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Abstract

The ability to discriminate between highly similar substrates is one of the remarkable properties of enzymes. For example,
transporters and channels that selectively distinguish between various solutes enable living organisms to maintain and
control their internal environment in the face of a constantly changing surrounding. Herein, we examine in detail the
selectivity properties of one of the most important salt transporters: the bacterial Naz/Hz antiporter. Selectivity can be
achieved at either the substrate binding step or in subsequent antiporting. Surprisingly, using both computational and
experimental analyses synergistically, we show that binding per se is not a sufficient determinant of selectively. All alkali ions
from Liz to Csz were able to competitively bind the antiporter’s binding site, whether the protein was capable of pumping
them or not. Hence, we propose that NhaA’s binding site is relatively promiscuous and that the selectivity is determined at a
later stage of the transport cycle.
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Introduction

Channels and transporters share a crucial property that

underpins their physiological and biochemical functions: an ability

to transport substrates in a selective manner. This ability enables

cells to both protect the integrity of their content on the one hand,

while communicating with the environment on the other. For

example, without the ability to discriminate between Naz and Kz

by voltage-gated channels, neural activity in our body cannot take

place. Taken together, transport selectivity through the membrane

is one of the fundamental prerequisites for life.

Based on the above, it is of no surprise that considerable

research has gone into unraveling the precise mechanism of

selectivity, and in particular - of ion channels [1–12]. Herein, we

have focussed on the other class of proteins that are capable of

facilitating selective membrane permeation: transporters, and the

Escherichia coli Naz/Hz as its representative.

Naz/Hz antiporting, first discovered in 1974 by Mitchell &

West [13], plays a primary role in maintaining homeostasis of pH

and Naz concentration, the latter having a pivotal impact on cell

volume, as well. Proteins capable of performing this antiporting

function can be found ubiquitously in plants, animals and

microorganisms, and are present in cell cytoplasmic membranes

and in the membranes of many eukaryotic organelles [14]. The first

antiporter to be discovered [15] and the only one for which a

structure is available [16], is the Escherichia coli Naz/Hz antiporter

A, named NhaA. In Escherichia coli, NhaA is the only member of the

Nha family absolutely required for survival in alkaline conditions in

the presence of high external Naz concentration [17].

Following the crystallographic structure of NhaA, solved to

3.45 Å, one can note twelve transmembrane segments (TMS I

through XII) [16]. Of those TMSs, numbers IV and XI, show an

uncommon structure of oppositely-oriented, discontinuous helices,

i.e. each TMS consists of a short a-helix followed by a short

unfolded segment ending with another short helix. Also seen in the

x-ray structure are two funnels, leading from the bulk on both sides

of the membrane to the putative binding site, D164. The

cytoplasmic funnel is wide and negatively-charged, corresponding

to the cation uptake path, while the periplasmic funnel is slightly

narrower. The previous observations regarding the so-called TMS

IV/XI assembly highlight its potential importance in the protein’s

function and dynamics. Lastly, the protein harbors a b-hairpin,

situated in the loop connecting TMS I and II, which forms with

the other loops a smooth periplasmic face, roughly parallel to the

membrane’s leaflet. In contrast, the cytoplasmic face features

helices protruding from the parallel plane.

Previous mutagenesis experiments showed that D133, D163

and D164 are essential to NhaA’s activity [18]. This finding

suggested that these aspartic acid residues, adjacent to the TMSs

IV/XI assembly, take part in the transport of ions along the

antiporter. Therefore, the movement of Naz ions out of the

vestibules was examined under different protonation states of

D163 and D164. Recent molecular dynamics (MD) simulations on

Escherichia coli’s NhaA have suggested a possible mechanism for the

ion exchange mechanism [19]. According to the proposed scheme,

D164 serves as the Naz -binding site while D163 serves as the

molecular ‘‘switch’’ between the alternating conformations of the

protein. Specifically, when D163 is deprotonated it is accessible to
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the periplasm and D164 is accessible to the cytoplasmic side of the

protein. Conversely, when D163 is neutral it is accessible to the

cytoplasm, while D164 is accessible to the periplasm. This

concerted conformational change accounts for the pumping

function of the protein, as well as its experimentally determined

electrogenic stoichiometry [20]: two protons pumped into the cell

for each Naz ion transported out.

