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Abstract

Aebp2 is a potential targeting protein for the mammalian Polycomb Repression Complex 2 (PRC2). We generated a mutant
mouse line disrupting the transcription of Aebp2 to investigate its in vivo roles. Aebp2-mutant homozygotes were
embryonic lethal while heterozygotes survived to adulthood with fertility. In developing mouse embryos, Aebp2 is
expressed mainly within cells of neural crest origin. In addition, many heterozygotes display a set of phenotypes, enlarged
colon and hypopigmentation, similar to those observed in human patients with Hirschsprung’s disease and Waardenburg
syndrome. These phenotypes are usually caused by the absence of the neural crest-derived ganglia in hindguts and
melanocytes. ChIP analyses demonstrated that the majority of the genes involved in the migration and development
process of neural crest cells are downstream target genes of AEBP2 and PRC2. Furthermore, expression analyses confirmed
that some of these genes are indeed affected in the Aebp2 heterozygotes. Taken together, these results suggest that Aebp2
may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism.
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Introduction

Aebp2 is an evolutionarily well conserved Gli-type zinc finger

gene that is found in species ranging from flying insects to humans

[1]. This gene was initially identified due to its binding capability

to the promoter of the adipocyte P2 gene, hence named Adipocyte

Enhancer Binding Protein 2 (Aebp2) [2]. Since then, Aebp2 has

been increasingly recognized as a component of the mammalian

Polycomb Repression Complex 2 (PRC2) due to its frequent co-

purification with the other components of PRC2 [3–7]. According

to recent studies, AEBP2 is indeed a DNA-binding protein with its

consensus DNA-binding motif being CTT(N)15–23cagGCC. Also,

the majority of its genome-wide target sites overlap very well with

the known target loci of PRC2, suggesting AEBP2 as a targeting

protein for the mammalian PRC2 [1]. Recent studies also provide

several mechanisms for PRC2 targeting. Jarid2 is another gene

with potential DNA-binding activity although its binding motifs

are very degenerate [3–7]. Long non-coding RNAs are also shown

to be involved in recruiting PRC2 to a subset of genomic loci.

Interestingly, many of these target genes turn out to be cancer-

related genes [8]. These studies suggest the presence of many

independent targeting mechanisms for PRC2, consistent with the

fact that PRC2 likely plays diverse roles in various cell types and

tissues [9,10].

The in vivo functions of Aebp2 are currently unknown, but are

likely involved in cell migration based on the following obser-

vations. First, jing, a Drosophila homolog of Aebp2, was identified as a

gene controlling the border cell migration within eggs [11].

Second, the expression of mouse Aebp2 is mainly detected within

cells of neural crest origin (this study), which are notable for their

migratory capability during vertebrate development. Thus, the in

vivo roles of Aebp2 are most likely associated with the migration and

development of neural crest cells.

The neural crest cell (NCC) is a transient, multipotent cell

population that gives rise to many different cell types for vertebrate

organs, including those in the enteric nervous system and

endocrine system, facial cartilage and bone, and melanocytes.

One unique feature associated with NCC is its migration

capability from the neural crest to various locations in the

developing vertebrate [12,13]. Several signaling pathways are

involved in this migration process, including RET and EDNRB

pathways. RET encodes a receptor tyrosine kinase that recognizes

GDNF (Glial cell line-Derived Neurotrophic Factor) whereas

EDNRB (Endothelin Receptor B) encodes a G protein-coupled

receptor that recognizes EDN3 (Endothelin 3). Mutations in these

two pathways quite often manifest as human genetic disorders,

including Hirschsprung’s disease (HSCR) and Waardenburg

syndrome (WS). The disease phenotype of HSCR is obstruction

of the gastrointestinal tract, resulting in a pathologically enlarged

colon, or ‘megacolon.’ This is caused by the absence of NCC-

derived ganglia and subsequent aperistalsis in the colon [14–16].

