is the same as that of the remainder of

the enzyme (p,0.05; it evolves more slowly) and that the

distribution of mutation rates in this loop is equal to the

distribution of rates in the remainder of the protein (p,0.004).

Notably the aligned region appears to evolve more rapidly than

the remainder of the protein in other clades. Based on a likelihood

ratio test the substitutions in the bF-a10 recognition loop vary

among the nine clades (p,10215; the BaFpg1 substitution rate is

smaller than all but the PFNei). Again, these results suggest a

concerted change that involves many amino acids in the bF-a10

loop that is reflected in their substitution rates.

However, we note that the bF-a10 loop contains gaps in other

clades. It is our expectation that that our combination of PAML

and Gu’s method provides for identification of substantial changes

in selection pressure in regions that contain gaps. In particular, it is

clear that our method does not indiscriminately call gapped

regions as type I sites. We cannot be sure that in this one case we

did not get the right answer for the wrong reason and note that the

use of PAML substitution counts and Gu’s method for regions

containing gaps merits further study.

Seven LSCs were found in the Fpg/Nei protein family
Seven LSCs were identified in the Fpg/Nei family (Table 2).

These include the well-known zinc finger, LSC6, which has four

perfectly conserved cysteines in the BaFpg1, BaFpg2, actinomy-

cetes (AcNei1 and AcNei2), PrFPG and MeNeil3 clades that

coordinate the zinc (MeNeil2 possesses a CHCC zinc finger).

However, the aligned positions are highly variable in the PFNei

and MeNeil1 subfamilies and therefore easily identified as Type I

sites. Since the changes in rates for these four sites have the same

direction (the pair of clades ordered by substitution rate) it is not

immediately clear whether the evolutionary transition between

proteins with or without a zinc finger involves the loss of the

structural role provided by the zinc finger or whether the role is

filled by some alternative structure. In fact, the PFNei and

MeNeil1 subfamilies, as well as the Mimivirus enzymes have a

zincless finger that does not bind zinc but plays the same role

[65,66,72].

Other LSCs include Type I sites having different directions,

which allows us, in addition, to identify alternative states of the

character. LSC1 provides stability to N174 (Figure 2A) [67], part

of the helix-two turns-helix motif. This residue orients and

stabilizes the damaged base, along with R264 and K60, by

hydrogen-bonding to P0, P-1 and P-2. BaFpg1, BaFpg2 and

PFNei exhibit conservation of LSC1 amino acids D178 and K160

(Figure 2B), which form a salt bridge and stabilize N174 via a

hydrogen bond (Figure 2A). However, in the other clades the

corresponding amino acid substitution rates are significantly

higher as a result of a change in the state of LSC1 (Figure 2C).

Stabilization of other subfamilies is enhanced by a highly

conserved arginine aligning with position 177 (Figure 2B,C;

R171 in the E. coli Nei sequence), which is part of a network of

hydrogen bonds that stabilize the critical asparagine (Figure 2C).

The direction of the 171 Type I (Figure 2C) is opposite to that of

D178 and K160 (Figure 2A), consistent with coupled compensa-

Figure 1. Example of structural clustering of type I sites. Type I
sites, amino acids that shift in substitution rate among two clades
(BaFpg1, and PFNei), are colored in green in the B. stearothermophilus
MutM structure [67] (1R2Y). Three structural clusters (LSCs) are shown,
the (a) zinc finger (BaFpg1), zincless finger (PFNei); b) two highly
conserved glycines on Fpg which mark the beginning and end of the
recognition loop, and which have a higher rate on PFNei, suggesting
that the loop does not perform the same role in recognition and c) a
triad that stabilizes the DNA and the opposite base which allows for
more variability on PFNei.
doi:10.1371/journal.pone.0025246.g001

Table 1. Comparison of tree lengths and hypothesis testing of randomness of the loop on all subclades.