NhaA was found to be very selective to Naz, as well as Liz (for

a review see [21]), allowing it to detoxify the cell in case of Liz

poisoning [22]. Yet, the mechanism of NhaA selectivity is still

elusive. How does it permit the passage of only Naz and Liz and

excludes translocation of other cations? The most straightforward

and intuitive explanation is that the selectivity is determined at the

first stage of the transport cycle. Specifically, the protein only binds

Naz and Liz and therefore cannot transport any other ion.

Herein, using both computational and experimental approaches,

we challenge the above explanation, arriving at a surprising result.

The molecular basis for ion selectivity in the Naz/Hz antiporter

is not at the ion binding stage. The ion binding site around D164 is

promiscuous, capable of binding various alkali ions with no

particular preference. However, only Naz and Liz bind the

protein in a functional way that allows transport.

Results

The first stage in the transport process is most likely the binding

of the substrate to the protein. Hence, we set out to calculate the

free energy profile of this reaction using MD simulations. We then

proceeded to experimentally substantiate the computational

results. Finally, after having confirmed both experimentally and

computationally that binding alone cannot be responsible for the

selectivity mechanism of the antiporter, we returned to the

simulations in order to gain further insights into potential

selectivity source.

MD simulations
A series of MD simulations of up to 0.1 ms of the Escherichia coli

Naz/Hz antiporter NhaA in a hydrated lipid bilayer was

performed. See Figure S1 for a general overview of the simulation

system. In these simulations, the protein was stable, exhibiting low

root mean square deviation (RMSD) of its backbone atoms and

maintained its secondary structure (see Figure S2). To ensure

selection of a representative structure, a cluster analysis was

performed to select a conformation for further analyses.

Potential of mean force
In order to computationally compare the binding of different

ions to the antiporter we computed the potential of mean force

(PMF) of the process. A PMF is defined as the change in free

energy as a function of a particular reaction coordinate. Since the

membrane plane coincided with the xy plane in the simulation

system, the reaction coordinate was simply the movement of the

ion along the z axis from the cytoplasm through the vestibule

ending at the binding site (residue D164), in line with the

physiological Naz uptake process. To obtain sufficient sampling in

thermodynamically unfavorable regions of the protein, we used

the umbrella sampling formalism [23]. Specifically, multiple

simulations were conducted whereby the only difference between

them was the position of the ion along the z axis. In each of these

vertical ‘‘slabs’’ the ion was restrained to the z axis by a harmonic

restraint but was free to move in the xy plane. The different slabs

were then combined to yield the unbiased PMF using the standard

weighted histogram analysis method (WHAM) [24].

The PMF profiles for Naz and Liz along their uptake

pathways are shown in Figure 1 a. For both ions, there are small

energy barriers (2–4 kJ/mol) upon movement into the protein that

lead to an energy well (z*1 Å). Upon inspection of the protein,

the energy well corresponds to the location of the putative ion

binding site at residue D164. The magnitudes of the energy

troughs (7–9 kJ/mol) correspond to the experimentally measured

apparent affinity constants for Naz (11–180 mM) and Liz (7–

50 mM). The affinity range corresponds to measurements

obtained at basic or neutral pH, respectively [25]. Taken together,

the PMF analysis for Naz and Liz agrees with experimental data,

both in terms of the location of the binding site, as well as the

magnitude of the binding affinity.

We then proceeded to calculate the PMF curves for Kz, Rbz

and Csz, three alkali ions that are not transported by the

antiporter. To our surprise, the PMF profiles of Kz, Rbz and

Csz shown in Figure 1 b, are qualitatively similar to that of Liz

and Naz (Figure 1 a), while the quantitative differences are not

large enough to account for the fact that the latter ions are

substrates of the pump while the former are not.

