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Abstract

Glioblastoma multiforme (GBM) is the most common and malignant form of glioma with high mortality and no cure. Many
human cancers maintain a complex inflammatory program triggering rapid recruitment of inflammatory cells, including
mast cells (MCs), to the tumor site. However, the potential contribution of MCs in glioma has not been addressed previously.
Here we report for the first time that MCs infiltrate KRas+Akt-induced gliomas, using the RCAS/TV-a system, where KRas and
Akt are transduced by RCAS into the brains of neonatal Gtv-a- or Ntv-a transgenic mice lacking Ink4a or Arf. The most
abundant MC infiltration was observed in high-grade gliomas of Arf2/2 mice. MC accumulation could be localized to the
vicinity of glioma-associated vessels but also within the tumor mass. Importantly, proliferating MCs were detected,
suggesting that the MC accumulation was caused by local expansion of the MC population. In line with these findings,
strong expression of stem cell factor (SCF), i.e. the main MC growth factor, was detected, in particular around tumor blood
vessels. Further, glioma cells expressed the MC chemotaxin CXCL12 and MCs expressed the corresponding receptor, i.e.
CXCR4, suggesting that MCs could be attracted to the tumor through the CXCL12/CXCR4 axis. Supporting a role for MCs in
glioma, strong MC infiltration was detected in human glioma, where GBMs contained significantly higher MC numbers than
grade II tumors did. Moreover, human GBMs were positive for CXCL12 and the infiltrating MCs were positive for CXCR4. In
conclusion, we provide the first evidence for a role for MCs in glioma.
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Introduction

Gliomas are the most frequent primary brain tumors of adults that

are classified into grades I–IV based on malignancy. Glioblastoma

multiforme (GBM) is the most common and malignant type of

glioma that has poor prognosis, with a median survival time of just

over one year [1] and no cure.

Hallmarks of glioma include disruption of the blood brain

barrier (BBB) and aberrant invasiveness. Disruption of the BBB

occurs in high-grade gliomas, is associated with abnormal

neovasculature and extreme vessel leakiness, which promote

expansion of GBM [2]. The process of invasion is an early and

complex feature of glioma cells that is initiated already in low-

grade gliomas and involves, in addition to glioma cell interactions

with extra-cellular matrix (ECM), multiple additional factors

accompanying glioma cell movement [3].

The rate of development and growth of tumors is regulated by

the balance between pro- and anti-tumorigenic signals, produced

either by the tumor cells themselves, or by the surrounding

microenvironment. Local chronic inflammation, at the site of

tumor growth, is a potent cancer promoter and results in induction

of angiogenesis, tissue remodeling and immune modulation. Many

human cancers, including gliomas, instruct and maintain a

complex inflammatory program that, among other effects, triggers

rapid recruitment of inflammatory cells to the tumor site. For

example, immune infiltration of gliomas was recognized as one of

the processes following the development of advanced gliomas, and

it has been demonstrated that gliomas are infiltrated by microglia,

CD4 and CD8 T lymphocytes, and natural killer (NK) cells [4,5].

Generally, there appears to exist a positive correlation between the

extent of immune infiltration and poor clinical outcome. However,

the exact contribution of the immune system in tumorigenesis is

still not clear.

Mast cells (MCs) are crucial players in various inflammatory

conditions, including cancer [6]. The specific role of MCs in

tumorigenesis may vary largely, depending on the type of cancer.

MCs have been identified as an early highly infiltrative cell type in

skin dysplasias [7], breast carcinoma [8], colorectal carcinoma [9],

malignant melanomas [10], and pancreatic islet tumors [11]. A

protumorigenic role for MCs has been indicated in thyroid cancer

[12] and MCs have been associated with poor prognosis in

prostate cancer [13]. Conversely, an association between presence
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of MCs and improved prognosis has also been documented [14].

Hence, MC-related inflammatory processes might either facilitate

or hinder cancer, depending on the type of tumor setting. Notably,

previous studies investigating the role of MCs in cancer have been

focused on tumors outside of the central nervous system (CNS).

Here we are for the first time analyzing the potential involvement

of MCs in brain tumors. MCs are known to populate the CNS of

several species, including humans and have been found there from

the time of birth. In the brains of mammals they are concentrated

in the medial habenula (MHb), which is part of the epithalamus

[15].