Subfamily Tree Length Rate (loop) Rate (remainder) p-value (location) p-value (distribution)

MeNeil1 13.6 0.88 1.00 0.32 0.64

MeNeil2 7.4 1.43 0.98 0.95 0.23

MeNeil3 6.1 0.83 1.00 0.22 0.33

BaFpg1 41.9 0.78 1.04 0.044 0.0039

BaFpg2 18.1 1.05 1.10 0.42 0.054

PFNei 16.8 0.69 1.02 0.054 0.060

AcNei1 19.2 0.98 1.08 0.30 0.027

AcNei2 18.2 1.46 1.07 0.97 0.77

PrNei 7.6 0.96 1.03 0.38 0.49

doi:10.1371/journal.pone.0025246.t001
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tory changes. Both K160 and R171 have been mutated, resulting

in significant loss of stability and activity [3,12,18,19].

Since LSC admit some variation in amino acids their evolution

is necessarily no faster than for single sites and they might be

helpful as characters in a phylogeny of distant homologous

subfamilies. We used maximum parsimony to construct a

phylogeny of the nine clades using the LSCs as characters

(Figure 3), reasoning that these higher-order structures would

provide useful phylogenetic characters over long evolutionary time

scales.

Fpg/Nei Paralogous Clades Evolve at Different Rates
Fpg/Nei has four actinomycetes subtrees, each composed of

orthologous proteins from the same genomes [73], three subtrees

from eukaryotes and two from proteobacteria. For each of these

three sets of ortholog subtrees we examined variation in the

Table 2. Seven LSCs from the Fpg/Nei protein family.

LSC Suggested Role Amino acids distinguishing the states

1 Stability of the interaction between N174 in the Helix-Two-Turns-Helix motif and the
phosphate associated with the damaged base

K160,D178 (1R2Y)

R171 (1K3W)

2 Stability of the catalytic helix and/or key DNA binding/catalytic residue Gly59/Lys60 L4,E8,R57 (1R2Y)

Unknown

3 Stability of key catalytic residue Gly59/Lys60 E137,R58,G135, L134 (1R2Y)

Unknown

4 Intercalation loop [48] inserts into spot left by ‘‘flipped-out’’ base and contacts opposite base D110,F108,R113,R112,F114 (1R2Y)

N76,M77,Y78 (1K3W)

5 DNA binding amino acid Y242,G243,R244 (1R2Y)

Unknown

6 Zinc finger which holds key damaged base phosphate binding residue Arg274 [48,65,66] C249,C252,C269, C272 (1R2Y)

Zincless finger amino acids

7 b F-a10 loop [67] G218-G233 (1R2Y)

Unknown

doi:10.1371/journal.pone.0025246.t002

Figure 2. Multiple States of an LSC: Two solutions to the same problem. An LSC can have multiple states. A) State of LSC1 in the B.
stearothermophilus MutM structure [67]. N174 (in pink), part of the helix-two-turn-helix (H2TH) motif along with two other amino acids (including the
key amino acid R264, in blue) functions in the orientation and kinking of the DNA [70]. K160 (blue) helps keep the proper arrangement between the
zinc finger and the H2TH [69]. B) Sequence logos for the each of the nine LSC1 amino acids in each of the three clades as well as MvNei1. Column
headings indicate the aligned position in both the B. stearothermophilus MutM and E. coli Nei sequences. The sequence logos associated with 1R2Y
K160 suggest that in three of the nine clades (BaFpg1, BaFpg2 and PFNei) the arrangement between the zinc finger and the H2TH is stabilized by a
lysine in the same manner as in the B. stearothermophilus MutM protein. C) State of LSC1 in the E. coli Nei structure (62, PDB 1K3W). R171 hydrogen
bonds to the other beta-sheet of the zinc-finger, presumably playing a role analogous to 1R2Y K160, which originates on a different helix. The
sequence logos associated with R171 suggests that in six subfamilies (AcNei1 and AcNei2, PrNei and all vertebrate subfamilies), the arrangement
between the zinc finger and the H2TH is maintained by an arginine or lysine in the same manner as in the E. coli Nei protein. For the subfamilies of
BaFpg1 and PrNei, sites 160 and 266 are a type I, 174 and 264 are a type 0, and the rest are type II.
doi:10.1371/journal.pone.0025246.g002
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protein-wide rate of evolution between member subtrees at two

levels (Figure 4). First, we compared the number of substitutions in

each subtree (since each subtree contains the same organisms the

estimated number of substitutions represents the overall variation

rate). Secondly, we estimated the branch length from the most last

common ancestor of all subtrees to the root of each subtree.