Finally, we also calculated the PMF profile of a bivalent cation

(Mg2z) and of an anion (Cl{), shown in Figures 1 c–d. Both PMF

profiles are substantially different from that of the alkali ions and

indicate that the two ions are not capable of binding to the

antiporter, as expected. Specifically, the PMF analysis of Mg2z

exhibits a high energy barrier upon binding (ca. 14 kJ/mol)

without a negative energy trough at the binding site. In contrast,

the PMF curve of Cl{ rises continuously upon entry into the

protein, most likely due to electrostatic repulsion between the

negatively charged anion and the acidic binding pocket at D164.

Taken together, we are left with a surprising result: binding

energetics alone cannot be the source of ion selectivity of the

antiporter. The PMF analyses for Liz and Naz consistently

reproduce the location of the binding site of the ions as well as the

magnitude of binding affinity. However, the same analysis suggests

that other alkali ions are capable of binding the antiporter in a

similar fashion. As this result is unexpected, we set forth to confirm

it experimentally.

Experimental analysis of ion binding
Measurement of antiporter activity may be conducted in

everted membranes using the acridine orange fluorescence

quenching method [26,27]. In brief, when a reductant (e.g.

succinate) is added to an everted membranes preparation, the

respiratory chain acidifies the vesicle interior leading to the

accumulation of the mild base acridine orange. The accumulation

of the fluorophore leads to self quenching which can be reversed

by any protein that can transfer protons out of the vesicles. Since

Hz transport is coupled to the counter transport of an alkali ion

(e.g. Naz), antiporter activity can readily be measured by the

ability of the ion to restore fluorescence. For example, analyses of

the five different alkali cations using the aforementioned method

(Figure 2) clearly demonstrate that only Naz and Liz are

transported, with Liz resulting in higher activity, in accordance

with [25]. On the other hand, the antiporter shows no activity

upon the addition of Kz, Rbz or Csz, thereby confirming that

niter of these ions are substrates of the protein (Choline is used as a

negative control).

We could now proceed to experimentally substantiate the

computational results which indicate that all five alkali ions bind to

the antiporter despite the fact that only Liz and Naz are proper

substrate which are subsequently transported. In other words, the

computational results posit that Kz, Rbz and Csz may inhibit

Promiscuous Binding in the Na+/H+ Antiporter
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the pumping of Naz and Liz due to competition for the same

binding site.

Indeed, results shown in Figure 3 a are in full agreement with

the above hypothesis: the presence of either Kz, Rbz or Csz

causes an inhibitory effect on the Naz pumping activity of NhaA.

Addition of either Kz, Rbz, Csz or choline alone does not result

in any antiporting (Figure 2). Furthermore, we were able to show

that the ions bind in the same location with a detailed Michaelis-

Menten kinetic analysis (Figure 3 b). Specifically, we measured the

pumping activity of the protein as a function of different Naz

concentrations yielding an apparent KM of 3.31+0.54 mM and a

Vmax of 48.50+2.0 (a.u.). When the same experiment was

conducted in the presence of 20 mM Rbz, the KM increased by

63% to 5.40+0.83 mM. In contrast, the apparent Vmax remained

practically unchanged with a drop of only 17% to 40.30+2.3

(a.u.). These trends, of a significant increase in KM accompanied

by a mild change in Vmax were repeated in several cases, including

the use of Liz as a substrate (data not shown). These results imply

that Rbz acts as a competitive inhibitor (at least in part) as further

discussed below.

Thus, two lines of evidence, in silico and in vitro experiments,

point to the same conclusion: the antiporter binds all alkali ions

competitively, yet is capable of completing a pumping cycle only

for Liz and Naz. Therefore, one can rule out binding as the

source of selectivity of the antiporter. Faced with the above

conclusion, we set forth to examine features that might distinguish

the ‘‘futile’’ binding ions (Kz, Rbz and Csz) from the productive

ones (Liz and Naz). Hence, we decided to examine the binding

process in detail and in particular focus on the hydration state of

each ion during the binding process.