During the past decade, the RCAS/TV-a mouse model has

become an important system for studying glioma [16]. RCAS/

TV-a allows post-natal gene transfer mediated by oncogene-

carrying RCAS retrovirus into brains of transgene animals

engineered to express the tv-a receptor under the control of cell-

type-specific promoters (e.g. Ntv-a; Gtv-a). In Ntv-a mice, the nestin

promoter directs infection to neural/glial progenitor cells, while in

Gtv-a mice, the glial fibrillary acidic protein (GFAP) promoter

directs infection mainly to astrocytes. The tv-a transgenic mice

have been cross-bred with mice carrying targeted deletions of

tumor suppressor genes (Ink4a2/2; Arf2/2) frequently deleted in

human glioma [17]. Tumors can be induced by RCAS-mediated

transfer of oncogenes, e.g. PDGF, Kras, Akt that closely resembles

the histopathology and genetics of human glioma. Using such

models, key mechanistic insights into gliomagenesis have been

obtained [17,18,19,20]. RCAS/TV-a experimental models have

also been used for pre-clinical testing of immunotherapies [21]. In

the present investigation we have used gliomas generated from

Ntv-a and Gtv-a transgenic mouse lines by transduction of Kras and

Akt [17].

We have investigated whether MCs have a role in glioma and

show for the first time that both mouse and human gliomas

accommodate MCs. Moreover, we present evidence suggesting

that tumor-associated vessels produce SCF that drives MC

proliferation and that MC chemotaxis in gliomas involves

interaction between CXCL12 and CXCR4.

Results

Infiltration of connective tissue type mast cells in mouse
glioma

To address the potential role for MCs in gliomagenesis, we used

archival RCAS/TV-a derived gliomas of various grades and types.

In previous studies it has been shown that the absence of either of

the key tumor suppressors Ink4a or Arf in Ntv-a and Gtv-a transgenic

mice yields tumors upon infection with the combination of RCAS-

KRas + RCAS-Akt. Arf-loss caused increased malignancy of gliomas

compared to Ink4a-loss, indicating a prominent role for Arf in

tumor progression [17]. Tumors were analyzed for the presence of

MCs by performing chloroacetate esterase enzymatic staining,

which detects chymotrypsin-like activity within MC granules. As

shown in Figure 1, MCs were present in gliomas of both Ntv-a and

Gtv-a transgenes, and both in Arf2/2 and Ink42/2 animals.

However, the most profound MC infiltration was seen in high-

grade gliomas, i.e. in Arf2/2 mice, whereas less prominent MC

infiltration was seen in low-grade gliomas, i.e. in Ink4a2/2 mice

(Figure 1A–B). Quantification of these data revealed that in

addition to striking increase of MC numbers in glioma area, there

was also a significant increase in MC numbers within glioma-

associated MHb in Arf knock-out mice (Figure 1C). Hence, MCs

infiltrate gliomas, with the most evident MC infiltration found in

high-grade gliomas in Arf2/2 mice. Therefore, in the subsequent

experiments we have focused on tumors formed in Arf2/2 mice.

There are two main subtypes of MCs in mouse, connective

tissue type MCs (CTMCs) and mucosal type MCs (MMCs), and

these are distinguished by characteristic expression profiles of

various MC-specific proteases [22]. CTMCs express predomi-

nantly chymases of the mouse mast cell protease 4 (mMCP-4) and

mMCP-5 types, tryptases mMCP-6 and mMCP-7, and MC

carboxypeptidase A (MC-CPA), whereas MMCs express the

chymases mMCP-1 and mMCP-2 but no tryptases or MC-CPA.

As shown in Figure 1D, MCs present in tumors of Ntv-a- and Gtv-a

Arf2/2 mice stained positively for both of the CTMC markers,

mMCP-6 and MC-CPA, but were negative for the MMC marker

mMCP-1 (not shown). Hence, MCs in the experimental gliomas

were of the CTMC subtype.

Frequent perivascular localization of mast cells in mouse
gliomas

As shown by co-staining for the endothelial cell marker CD31

and the MC marker mMCP-6, MCs within experimental gliomas

frequently showed a perivascular localization (with an average of

50% for both Ntv-a- and Gtv-a Arf2/2 mice) (Figure 2A), but were

also present within the tumor mass in both Ntv-a- and Gtv-a lines.

SCF is the most important growth factor for MCs in all species

[23]. SCF is an essential chemoattractant for MCs that controls

differentiation of MCs and induces MC proliferation and

degranulation. We reasoned that the massive increase in MC

numbers in the high-grade gliomas, as opposed to normal tissue,

might be a result of glioma-driven SCF expression. We analyzed

the expression of SCF in the mouse gliomas and found

significantly increased expression of SCF in tumor vessels of both

Ntv-a- and Gtv-a Arf2/2 mice (Figure 2B, blue arrow) but also MC

granules were positive (Figure 2B; indicated by red arrows). In

contrast, SCF expression in vessels of non-tumor tissue was poor.