For each of these six tests (one comparison for each of the 3

sets of subtrees, and one for the each of the three sets of ancestral

edges leading to the subtrees, Figure 4) we were able to reject the

null hypothesis that the summary substitution rate is uniform at

p,0.03. BaFpg1 exhibits significantly fewer substitutions than the

other paralogs in both actinomycetes (AcFpg1, p,10215) and

proteobacteria (PrFpg1, p,10215). Likewise, MeNeil1 has

significantly fewer substitutions than MeNeil2 and MeNeil3

(p,10215). Interestingly, the edge leading to the MeNeil1 subtree

is longer than for either MeNeil2 or MeNeil3 (p,0.003). While it

is clear that the difference in substitution rates is statistically

significant, the biological significance of differences of this

magnitude is not clear. The rate variation shown in Figure 5 is

nonetheless small compared with the substitution rates exhibited

by other pairs of proteins and it seems unlikely that this variation

is anomalous even among clades of paralogous proteins. It

appears, therefore, that these proteins are all under significant

selection pressure, even though some actinomycetes appear to

have lost one member.

Most amino acids exhibit changes in their structural or
functional roles between paralogous clades

We can estimate the proportion of amino acids that have

undergone functional divergence by calculating the type I and type

II coefficients of functional divergence between the different

subgroups [21,25]. Type I coefficients refer to the proportion of

sites that have undergone a change in rate between two clades (e.g.

conserved in one clade, variable in another, a rate-shift [74]). Type

II coefficients refer to the proportion of sites that have undergone a

change in amino acid frequency (e.g. a conserved arginine in one

clade vs. a conserved leucine in the other [25]). We found that all

comparisons exhibit a coefficient of functional divergence between

0.4 and 0.8, implying that a large number of sites have changed in

rate or constraint throughout evolution (Table 3).

Figure 3. The states of LSCs can be used to infer the Fpg/Nei family phylogeny. The most parsimonious protein phylogeny consistent with
the states of the six LSCs is shown with the changes in LSCs annotated as red bars. The choice of the root results in one of its children (BaFpg1,
BaFpg2) represents well the diversity of bacteria while the other represents plants, fungi, and metazoans.
doi:10.1371/journal.pone.0025246.g003

Figure 4. Rate variation does not differ dramatically between replicate Proteobacterium, Actinomycete, or Eukaryote organism
tree topologies. Each column corresponds to one of the three organismal phylogenies. Each entry in a column (paired blue and green bars)
represents an instance of the organismal phylogeny in the Fpg/Nei family protein phylogeny. The blue bars correspond to the number of
substitutions from the last common ancestor (LCA) of each replicate tree to the present while the green bars correspond to the number of
substitutions from the LCA of the phylogeny of replicate trees to the LCA of the each replicate tree.
doi:10.1371/journal.pone.0025246.g004
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Discussion

Clustering of type I sites
We found with high statistical significance (p,0.002) that highly

ranked type I sites in a quartet cluster in a loop that plays a role in

function in one clade that it does not play in other clades. This

suggests that the study of the function and evolution of the enzyme

family might benefit from employing explicit random variables

that represent concerted transitions because doing so should allow

us to 1) identify groups of amino acids that cooperate in structure

or function, and 2) derive phylogenetic characters that change in

state more slowly than characters associated with individual

sequence positions. Such phylogenetic characters might be suitable

for resolving the deep branches of protein superfamilies. In this

paper we address these two goals, opening the door for further

development of methods for automatically finding LSCs. An

important question is whether this clustering of rate-shift sites is a

general aspect of protein families, a reasonable assumption that

should be explored in future studies.