Figure 1. Free energy profiles of cation binding. a. The PMF
profiles of Liz (green) and Naz (dark green) ions along the central axis
leading into the binding site of NhaA. The reaction coordinate (z) starts
from the center of the membrane (z~0) and stretches to the
cytoplasm. b. Similar PMF analysis for Kz (red), Rbz (dark red) and
Csz (black). Charts c and d are similar PMF profiles, but for Mg2z and
Cl{, respectively.
doi:10.1371/journal.pone.0025182.g001

Figure 2. Experimental analysis of antiporter activity using the
quinacrine fluorescence quenching method. Everted membrane
vesicles activity was determined using acridine orange fluorescence to
monitor DpH. Data of typical measurements are shown. At the onset of
the reaction, succinic acid (250 mM) was added to energize the vesicles
and fluorescence was recorded until a steady state level of DpH (100%
quenching) was reached. NhaA activation level was defined as the
percentage of dequenching at steady state after adding the respective
ion, from those 100%. The concentration of Naz or Liz in the
experiment was 3.2 mM, while 20 mM was used for the other cations.
Higher concentrations of the Kz, Rbz and Csz were used to better
demonstrate the fact that they are not proper substrates of the
transporter.
doi:10.1371/journal.pone.0025182.g002
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Hydration analysis
In order to examine the hydration state of the ions as a function

of their penetration into the protein, we made use of the slabs from

the PMF analysis. For each of these slabs a water radial

distribution function (RDF, g(r)) was computed. Subsequently,

all slabs were pooled together in order to construct a 3D hydration

profile (Figure S3). This analysis describes how the water density

varies as a function of the distance from the ion, and as a function

of the location of the ion along the z axis.

Our results show that Liz and Naz retain their two solvation

layers almost fully unimpaired throughout the entire trajectory of

the ion until reaching the binding site of the protein. In contrast,

all the larger alkali ions, Kz, Rbz and Csz experience a marked

reduction in their hydration upon entry into the ion binding site.

Snapshots of this process can be seen in Figure 4, whereby one can

observe a decrease in the number of water molecules bound to

Kz, Rbz and Csz as they approach the ion binding site. In

contrast, the hydration of Liz and Naz does not change upon

binding to the protein, noting that the analysis refers to the section

around the ions that is facing the cytoplasm.

Discussion

The current study poses the following question: What is the

selectivity mechanism of Escherichia coli’s NhaA, the archetypal

Naz/Hz antiporter? The protein is capable of transporting only

the small alkali ions, Naz and Liz, and is incapable of pumping

the larger Kz, Rbz and Csz. In order to answer the above

question, we first attempted to figure out when is selectivity

attained. Specifically, the transport cycle might contain numerous

sequential steps. Therefore, overall selectivity will arise even if only

one of the transport steps is selective for one ion over another. As

such, the most likely step in the transport cycle to attain selectivity

is the first stage in the process - binding of the substrate.

To examine the selectivity of binding, we performed MD

simulations of NhaA embedded in a hydrated lipid bilayer. Then,

using umbrella sampling, we obtained well converged PMF curves,

ranging from the binding site of the protein, through its

cytoplasmic funnel and toward the bulk, for a series of alkali ions.

The construction of PMF profiles for Liz, Naz, Kz, Rbz and

Csz ions provided an opportunity for a comparative overview,

and consequently into the selectivity of the binding process.

As stated above, the PMF analyses of Liz and Naz fit to the

experimental data regarding the location of the binding site as well

as the magnitude of binding affinity. However, the surprising

finding is that the PMF binding curves for Kz, Rbz or Csz are

similar to those obtained for Liz and Naz. Following the PMF

profiles, indicating that all alkali ions tested are capable of binding

NhaA, we hypothesized that if indeed binding of Kz, Rbz or

Csz occurs, but antiporting does not, then these ions should serve

as competitive inhibitors of Naz (or Liz) transport.

In line with this hypothesis, we performed experimental analyses

in everted vesicles to verify the above conclusions. Indeed we

found that the three large alkali ions, Kz, Rbz or Csz inhibit

Naz and Liz transport (Figure 3). Furthermore, we were able to

show that the inhibition is competitive using Michaelis-Menten

analysis. Were the system ideal, one would expect a constant Vmax

and an increased KM as in the case of a classic competitive

inhibition. However, the current assay is indirect and hence

reflects internal deviations that stem from the measurement

technique. Nonetheless, at high Naz concentrations, it nearly out-

competes Rbz, as expected in the case of competitive inhibition.