Thus, KRas+Akt-induced experimental gliomagenesis is closely

associated with increased, predominantly vascular expression of

SCF, providing a potential explanation for the increased MC

numbers in the tumor tissues.

Proliferation of mast cells in mouse glioma
The accumulation of MCs in gliomas may be the result of

increased recruitment of blood-borne MC progenitors. An

alternative explanation could be that the increase in MC numbers

is a result of proliferation of local MC populations. To evaluate

this latter possibility we analyzed for the presence of proliferating

MCs, by doing double staining for Ki-67 (a marker for

proliferating cells) and mMCP-6 (a marker of differentiated

MCs). Indeed, we were able to identify proliferating MCs in both

Ntv-a- and Gtv-a Arf2/2 mouse gliomas as compared with non-

tumor tissue (Figure 3A), with an average of 7% and 4% of

proliferative MCs, respectively (Figure 3B). The double positivity

for Ki-67 and mMCP-6 suggested that the gliomas could induce

proliferation of functional MCs. Since no validated markers for

MC progenitors have been established, we were not able to

evaluate the possibility that the gliomas induced proliferation of

local MC progenitors.

Evidence for an active CXCL12/CXCR4 axis in mouse
glioma

The chemokine CXCL12 (also known as stromal cell derived

factor-1 (SDF-1)) is widely expressed in many tissues throughout

development [24] and serves as a powerful chemoattractant for

hematopoietic cells, facilitating their migration through endothe-

lial cell barriers [25]. Moreover, CXCL12 is expressed in a large

number of tumors and injured tissues, and the corresponding

Mast Cell Infiltration of Glioma
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activation of its receptor, CXCR4, promotes angiogenesis [26]

and metastasis of tumor cells [27]. Since CXCL12 is also known to

act as a chemoattractant for MCs [28], we reasoned that MC

migration into the tumor tissues might be the result of an

interaction between CXCL12 and CXCR4. It has been previously

shown, that CXCL12 was expressed by glioma cells [29,30] and its

expression increased with increasing tumor grade. We analyzed

gliomas for expression of CXCL12 and CXCR4 and found

abundant expression of CXCL12 in both Ntv-a- and Gtv-a Arf2/2

gliomas (Figure 4; left panel) and there was also a clear expression

of CXCR4 in the same samples (Figure 4; middle panel). CXCL12

expression was confined to the tumor stroma and very weak

expression in the surrounding normal tissue could be found. In

agreement with a role of the CXCL12/CXCR4 axis in promoting

MC migration into the tumors, mMCP-6 positive MCs in both

Ntv-a Arf2/2 and Gtv-a Arf2/2 mouse gliomas were frequently

(with an average of 90%) CXCR4 positive (Figure 5A–C).

Interestingly, the staining for mMCP-6 and CXCR4 revealed a

spatial colocalization in MCs, suggesting that part of the CXCR4

pool could be present at the same site as mMCP-6 (secretory

granules), but also that a fraction of the CXCR4 protein is present

at sites distinct from the granules (Figure 5B; right panels).

To elucidate the mechanistic interplay of the receptor-bearing

and ligand-producing cells, we performed an in vitro migration

assay in which bone marrow derived mast cells (BMMCs) were

placed into hanging inserts and were allowed to actively migrate

through a porous membrane towards conditioned medium

acquired after a 72 hour long glioma cell culturing period. A

glioma cell line was established from a KRas+Akt-induced mouse

tumor. Migration of untreated MCs towards glioma cell-

conditioned medium was set to 100% and unconditioned medium

was used as a negative control. Specific blockade of CXCL12

decreased MC migration by circa 32% and 20% as compared to

migration towards glioma cell-conditioned medium or glioma cell-

conditioned medium supplemented with non-specific IgG, respec-

tively (Figure 6A). Similar results were obtained when CXCR4

was specifically blocked on the MC surface and cells were allowed

to migrate towards glioma-conditioned medium (Figure 6B).