LSCs Provide a Surprisingly Comprehensive Description
of the Substrate Binding Site

Amino acids in Fpg/Nei family members directly contact the

DNA substrate through interactions with the damaged base,

opposite base, adjacent bases or phosphate backbone (Figure 6).

Identification of highly conserved amino acids usually serves to

find these first-shell amino acids [70,75,76,77,78,79,80]. Collec-

tions of second- and third-shell amino acids stabilize first-shell

amino acids. We find that our methods for identifying LSC, which

are based on differential conservation/variation rather than simply

conservation, serve to find collections of second- and third-shell

amino acids. In principle, these residues need not appear in LSC,

that is, they might either be uniformly conserved or highly

variable. However, seven LSC provide a surprisingly complete

description of enzyme-substrate interactions.

More generally, we showed (Table 3) that a great percentage of

amino acids change in rate and/or amino acid frequency at some

point during evolution. Therefore amino acids not involved in

substrate binding/catalysis are also found to exhibit changes in

role and the possibility exists that LSC may provide a

comprehensive description of enzyme structure and function more

generally. These observations support a broadening recognition

that quantitative studies of variation in selective constraints within

aligned amino acid positions have the potential to add much to the

picture provided by studying only structure or conservation.

LSCs can serve as phylogenetic characters
For phylogenetic inference the time scale of character variation

should match the evolutionary time scale in question. Nucleotide

substitutions occur more rapidly than amino acid substitutions,

Figure 5. Substitution rates of individual aligned amino acid positions can differ between clades of orthologs. Substitution rates of
individual aligned amino acid positions can differ between clades of orthologs from actinomycetes (left, Pearson correlation 0.47) or eukaryotes
(right, 0.19). Each axis reflects amino acid variation rate in one of the replicate organism trees described in the legend to Figure 4. Each point is an
aligned amino acid sequence position. Sites that have experienced a rate-shift (Type I) are green while those that exhibit an amino acid frequency-
shift (Type II) are red.
doi:10.1371/journal.pone.0025246.g005

Table 3. Coefficient of Type I (above diagonal) and Type II (below diagonal) functional divergence for Fpg/Nei clades.

MeNeil1 MeNeil2 BaFpg1 BaFpg2 PFNei MeNeil3 AcNei1 AcNei2 PrNei

MeNeil1 0.44 0.72 0.75 0.73 0.78 0.72 0.84 0.71

MeNeil2 0.7 0.51 0.63 0.5 0.57 0.68 0.54 0.44

BaFpg1 0.6 0.62 0.45 0.56 0.53 0.75 0.45 0.56

BaFpg2 0.74 0.67 0.28 0.62 0.67 0.7 0.58 0.56

PFNei 0.57 0.64 0.35 0.5 0.7 0.77 0.68 0.67

MeNeil3 0.74 0.54 0.62 0.7 0.77 0.71 0.53 0.46

AcNei1 0.71 0.66 0.39 0.56 0.65 0.69 0.49 0.6

AcNei2 0.72 0.66 0.45 0.53 0.67 0.62 0.36

PrNei 0.71 0.7 0.56 0.58 0.73 0.71 0.56 0.49

doi:10.1371/journal.pone.0025246.t003

Identification of Latent Structural Characters

PLoS ONE | www.plosone.org 6 October 2011 | Volume 6 | Issue 10 | e25246



which in turn occur more rapidly than changes in amino acid

properties [81,82,83,84]. It is therefore common to evaluate

differences in amino acid properties, which may reflect changes

in roles in structure and function that are latent in sequence

alignments and which change relatively slowly. An obvious

extension of this idea is that selection can act on the collective

properties of a group of cooperating amino acids (example, a

catalytic unit, [85]. Furthermore, changes in amino acid roles

may be manifest as changes in substitution rates, not simply

frequency. The rate of LSC evolution is necessarily similar to, or

slower than, the variation rate of individual amino acids. The

observation that LSCs are widespread suggests that our method

for identifying LSCs provides useful characters for phylogenetic

inference.