Therefore, we propose that Rbz may serve as a competitive

inhibitor since we observe a significant increase of the KM values

whereas the decline of the Vmax is less than 20%. Hence we

suggest, based on in silico and in vitro experiments, that binding

energetics alone, cannot be the source of antiporter selectivity, and

that the binding site is not highly specific.

We propose that ‘‘binding’’ is not the relevant term to examine

in the case of the Naz/Hz antiporter, but rather ‘‘functional

binding’’. All alkali ions bind the protein at the same site (D164),

yet only Naz and Liz bind in a manner which allows them to be

transported. Since these ions are the only ones that retain their

solvation in our analysis, we propose that this differentiates them

from other alkali ions.

Based on the results presented in the current study and previous

works [16,18,19], we present a model for NhaA selectivity, shown

schematically in Figure 5. Liz or Naz bind to D164 driving

subsequent protein conformational changes that eventually lead to

their release to the periplasm. However, when Kz, Rbz or Csz

bind to D164, a transport cycle does not ensue, but the binding site

is occupied. Therefore, as the results show, binding of Kz, Rbz or

Figure 3. Inhibition of NhaA activity in everted membrane
vesicles. See Figure 2 for details. a. Pumping measurements were
taken for the native state (green, without inhibition) or at the presence
of 20 mM Kz (red), Rbz (dark red) or Csz (black). b. Michaelis-Menten
kinetic fit. Activation of NhaA was measured at different Naz

concentrations, in the absence (black) or presence of 20 mM Rbz

(dark red). The averages (n~3) are shown in circles, while the fit is
shown in solid lines, error bars were too small to be visible on the graph
and hence were omitted.
doi:10.1371/journal.pone.0025182.g003
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Csz to D164 exerts an inhibitory effect, preventing other

productive cations from binding to the protein.

Ion selectivity has been a subject of considerable research [1–

12]. Pioneering studies by Mullins [28] and Bezanilla & Armstrong

[29] suggested that penetration of an ion through a membrane

requires that protein groups replace the water molecules forming

the ion solvation shell. The ion selectivity in Kz channels was first

structurally investigated by MacKinnon and co-workers [30] and

then computationally by Roux and co-workers (for review see [8]).

Apparently the KcsA channel does not select for Kz ions by

providing a binding site of an appropriate fixed cavity size; rather,

selectivity arises directly from the intrinsic local physical properties

of the ligands coordinating the cation at the binding site.

Additionally, the selectivity for conducting Ca2z ions in the

Ca2z pump is enabled by the ability of the protein to undergo

particular conformational changes [31,32]. In the presence of

Ca2z, the selectivity filter sites in the Ca2z pump fit around Ca2z

ions and not other cations whereas the filter adopts a conductive

conformation and specific coordination.

Our results are compatible with all these studies and may

complement them. We agree with the suggestions of Mullins [28]

and Bezanilla & Armstrong [29] and add that a functional binding

of an ion to NhaA involves a retainment of its solvation shells. Our

study is in accord with the mechanism of selectivity at the KcsA

channel [8] and the Ca2z pump [31,32] as well since we claim

that the selectivity of NhaA is not determined simply by size.

Finally, it is tempting to speculate that other antiporters might

share the same selectivity mechanism. For example, two distinct

Figure 4. Snapshots of hydration state during the cation binding process. Detailed snapshots of the hydration layers of the various alkali
ions as a function of their penetration into the protein. For each of the five ions, three representative snapshots are presented, vertically separated by
4.5 Å.
doi:10.1371/journal.pone.0025182.g004

Figure 5. Schematic representation of the selectivity mecha-
nism of NhaA. Top: A productive ion (e.g. Naz, in yellow) is bound to
the protein and is capable of being transported. Bottom: A
counterproductive ion (e.g. Rbz, in purple) is bound, cannot be
transported and prevents substrate from binding.
doi:10.1371/journal.pone.0025182.g005
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orthologs of Naz/Hz seem to bind Rbz : Nha1p, the budding

yeast’s Naz/Hz antiporter, was found to have a low affinity to

Rbz [33]. Similarly, NHE, an ortholog of NhaA from rat

pancreas membranes, is inhibited by Rbz [34]. In conclusion, two

lines of analyses, in silico and in vitro converge at a consistent

picture: The binding site of NhaA is permissive and allows binding

of all alkali ions tested, and binding alone is insufficient to account

for selectivity.