Figure 1. Accumulation of MCs in RCAS-KRas+RCAS-Akt induced tumors from Ntv-a Ink4a2/2, Ntv-a Arf2/2, Gtv-a Ink4a2/2 and Gtv-a
Arf2/2 mice. (A) Chloroacetate esterase (CE) and H&E-stained Ntv-a Ink4a2/2 and Ntv-a Arf2/2 tumors. Arrows in left panels indicate MCs. Scale
bar = 100 mM. (B) Chloroacetate esterase (CE)- and H&E-stained Gtv-a Ink4a2/2 and Gtv-a Arf2/2 tumors. Arrows indicate MCs. (C) Quantification of
MCs in both non-tumor MHb (MHb, 2 tumor), cancerous MHb (MHb, + tumor) and in the tumor area (tumor) of mouse glioma samples. Ntv-a
Ink4a2/2 (MHb 2 tumor, n = 6; MHb + tumor, n = 12; tumor, n = 12), Ntv-a Arf2/2 (MHb 2 tumor, n = 6; MHb + tumor, n = 12; tumor, n = 12), Gtv-a
Ink4a2/2 (MHb 2 tumor, n = 6; MHb + tumor, n = 2; tumor, n = 2), Gtv-a Arf2/2 (MHb 2 tumor, n = 6; MHb + tumor, n = 12; tumor, n = 12) revealing
statistically significant difference between all compared groups for Arf deficient mice (** p,0.01, *** p,0.001). Error bars show SD. (D) MC
carboxypeptidase A (MC-CPA)- and mMCP-6 positive MCs from the Ntv-a Arf2/2 tumor.
doi:10.1371/journal.pone.0025222.g001
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Furthermore, in accordance with a number of previous studies

[29,31], endothelial cells can be an additional source of CXCL12.

We therefore analyzed the gliomas for expression of CXCL12 and

the endothelial cell marker CD31 (Figure 6C). The quantification

revealed that up to 95% of endothelial cells are indeed CXCL12

positive in both Ntv-a Arf2/2 and Gtv-a Arf2/2 mouse gliomas

(Figure 6C). However, only 15% of all CXCL12-positive cells are

endothelial cells. This suggests that glioma cells, in accordance

Figure 2. MC distribution in the mouse RCAS-KRas+RCAS-Akt induced brain tumors. (A) Immunofluorescence staining for endothelial cell
marker CD31 and MC tryptase mMCP-6 in Ntv-a Arf2/2 and Gtv-a Arf2/2 mouse brain tumors revealed perivascular localization of MCs. Lower
panel: quantification of perivascular MCs in mouse brain tumors revealed about 50% in the corresponding objective fields with no difference
between Ntv-a Arf2/2 (n = 5) and Gtv-a Arf2/2 (n = 5). Error bars show SD. Scale bar = 50 mM. (B) Immunohistochemical analysis for SCF expression
revealing marked expression of SCF in the glioma vascular structures in both Ntv-a Arf2/2 and Gtv-a Arf2/2 mice (indicated by blue arrows).
Expression of SCF was also observed in MC granules (indicated by red arrows). Lower panel: quantification of total absolute intensity signal for SCF
revealed statistically significant difference between tumor and nontumor areas of the objective fields in both Ntv-a Arf2/2 and Gtv-a Arf2/2 mouse
brain tumors (* p,0.05). Error bars show SD. Scale bar = 50 mM.
doi:10.1371/journal.pone.0025222.g002

Figure 3. Proliferation of MCs in mouse RCAS-KRas+RCAS-Akt induced gliomas. (A) Immunofluorescence co-staining for proliferation
marker Ki-67 and MC tryptase mMCP-6 in mouse brain tumors, revealing proliferation of MCs in both Ntv-a Arf2/2 and Gtv-a Arf2/2 mouse gliomas.
Maximum intensity projection of z-stack confocal images was applied. (B) Quantification of proliferative MCs in both non-tumor MHb (MHb, 2
tumor), cancerous MHb (MHb, + tumor) and in the tumor area (tumor) of mouse glioma samples. The number of Ki-67-positive MCs in the tumor was
significantly higher as compared to both MHb controls, being 7% and 4% in Ntv-a Arf2/2 and Gtv-a Arf2/2 mouse gliomas, respectively. For both
Ntv-a Arf2/2 and Gtv-a Arf2/2 mouse gliomas: MHb 2 tumor, n = 6; MHb + tumor, n = 6; tumor, n = 6; * p,0.05, ** p,0.01. Error bars show SD.
doi:10.1371/journal.pone.0025222.g003
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with the results from the MC migration assay, are the primary

source of CXCL12 production and hence attract MCs via a

CXCL12/CXCR4 axis.

CXCL12 is a potential chemotaxin for CXCR4-positive
MCs in human GBM

In order to evaluate the potential role of MCs in human

gliomas, we stained human low-grade gliomas (II) and GBMs

(grade IV) for MC tryptase (hTPS). A comparison of the grade II

and grade IV tumors demonstrated a remarkable accumulation of

MCs in the more malignant tumors (GBMs) (n = 10) as compared

to grade II tumors (n = 8) (Figure 7A).