Figure 6. LSCs supply or stabilize residues that participate in enzyme-DNA interactions. Top) Amino acids side chains associated with LSC
1–6 are shown in the context of the protein backbone, DNA backbone, damaged nucleotide, opposite nucleotide, and Zn ion [67]. The green residues
in both the structure (top) and the diagram (bottom) correspond to first-shell amino acids conserved in the entire family: R264 (contained in LSC6),
N174 (stabilized by LSC1), and K60 (stabilized by LSC3/LSC2) stabilize the phosphate of the damaged base, and P2, E3 and are part of the catalytic
residues [97]. The helix containing P2 and E3 may be stabilized by LSC2 as well. The enzyme everts the damage, and an intercalation loop (LSC4) fills
the void and makes contact with the opposite base [68]. The damage itself in BaFpg1 is recognized by a recognition complex [67]. Other important
residues not included here include H74 [97] and E6 [48]. A DNA binding residue not discussed in the literature corresponds to Tyr242 (part of LSC5).
doi:10.1371/journal.pone.0025246.g006

Identification of Latent Structural Characters

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e25246



The deep branches in the phylogeny of the Fpg/Nei have been

very difficult to resolve. Heterotachy, or within-site rate variation,

is a known property of proteins [63] and makes conventional

methods very difficult to apply [86,87,88]. Cheng and coworkers

[89] suggested removing this difficulty by disregarding all

heterogeneous rate amino acids. However, if we excluded these

sites from our analysis we would be left with 10–20 amino acids

which have not experienced a rate-shift, too few for a reliable

phylogeny. Moreover, our approach suggests that those heteroge-

neous amino acids can provide valuable information regarding the

deep branches of the phylogeny.

Our method produced a phylogeny consistent with reliable

parts of existing phylogenetic trees, and resolved an existing

branch (Figure 3). An important question pertains to the homology

of the zincless fingers. Both the PFNei clade and the MeNeil1

clade have a zincless finger structure [49,65] which are not similar

in sequence. However, the resulting phylogeny, and in particular,

the fact that the states of LSC1 and LSC2 are shared by BaFpg1,

BaFpg2 and PFNei, whereas MeNeil1 shares a alternative state

with the rest of the subfamilies supports separate origins of both

zinc-less fingers.

We also used LSCs for gene classification [64]. Two viral

proteins contain an Fpg-like gene [66]. We can use the presence/

absence of the LSCs as a classification tool, determining that

MvNei1 arose sometime after the divergence of MeNeil1 and

PFNei, but not within MeNeil1. This we determine by noticing

that MeNeil has a unique character state (LSC3) not shared by any

other group of enzymes, whereas MvNei1 has the alternative

character state that is shared with the rest of the subfamilies.

Non-randomness of the Recognition Loop
The bF-/10 loop plays a critical role in substrate recognition in

the BaFpg1 subfamily [67,68]. Even though the structure is known

for some of the subfamilies: a helix in the human Neil1 structure

[65], a longer loop in Mimivirus [72], but disordered in the E. coli

Nei enzyme-substrate complex structure [70], its role is unknown

in every clade except BaFpg1. Within BaFpg1, the conservation is

not high, consistent with the observation of Fromme and Verdine

[67] that damage recognition is provided by main chain amides.

However, this loop is non-random in its distribution of amino acid

rates.

What is the basis for substrate specificity?
One of the most puzzling problems in base-excision repair

enzymology is to understand how an individual member of the

Nth or Fpg/Nei families excises structurally very different damages

while failing to excise normal bases, which may appear relatively

similar to some of the damages. Had we found precisely one LSC

that 1) is comprised of amino acids near the damaged base and 2)

has one state for each substrate specificity class then the

interpretation would have been straightforward. In contrast, we

found that LSCs essentially cover the protein-DNA interface.

Furthermore we expect that a more comprehensive analysis of

Type I and Type II sites remote from the protein-DNA interface

will yield additional LSCs. LSCs appear to be more the rule than

the exception.