Materials and Methods

Simulation system set up
The x-ray structure of the Escherichia coli’s NhaA, determined at

3.45 Å, was downloaded from the PDB (entry 1ZCD [16]). A pre-

equilibrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanola

mine (POPE) bilayer [35], which initially contained 340 lipids and

6729 molecules of SPC water [36], trimmed to 244 lipids and 4237

water molecules, and further equilibrated for 2 ns, was used for the

membrane in which the protein was embedded. The antiporter’s

rough axis was aligned perpendicular to the membrane plane and

all colliding lipid and water molecules, within 2 Å of the protein,

were manually removed (down to 153 lipids and 4032 water

molecules). The system’s total charge was neutralized by adding Kz

and Cl{ ions to a final concentration of 0.1 M, replacing randomly

distributed water molecules. The system was subjected to rigorous

energy minimization using the steepest descent algorithm and a

tolerance of 1000 kJ:mol{1:nm{1, followed by a minimization

using the conjugated gradient algorithm with a sequential

decreasing convergence from 100 to 10 kJ:mol{1:nm{1. Then,

an equilibration stage under positional restraints using a harmonic

force constant was conducted. The equilibration procedure began

with a force constant of k = 1000 kJ:mol{1:nm{2 for 100 ps, then a

force constant of k = 500 kJ:mol{1:nm{2 for 100 ps, and another

100 ps of an unrestrained MD run. This allowed the lipids and

water to pack more tightly around the protein, and enabled the

protein gradual relaxation in the membrane. After the positional

restraint equilibration, the system was submitted for unbiased MD

runs of up to 0.1 ms.

MD details
The simulations were conducted using the GROMACS

package [37,38], employing an extended version of the GRO-

MOS53a6 force field [39]. All simulations were conducted using

the LINCS algorithm [40] to constrain bond lengths and angles of

hydrogen atoms, allowing a time step of 2 fs. Simulations were run

using Berendsen temperature coupling at 310 K employing a

coupling constant of t = 0.1 ps. Pressure was kept constant at 1 bar

by applying semi-isotropic coupling with a coupling constant of

t = 1 ps, differentiating the z axis (the membrane normal). A cutoff

of 1.2 nm was used for van der Waals interactions, and long range

electrostatic interactions were computed using the PME method

[41].

Potential of mean force (PMF)
PMF calculations were done using the umbrella sampling

formalism [42]. After reaching equilibrium and observing that

water molecules entered the protein’s vestibules, a selected ion

(Liz, Naz, Kz, Rbz or Csz) was inserted within the putative

binding site of the protein by manually placing the ion to a non-

clashing proximity. The Lennard-Jones (LJ) parameters for Liz

were taken from [43] and those of Rbz and Csz were adopted

from OPLS and converted to the GROMOS53a6 force field.

The coordinate for the umbrella sampling windows, taken at

*1 Å intervals, was the z axis from the cytoplasmic vestibule of

the antiporter, to the cytoplasmic bulk, setting z~0 at the center

of the membrane. For each window the system was minimized to

allow the ion to move laterally in the xy plane prior to the 1 ns

production run. Unbiasing and integration were done using the

Weighted Histogram Analysis Method (WHAM) [24]. The energy

curves were vertically fitted so that they superimpose where the ion

is outside of the vestibule (set to zero energy on the profiles).

Radial Distribution Function
Radial Distribution Function, RDF, g(r), was calculated for the

investigated cations for each of the windows that were constructed

for the PMF analysis. This yielded *20 RDF curves for each ion

in relation to the water around it. All the curves for each ion were

plotted together to construct a 3D graph that describes how the

water density varies as a function of the distance from the tested

ion and of the location of the tested ion along the z axis as well.