All GBM patients used in the study had received glucosteroids

prior to and after surgery (Table 1). This anti-inflammatory drug is

known to have an indirect effect on reduction of MC numbers in

vivo [32]. Quantification of positive cells revealed a statistically

significant difference (p,0.001) in MC numbers between low-

grade and high-grade gliomas (Figure 7A), and suggests that MC

accumulation accompanies development of GBM in humans

(Figure 7A). Similar to mouse gliomas, MCs in the human gliomas

showed a predominantly perivascular localization and stained

positive for both CXCL12 and CXCR4 (Figure 7B). Further,

mimicking the situation in the mouse gliomas, tryptase-positive

MCs present in human GBMs were frequently positive for

CXCR4 (Figure 7C).

Discussion

It still remains uncertain whether inflammation is the cause or the

result of cancer. Despite numerous studies addressing this issue, the

genuine connections between inflammatory- and tumor cells are still

unresolved. Glioma is one of the types of cancer with most

discouraging prognosis, and research on glioma has therefore

expanded dramatically. However, the contribution of inflammation

in gliomagenesis is not fully understood. Previous studies have

implicated various immune cells, such as T cells, microglia and NK

cells, during glioma development. Generally, these types of immune

cells have been suggested to have pro-tumorigenic effects, with their

presence being correlated with increased malignancy grade [4,5].

During the past years, a number of studies showing significant

correlations between MC infiltration and cancer development

have been published [8,11,12,13]. In many cases, the presence of

MCs has been correlated with poor prognosis, but associations of

Figure 4. CXCL12 and CXCR4 expression in mouse RCAS-KRas+RCAS-Akt induced gliomas. Immunofluorescence staining for CXCL12 and
CXCR4 was performed in both Ntv-a Arf2/2 and Gtv-a Arf2/2 mouse gliomas. The quantification of intensity signal for CXCL12 (lower left panel) and
CXCR4 (lower right panel) revealed statistically significant difference between tumor and nontumor areas of the objective fields in both Ntv-a Arf2/2
and Gtv-a Arf2/2 mouse brain tumors (* p,0.05). Error bars show SD. Scale bar = 50 mM.
doi:10.1371/journal.pone.0025222.g004
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MCs with improved prognoses have also been documented [14].

Thus the prognostic value of MC infiltration into tumors is

controversial, and the exact role of MCs in tumor development

remains elusive. In fact, it cannot be excluded that MCs perform

partly opposing roles in tumor formation/development during

distinct tumor stages, this being in line with the proposed

protective effect of the immune system in early phases of

tumorigenesis while the immune system may enhance tumorigen-

esis at later stages of tumor development [33].

Here we have expanded our understanding of the role of

inflammation in gliomas by showing, for the first time, that MCs

infiltrate mouse and human glioma, and that the extent of MC

infiltration, both in mouse and human gliomas, shows a strong

positive correlation with the malignancy grade of the tumor.

Despite the pre- and post-treatment of GBM patients with

glucosteroids, the difference in MC numbers was significant as

compared to low-grade samples (not receiving the anti-inflamma-

tory drug), and suggests that it could have been even more

pronounced. The mouse studies were performed using the RCAS/

TV-a mouse model system that produces life-like gliomas of

different types and grades. We compared the extent of MC

infiltration in tumors, induced with a combination of two

oncogenes (KRas+Akt) in two different transgenic lines (Ntv-a and

Gtv-a), each carrying a deficiency in either of the tumor suppressors

Ink4a or Arf. We found that the number of MCs in high-grade

tumors generated in Arf-deficient mice was significantly higher

than in low-grade gliomas formed in Ink4a-deficient mice, thus

suggesting that accumulation of MCs accompanies development of

high-grade gliomas. In contrast, the cell-of-origin, i.e. neural/glial

cell progenitors (Ntv-a) or astrocytes (Gtv-a) did not affect the extent

of MC accumulation to any significant extent, indicating that MCs

are accumulated in gliomas regardless of the cellular origin of the

tumor. Notably, the induction of tumors by KRas+Akt in Arf2/2

mice has been shown to generate predominantly GBM-like

gliomas. By using this model, we have been able to get a more

complete understanding of the processes leading to MC infiltration

and distribution during glioma progression, than by mere

examination of human glioma material.

The pronounced accumulation of MCs in the mouse gliomas

suggested that glioma cells produce factors that can stimulate

proliferation of MCs, as well as attracting MCs to migrate into the

tumor. We show that SCF was highly expressed in tumor blood

vessels but not in vessels outside the tumor tissue, and propose that

the accumulation and perivascular localization of MCs in gliomas

is, at least partly, explained by a glioma-driven induction of SCF

expression. This hypothesis is also supported by a previous study,

in which SCF expression was demonstrated in blood vessels of

human glioma [34]. Another striking finding was that MCs

themselves were strongly positive for SCF, arguing that expansion

of the brain tumor-associated MCs may result, at least partly, from

an autocrine loop induced by release of MC-contained SCF,

which subsequently could bind to its receptor (c-kit) on the MC

surface. Binding of SCF to c-kit could then induce MC

proliferation, and, in agreement with this, we observed prolifer-

ation of glioma-associated MCs. Together, these data demonstrate

for the first time that brain tumor-associated MCs contain

endogenous sources of SCF, a finding that is in agreement with

a previous study showing that human skin MCs may contain a

preformed pool of SCF [35].