Birth, death, and state transitions of LSC can be the result either

of selection or drift. It may be that, like the majority of amino acid

changes, LSC evolution is largely driven by drift. In this case LSC,

like amino acid substitution, may ultimately prove more useful for

understanding protein structure and evolution than in under-

standing specificity. On the other hand, the evolution of many of

the LSC in the Fpg/Nei family may be the product of a highly

complex selection for the ability to excise one diverse members of

set of damaged while failing to remove the four normal bases. In

contrast to cases in which a small number of key interactions

between enzyme and substrate functional groups explains

specificity, explaining specificity in the Fpg/Nei family may

require the relative stabilities of damages in B-DNA as well as in

metastable and transition states of the protein/DNA/solvent

complex along multiple reaction paths that account for substrate

diversity. For example, structural variation associated with rigid

body movements of large portions of the protein suffices to give the

state of an LSC an impact on specificity over long ranges. This is

also consistent with the suggested plasticity of proteins that can be

explained by population dynamics, and which results in different

amino acid sequences giving rise to equivalent proteins in structure

and function [33].

Nonetheless, some of our LSC are consistent with a link to

specificity, for example, LSC5 in PFNei. LSC5 contains R/K244,

GQR243 and Y242, which binds DNA. The function of Y242 is

unknown but, while it is highly conserved at least in its aromatic

character in most enzymes, it differs between plants and fungi.

The Arabidopsis works best as an AP endonuclease and prefers

oxidation products of 8-oxoguanine guanidinohydantoin (Gh), and

spiroiminodihydantoin [49]. The absence of this LSC, very well

conserved in the rest of the family, might give insight into its

workings.

In summary, analysis of LSC provide a novel and powerful way

to describe protein evolution over time scales for which amino acid

substitution models weaken. We propose that improved methods

for automated identification of LSCs in combination with

quantitative models of the birth, death, and state transitions of

LSC will improve our understanding of protein structure, function,

and evolution.

Materials and Methods

Estimation of Fpg/Nei subfamily phylogenies
Fpg/Nei homologs were identified in the NCBI RefSeq

database [90] using the PFAM [91,92] domain profile pfam06831

and the CDD database [93] search software. T Coffee [94,95] was

used to identify a smaller set (415) of sequences that represent the

diversity of the tree. MAFFT [96] and ASH [92] were used, with

high accuracy parameters (iterative refinement incorporating local

alignment information for the alignment), to align the sequences

based on crystal structures [65,67,69,97,98]. PFAAT [99] was

used for visualization of the sequence alignment and Seaview

[100] was used to remove phylogenetically uninformative sites.

Neighbor-joining phylogenetic trees were constructed using

PHYLIP [57] PROTDIST, NEIGHBOR (standard parameters)

and SEQBOOT (100 bootstrap replicates). Sequence alignment,

genbank ids and trees are available upon request.

Based on the resulting sequence phylogeny, as well as on

taxonomy and biochemical considerations, nine subfamilies were

identified (Table 4). CDTree [93] was used to remove false

positives and to build a position-specific scoring matrix for each

subfamily. Subsequently, these models were used to subclassify

RefSeq Fpg/Nei hits using RPS-BLAST [54] (see proteopedia

page for the resulting table). Sequences were removed if they

attached to a tree with an edge representing more than one

substitution per site on average. Maximum likelihood trees, used

exclusively in what follows, were constructed using RAXML [53].

Estimation of numbers of substitutions
PAML [55] was used to estimate the number of substitutions at

each site in each subfamily. Briefly, PAML infers ancestral states

and, for each site, counts edges associated with different end states.
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The advantage of this method is that it uses branch length

information as well as the substitution rates between the amino

acids to calculate the ancestral states [55]. The correction of Gu

[101] was then applied to these counts to obtain the estimated

number of substitutions. PAML assigns amino acids, not gaps, to

all ancestral sites. As a result each gap in an extant sequence is

associated with one inferred substitution so, for example, an

aligned position having N gaps is assigned at least N substitutions.

Identification of Type 0, I and II sites associated with each
pair of subfamilies

Classification of sites into Type 0 (highly conserved), Type I

(undergo a change in substitution rate along an edge) and Type II

(undergo a change in preference for amino acid properties) have

been described by Gu [21]. The maximum likelihood methods of

Gu et al. [21,22,23,24,25] were used to identify type I and type II

sites based on a posterior probability greater than 90%.