Visualization and analysis
The simulations were visualized with the Visual Molecular

Dynamics (VMD) program [44]. The analyses were conducted

using in-house VMD Tcl scripts, in-house purpose written perl

scripts, and the GROMACS analysis package tools.

Bacterial strains and plasmids
The Escherichia coli strain used for growth and expression was

KNabc (TG1 derivative, DnhaA DnhaB DchaA [45]) which is

strongly inhibited by NaCl and LiCl. All sub-cloning were done

using a pBR322-derived plasmid regulated under NhaR [46] (a

kind gift from Prof. E. Padan, The Hebrew University of

Jerusalem, Israel) containing the NhaA gene or no gene for

control. Plasmid amplification was done in DH5a cells. Growth

media was Lysogeny Broth (LB) [47], unless otherwise stated.

Antibiotics concentration was 100 mg/ml ampicillin.

Vesicles and fluorescence quenching
Everted membranes of Escherichia coli were produced using the

technique introduced by Rosen and Tsuchiya [48] with the

following steps: lysis buffer used contained 21% sucrose, 15 mM

Tris/HCl buffer at pH 7.5 and 150 mM choline-chloride.

Bacteria were grown overnight in LB medium, washed three

times in lysis buffer, suspended in 5 ml/gr and broken once in a

French press at 900 psi (valve pressure). Broken bacteria solution

was centrifuged at *3000 g for 20 minutes following by

centrifugation of the supernatant at *340,000 g for 20 minutes.

The final pellet, containing the vesicles, was resuspended in lysis

buffer with 1 ml/gr of original dry bacteria, and frozen in liquid

nitrogen.

NhaA activity was measured by the quinacrine fluorescence

quenching method [26,27], using lysis buffer and 2–5 mM of

Acridine Orange (N,N,N9,N9-Tetramethylacridine-3,6-diamine).

Succinic acid (250 mM) or D-lactate (0.8 mM) were used to

energize the vesicles. 100% quenching was defined as the

difference in fluorescence between prior to addition of a reductant

and after a steady state was achieved. NhaA activation level was

defined as the fraction of dequenching at steady state after adding

Naz or Liz, from those 100%. Where potential inhibitors were

added (Kz, Rbz or Csz), addition of 20 mM (unless otherwise

stated) inhibitor was made before starting the fluorescence reading.

Otherwise, the same concentration of choline-chloride was added.

Fluorescence was excited at 366 nm and emission was read at

531 nm using a FluoroMax-3 spectrofluorometer (HORIBA Jobin

Yvon).
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Kinetic analysis was done using fluorescence quenching results

as presented above. Activations under different ion concentrations

were plotted together using a Michaelis-Menten simple enzyme

kinetic model [49]. Regression was performed using the nonlinear

least sum of squares technique. Statistical data were obtained using

the bootstrapping method on the entire dataset, consisting of at

least 3 repeats for each data point. The bootstrapping process was

done using over 1000 cycles and its convergence was evaluated

using standard statistical procedures.

Supporting Information

Figure S1 The simulation system presenting the struc-
ture of the Nazz/Hzz antiporter embedded in a lipid
bilayer. The protein is shown in a cartoon representation and the

12 TMSs are labeled in Roman numerals. Some lipids were

omitted for visual clarity.

(TIFF)

Figure S2 Protein stability during the simulations. a.

Backbone RMSD analysis relative to the x-ray structure as a

function of the simulation time. b. Secondary structure content of

the protein relative to the initial structure during the course of the

simulations. The total secondary structure is in black while the

helical content is in gray.

(TIFF)

Figure S3 Hydration profiles during cation binding.
Water radial distribution, g(r), of different ions (Liz, Naz, Kz,

Rbz and Csz) as a function of the distance from the tested ion

and of the location of the tested ion along the z axis (the

membrane normal) as well. The first solvation shell of each ion is

located at the right side of each panel and is followed by the

second solvation shell that is drawn to its left. The front slice is

closest to the ion binding site, while the depth represents the ion

being further out into the cytoplasmic bulk. The color ranges from

blue to red and represents low to high g(r), respectively.

(TIFF)
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