SCF may, in addition to inducing MC proliferation, also serve

as a MC chemoattractant. However, SCF expression was low

within the tumor mass, and the localization of MCs within the

tumor mass was therefore most likely the result of chemotaxis

induced by factors other than SCF. Taking into account that the

CXCL12/CXCR4 interaction has a pronounced role in develop-

ment of tumor vasculature [36], and that CXCL12 is a known MC

chemotaxin [28], we demonstrated that both mouse and human

gliomas were highly positive for CXCL12. Further, human and

mouse glioma MCs were strongly positive for its cognate receptor

CXCR4, this being in agreement with previous reports showing

the expression of CXCR4 in human glioma [36,37]. In the in vitro

migration assay CXCL12 neutralization in glioma-conditioned

medium led to a significant decrease of MC migration. Similarly,

blocking of its receptor, CXCR4, resulted in reduced migration of

MCs further, strengthening the notion that a CXCL12/CXCR4

axis plays an active role in MC recruitment to the tumor site.

Hence, we propose that the MC accumulation within the gliomas

is, at least partly, explained by a glioma-driven expression of

CXCL12, combined with strong expression of CXCR4 within the

brain tumor MC population.

CXCL12/CXCR4 interactions have been implied in vascular-

ization processes, and it has been demonstrated that CXCL12

signaling is inducible in pathological conditions of the CNS [38]

pointing to a potential role of CXCL12 in pathological formation

of vessels within the brain. Accordingly, it has been suggested that

the CXCL12/CXCR4 axis modulates the formation of new

vessels under certain pathological conditions of the brain [39].

Despite being expressed by glioma cells at a higher level, CXCL12

is additionally expressed by endothelial cells further increasing its

chemotactic potential.

The findings presented here show that MCs are present in

glioma with higher numbers in more malignant tumors proposing

a potential prognostic value for detecting MCs. The result suggests

that MCs contribute to the progression of glioma but the exact

nature of this contribution remains to be elucidated. One favored

possibility would be that MCs promote the tumor angiogenesis in

gliomas, a notion that is well in line with a proposed function of

MCs in various other types of tumor settings [33]. Potentially,

MCs may promote angiogenesis by multiple mechanisms,

including the secretion of angiogenic factors [40] or by the

secretion of MC proteases that may either directly degrade ECM

components or promote ECM degradation by activating other

ECM-degrading proteases such as matrix metalloprotease 9 [41].

There is as yet no cure for high-grade gliomas. Since MCs are

normal cells within the tumor that should be less sensitive to

developing therapy resistance, potential drugs that modulate MC

driven processes in glioma may be a valuable complement to other

treatments.

Materials and Methods

Ethics statements
In the animal studies animals had free access to food and water

and they were housed and treated following the conditions

Figure 5. Co-expression of CXCR4 and mMCP-6 by MCs in mouse RCAS-KRas+RCAS-Akt induced gliomas. (A) Immunofluorescence
staining for CXCR4 and mMCP-6 was performed in both Ntv-a Arf2/2 and Gtv-a Arf2/2 mouse gliomas, demonstrating co-expression of CXCR4 and
mMCP-6. Scale bar = 50 mM. (B) Immunofluorescence staining, demonstrated co-localization of CXCR4 and mMCP-6 at the single-cell level in both
Ntv-a Arf2/2 and Gtv-a Arf2/2 mouse gliomas. Maximum intensity projection of z-stack confocal images was applied. Scale bar = 20 mM. (C) The
quantification of MCs in mouse brain tumors revealed about 90% to be CXCR4-positive in the corresponding objective fields with no difference
between Ntv-a Arf2/2 (n = 5) and Gtv-a Arf2/2 (n = 5). Error bars show SD.
doi:10.1371/journal.pone.0025222.g005
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approved by Uppsala Ethical Committee on Animal Experiments,

which also approved the experimental protocol (approval C32/3

from 19.03.2003 and C246/10 from 29.09.2010). All patient

samples were obtained following approval of the Ethics Commit-

tee of Uppsala University (Application Dnr Ups 02-330) and the

Ethics Committee of Karolinska Institutet (Application Dnr Ki 02-

254). Patients gave written informed consent for the sample

collection. The study involving human biopsy samples was

conducted in accordance with the Declaration of Helsinki.