Mathematica [102] was used for the implementation of those

methods and for all calculations and graphs (software available

upon request). Briefly, identification of type I sites is based on

application of a likelihood model to two subfamilies; each site is

either related to functional divergence or not [3]. In the former

case substitution rates are unequal while in the latter case

substitutions rates are equal.

Based on the way PAML counts substitutions for positions

containing gaps, positions having a high proportion of gaps are

assigned high substitution rates. Thus, although we did not

implement a formal probability model for gaps, the resulting

substitution rate assignments nonetheless reflect selection pressure

that is less than for ungapped positions. This gives the desirable

feature that segments that are highly conserved in one subfamily

but gapped in another subfamily are easily identified as segments

of type I sites. In principle the possibility exists that this method

assigns type I calls when part of the protein is weakly conserved in

one subfamily and gapped in another. We inspected our type I

calls and found that in nearly all cases the slower rate in the rate

pair is below the median substitution rate.

Type II sites were identified using 1) substitution counts for each

subtree, 2) PAML’s ancestral reconstruction at the subtree roots,

and 3) a definition of radical changes between clades. We

considered a change radical if it altered membership with respect

to four groups: charge positive (K, R, and H), charge negative (D

and E), hydrophilic (S, T, N, Q, C, G, and P), and hydrophobic

(A, I, L, M, F, W, V, and Y) [25]. We implemented both methods

of Gu et al. and applied it to multiple clades. Our results were

checked by comparison with Gu’s program Diverge [103].

Statistical test for the structural clustering of type I sites
We designed a test to determine if the sites that change in rate

(type I sites) cluster together in space. Consider the quartet

((A,B),(C,D)). Our test statistic, the number of pairs of type I

transitions that occur on the same edge and within 4 angstroms of

each other, is large when changes in selection pressure involving

neighboring amino acids tend to be concerted. We ranked all sites

based on the posterior probability that they exhibit Type I

transitions along (A,B) and, separately, along (C,D). The value of

the test statistic was calculated using the top N such sites for each

edge. The distribution of the test statistic under the null hypothesis

was determined by permuting the edge assignments of the 2N

Type I transitions.

One consideration is that, even under the null hypothesis, type I

sites are not expected to be distributed uniformly on the protein.

Type I sites may be spatially correlated because changes in rate

tend to happen on specific regions of the enzyme. We therefore

condition on observed type I sites, permuting type I events among

edges in the phylogeny.

A second consideration pertains to the thresholding procedure

used to identify type I sites associated with different pairs of clades.

The permutation test requires control over both false positive and

false negative rates for both edges. We find that, with one

poserterior probability threshold, it is not possible to achieve

acceptable false positive and false negative rates for both edges.

We handle this problem by choosing the same number, N, of type

I sites for each clade (see below). We do not consider clades having

a tree length so small that they are unlikely to exhibit N type I sites.

Based on the considerations above, we consider quartets such as

((BaFpg1,PFNei), (AcNei1,AcNei2)) that contain large numbers of

substitions, both within and between clades. We chose the 25 type

I sites for each of the two edges having the lowest posterior

probability (common type I sites are discarded). The (BaFpg1,

PFNei) and the (AcNei1, AcNei2) edges having 13 and 18

neighbor type I pairs, respectively, for a total of 31 for our statistic.

They have 3 type I sites in common, thus we will then do a

statistical permutation test in which we resample without

replacement pairs of 22 sites from our pool of 44, and calculate

Table 4. Features of the subfamily alignments and trees.