Tissue samples
Constructs and mice used in this study have been previously

described [18]. From archival material, a diverse panel of mouse

brain specimens was selected. The panel includes Ntv-a and Gtv-a

strains of Ink4a2/2 and Arf2/2 background. Tumors were

induced by RCAS virus encoding a combination of KRas+Akt [17].

Human tissue samples were obtained from Uppsala Biobank

material. Both high- and low-grade tumors had been graded based

on the WHO classification by experienced neuropathologists.

Mouse glioma cell culture
Mouse glioma cell culture 3074A was established in Gtv-a

Arf2/2 mouse [18]. Glioma was induced by RCAS virus

encoding a combination of KRas+Akt [17].

The injected mouse was euthanized when showing any sign of

sickness, but at the latest at 12 weeks of age. The brain was

collected under aseptic conditions and a coronal section was made

at the injection site and one part was collected and embedded in

paraffin post formalin fixation, whereas the other part was minced

and dissociated for culturing. The mouse cell line was cultured in

Dulbeco’s Modified Eagle’s Medium (DMEM) (Sigma Aldrich,

MO, USA), supplemented with 10% fetal bovine serum (FBS)

(Invitrogen, Carlsbad, CA), 4 mM L-glutamine and 100 units/ml

penicillin and 0.1 mg/ml streptomycin (Sigma Aldrich). The

expression of KRas+Akt in primary glioma cells was confirmed and

corresponding haematoxylin-stained tissue was ranked as grade III

with susceptibility of developing into a grade IV tumor.

BMMC culture
Bone-marrow cells from Gtv-a wt mice were obtained from

femura and tibia by flushing the bones with 2.5 ml of PBS. The

cells were cultured in DMEM, supplemented with 10% heat-

inactivated FBS, 60 mg/ml penicillin, 50 mg/ml streptomycinsul-

fate, 2 mM L-glutamine and 30% WEHI-3B-conditioned media

(which contains IL-3). The cells were kept at a concentration of

0.5–16106 cells/ml with weekly changes of medium. All cells were

grown at 37uC with 5% CO2.

In vitro chemotaxis assay
All chemotaxis experiments were carried out in a 24-well

culture plates using hanging inserts with a 5 mm PET membrane

(Millipore (Billerica, MA)) where 105 mast cells were placed.

Conditioned medium was obtained from confluent 3074a mouse

glioma cell culture seeded 72 hours prior to the experiment. It was

subsequently added to the lower wells and DMEM supplemented

with 10% FBS, 4 mM L-glutamine, 100 units/ml penicillin and

0.1 mg/ml streptomycin was used as a negative control. For

neutralization experiments, CXCL12 neutralizing antibody

(250 ng/ml, R&D Systems (Abingdon, UK)) was incubated with

the conditioned medium for 30 minutes at room temperature. In

order to block the receptor on MC surface, CXCR4 antibody

(100 mg/ml, R&D Systems) was incubated with MCs for

60 minutes at room temperature. Control samples were incubated

under same conditions with a matching isotype nonspecific

antibody (mouse monoclonal IgG1 and rat monoclonal IgG2B,

respectively, R&D Systems) diluted to the same concentration.

The experiments were performed in triplicate.

Immunohistochemistry and -fluorescence
Formalin-fixed, paraffin-embedded 6 mm thick tissue sections

were fixated onto glass slides. Thereafter, the sections were

deparafinized (in xylene over night, in fresh xylene for 1 h on a

rocking table followed by 265 min incubations in 100% EtOH,

95% EtOH, 80% EtOH, distilled H2O) and subjected to pressure

boiling for antigen retrieval in antigen unmasking solution (Vector

Labs, Burlingame, CA).

Immunohistochemistry was performed using the UltraVision LP

detection System (Thermo Fisher Scientific, CA) in accordance

with the manufacturer’s instructions. Briefly, after antigen retrieval

the slides were washed in PBS-T (containing 0.05% Tween (Sigma

Aldrich, MO, USA)) and incubated with hydrogen peroxidase

block. Ultra V block was subsequently applied. Primary antibody

used included anti-mouse SCF (1:100, Millipore) and anti-human

tryptase (1:200, Santa Cruz (Santa Cruz, CA)), mMCP-6, CPA,

mMCP-1, mMCP-2 (1:200, Antisera raised in rabbit were as

described [42]. They were diluted in 5% normal goat serum

containing PBS-T and incubated over night at 4uC. Primary

antibody diluted in 5% normal goat serum containing PBS-T was

applied over night at 4uC, followed by primary antibody enhancer.