Subfamily Membership
Tree Length (mean
substitutions per site)

Specificity Loop Length
(amino acids)

Total Length1 (amino
acids)

Number of
sequences

MeNeil1 Metazoans, e.g. hNEIL1 13.6 18 390 34

MeNeil2 Metazoans, e.g. hNEIL2 7.4 10 332 21

MeNeil3 Metazoans, hNEIL3 6.1 12 605 22

BaFpg1 Most bacterial Fpg 41.9 23 269 62

BaFpg2 Narrow bacterial distribution
of Fpg that includes
Actinomycetes

18.1 18 288 52

PFNei Plants/Fungi 16.8 12 390 45

AcNei1 Actinomycetes, e.g. MtNei1 19.2 25 268 53

AcNei2 Actinomycetes, MtNei2 18.2 16 265 55

PrNei Proteobacterial Nei 7.6 17 263 71

1 Length of the reference sequence used to calculate rates for each subfamily.
doi:10.1371/journal.pone.0025246.t004
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our statistic. Other quartets exhibited a similar pattern (results not

shown). A second statistic was used to determine the importance of

the structure on the clustering, and consisted of the number of

pairs of amino acids that are next to each other. There were 12

consecutive pairs in total for the statistic.

Identification of LSCs based on Type class assignment
and structural information

Consider the set, V(A,B), of amino acid positions assigned to

class Type 0, I or II with respect to a pair of subfamilies (A,B).

Consider also the set E of pairs of elements of V having a-carbons

within 4 angstroms. An LSC is a connected sub graph of the graph

(V,E) containing at least two amino acids, at least one of which is

either Type I or II. We found V associated with every pair of the 9

subfamilies. All programming was done in Mathematica 6.0 and

7.0, and the reference structure was the Bacillus stearothermo-

philus MutM (PDBid 1R2Y) [67]. All structure visualization was

done in PyMOL [56]. In principle different structures would give

different results, but for the family we are interested in the

structures are so conserved that we expect the results to be highly

similar.

Evaluation of the uniformity of selection pressure on sets
of amino acid residues

Given a set of aligned positions, a, and a set of trees, t,

substitution counts, X
j
i : i[a,j[t

n o
and tree lengths, Tj : j[t

� �
,

can be used to test the null hypothesis that selection pressure is

uniform among trees or among sets of aligned positions.

Consider the BaFpg1 recognition loop, the sequence between

G218 and L239 in the Geobacillus stearothermophilus Fpg

sequence gi38492995. We tested the null hypothesis that amino

acids in the loop represent the selection pressure in the remainder

of the protein. In this case there is only one tree length, so we are

comparing two sets of substitution counts Xi : i[af g, Xi : i[aC
� �

.

More precisely, we tested the null hypothesis that the two

distributions have the same location, using the mean as a test

statistic, as well as the null hypothesis that the two distributions are

equal, using the sum of ranks. In both cases the null distribution

was obtained by resampling (100,000 samples).

Sums of Poisson processes follow a Poisson distribution, so we

test the hypothesis that the summary Poisson rate parameter, l, is

uniform across a sets of n trees (H0),

P X jH0ð Þ~P
j[t

Poisson X j jlTj

� �
,

where X j~
P
i[a

X
j
i , versus the alternative hypothesis that there are

different rates (H1),

P X jH1ð Þ~P
j[t

Poisson X j jljTj

� �
,

Under the null hypothesis the likelihood ratio test statistic, 22 Log

L, where

L~
max P X jH0ð Þf g
max P X jH1ð Þf g ,

is distributed as chi-square with n21 degrees of freedom. We used

this likelihood ratio to test the null hypothesis that the recognition

loop is under uniform selection pressure among the nine

subfamilies.

Consider 1) a sequence tree consisting of an n-ary root node,

each child of which is a tree having the same topology and m leaf

nodes associated with the same set of genomes, and 2) an

alignment of the associated n6m sequences represented in the

tree. We used the likelihood ratio statistic to test the null hypothesis

the Poisson rate parameters associated with 1) the subtrees or 2)

the edges connecting subtrees to their common ancestor, are

equivalent.

Comparison of the summary evolutionary variation rate
between subfamilies

Proteopedia page. The Proteopedia website software [51]

was used to provide interactive three-dimensional representations

of the LSCs as well as additional information on the Fpg/Nei

protein family, including site-directed mutagenesis experiments

and distribution of homologs among taxa.
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