Slides were incubated with HRP polymer and the signal was

visualized using freshly prepared DAB plus chromogen and

substrate mix. Between all the steps described above, the slides

were thoroughly washed in PBS-T. After the final step, the slides

were washed in distilled H2O, counterstained with hematoxylin

and mounted using Immu-mount (Thermo Fisher Scientific, CA).

Pictures were taken using a Leica brightfield microscope.

For immunofluorescence staining, slides were rinsed in PBS,

blocked in 5% milk-containing PBS-Tx (supplemented with 0.2%

Triton-X 100 (Sigma Aldrich, MO)) for 1 hour, followed by over

night incubation (4uC) with the primary antibody diluted in the

blocking solution in accordance with producer’s guidelines. The

following antibodies with the specific dilutions were used: mMCP-

6 (1:200, antiserum raised in rabbit as described previously), anti-

mouse Ki-67 (1:200, DakoCytomation (Glostrup, Denmark), anti-

mouse CXCR4 (1:50, R&D Systems), anti-human CXCR4 (1:200,

Abcam (Cambridge, UK)), anti-mouse CXCL12 (1:60, R&D

Systems), anti-human CXCL12 (1:100, R&D Systems), anti-

Figure 6. Demonstration of MC migration toward glioma-conditioned medium. Co-expression of CXCL12 and CD31 in mouse RCAS-
KRas+RCAS-Akt induced gliomas. (A) Trans-well assay using CXCL12-neutralizing antibodies revealed statistically significant decreased migration of
BMMCs towards glioma-conditioned medium. (B) Trans-well assay using antibodies to block CXCR4 receptor expressed on the BMMC surface
demonstrated statistically significant decrease in BMMC migration towards glioma-conditioned medium. Appropriate isotype controls were used
(* p,0.05, ** p,0.01). (C) Immunofluorescence staining demonstrated co-localization of CXCL12 and CD31 in both Ntv-a Arf2/2 and Gtv-a Arf2/2
mouse gliomas. Image analysis revealed an average of 16% and 14% of total CXCL12-positive cells in Ntv-a Arf2/2 and Gtv-a Arf2/2 mouse gliomas
respectively were co-localized with CD31-positive endothelial cells. However, almost 94% and 82% of total CD31-positive cells in Ntv-a Arf2/2 and
Gtv-a Arf2/2 mouse gliomas correspondingly were co-localized with CXCL12-positive staining. No statistical difference between Ntv-a- and Gtv-a
lines was found. Scale bar = 50 mM. Error bars show SD.
doi:10.1371/journal.pone.0025222.g006
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human tryptase (1:250, Santa Cruz (Santa Cruz, CA), anti-mouse

CD31 (1:50, Santa Cruz). The slides were subsequently incubated

with appropriate secondary antibody for up to 1 hour and

mounted in DAPI (1:5000) containing Immu-mount. In between

the incubations, slides were washed in PBS-Tx. All secondary

antibodies were purchased from Invitrogen (Carlsbad, CA) or

Figure 7. MC infiltration of human gliomas. (A) Immunohistochemical analysis of human MC tryptase (hTRS) in human low-grade gliomas
(grade II, n = 8) and glioblastomas multiforme (GBM) (grade IV, n = 10). Right panel: quantification of MCs. Error bars show SD, *** p,0.001. Scale
bar = 50 mM. (B) Immunofluorescence staining for CXCL12 and CXCR4 in human GBMs. Scale bar = 50 mM. (C) Immunofluorescence staining for CXCR4
and hTPS in human GBMs displayed co-expression of CXCR4 and hTPS. Scale bar = 25 mM. The inset represents a MC with co-localization of CXCR4
and hTPS at the single-cell level where maximum intensity projection of z-stack confocal images was applied.
doi:10.1371/journal.pone.0025222.g007
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Jackson ImmunoResearch (West Grove, PA). Pictures were taken

using Zeiss 510 META confocal microscope and Zen software

(version 5.0, 2008). Where applicable, maximum intensity

projection was performed on z-stack images.

Chloroacetate esterase staining was performed as described

previously [43].

The quantification of Ki-67 positive MCs was determined from

four representative tumors each from Ntv-a Arf2/2 and Gtv-a

Arf2/2 mice. The percentage of Ki-67-positive nuclei out of 100

randomly selected MCs was calculated.

The quantification of all images was performed by ImageJ

software.

The number of MCs per square millimeter was counted in

MHb in non-tumor, MHb of tumor-contained sample and in

tumor itself of mouse tissues from different genetic backgrounds.

The number of MCs in human tumor samples was counted per

square millimeter.

Statistical analysis
Where applicable, quantified data are presented as mean 6 SD.

To estimate statistical significance, Student’s unpaired two-tailed t-

test was used.
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