More than half of familial and sporadic cases have been shown to

be linked to the RET locus although a small fraction of cases are

also linked to the EDNRB pathway. On the other hand, the core

disease phenotypes of WS are sensorineuronal hearing loss and

pigmentary disturbance, which are usually caused by the absence

of NCC-derived melanocytes. WS can be further divided into four

subgroups based on the presence of additional disease traits: WS

Type 1 through 4 [17–19]. For example, WS Type 4 (Waarden-

burg-Shah syndrome) exhibits a similar megacolon phenotype as

seen in HSCR in addition to the two WS core traits. WS Type 4 is

often caused by mutational defects in several genes in the EDNRB
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pathway, including EDNRB, EDN3, and SOX10 [17–19]. Similar-

ly, WS Type 1 through 3 are also linked to the genes encoding

transcription factors with significant roles in the migration and

development of NCC, such as PAX3 for WS Type 1and 3, and

MITF and SNAI2 for WS Type 2.

In this study, the in vivo roles of Aebp2 have been investigated

using a mutant mouse line disrupting its transcription. Aebp2 is

essential for early mouse development based on the lethality

observed from Aebp2-mutant homozygotes. During embryogen-

esis, Aebp2 is expressed mainly in cells of neural crest origin.

Consistently, the heterozygotes display a set of phenotypes that are

usually caused by defects in the migration of NCC, suggesting

critical roles for Aebp2 in the migration and development of NCC.

The results supporting this conclusion have been presented and

discussed in this manuscript.

Results

Generation of a mutant mouse line targeting Aebp2
To characterize the in vivo functions of Aebp2, we generated a

mutant mouse line with one gene trap ES clone (BC0681; http://

www.sanger.ac.uk/PostGenomics/genetrap/). After we estab-

lished this mutant line, we first characterized the insertion position

of the gene trap vector (b-Geo). As shown in Fig. 1A, the b-Geo

vector has inserted into the 1st intron of Aebp2. We identified the

59- and 39-side junction regions between the b-Geo vector and the

surrounding genomic regions, which subsequently allowed us to

develop a set of three primers that could be used for genotyping

the embryos derived from the breeding of this mutant line

(Fig. 1B). We also confirmed that the gene trap vector inserted

into only the Aebp2 gene locus with a series of southern blot

experiments (Fig. 1C). To test the truncation of Aebp2

transcription by the b-Geo vector, we performed qRT-PCR

assays using total RNA isolated from the brains of one-day-old

neonates [wild-type (Aebp2+/+) and heterozygotes (Aebp2+/b-Geo)]

(Fig. 1D). According to separate qRT-PCR measuring the

expression levels of two alternative forms, the expression levels

of Aebp2 in the heterozygote were much lower (about 30%) than

those detected in the wild-type littermate, confirming the proper

truncation of Aebp2 expression by the gene trap vector (b-Geo).

We also confirmed this through western blotting (Fig. 1E).

Breeding experiments of the Aebp2 mutant line
We performed two series of breeding experiments to test

potential Aebp2 roles for the normal development and survival of

the mouse. First, we performed the following three breeding

experiments: male or female heterozygotes with their littermates

and an intercrossing between two heterozygotes (Table 1). The

results revealed slight reduction in the litter size for both breeding

although statistically inconclusive (p value being around 0.2): 8 for

both F(+/2)6M(+/+) and F(+/+)6M(+/2) vs. 9 for the control

breeding F(+/+)6M(+/+). The ratios between the heterozygote

and wild type in both breeding were very close to the expected

mendelian raio (1:1). In contrast, the intercrossing between two

heterozygotes derived a much smaller litter size (6) than that of the

control breeding (9) (p value being 0.0022). Also, none of the

homozygotes for the Aebp2-mutant allele were found among the

offspring derived from 19 litters, confirming the embryonic

lethality associated with the Aebp2 locus. We also performed

another series of intercrossing breeding experiments with timed

mating, which allowed us to harvest embryos with two different

stages: 10.5 and 14.5 dpc, but we did not obtain any homozygotes

among the harvested embryos, suggesting that the lethality likely

occurs at least before the organogenesis stage (Table 2). In sum,

these breeding experiments confirm an essential role for Aebp2

during early mouse development.

Spatial and temporal expression patterns of mouse
Aebp2

Since the Aebp2 locus in the mutant line has been targeted by the

promoterless gene trap vector (b-Geo), we took advantage of this

b-Geo reporter system for analyzing the temporal and spatial

expression patterns of mouse Aebp2. First, we performed a series of

b-Gal staining with whole-mount and cryo-sectioned embryos that

had been harvested at various developmental stages (Fig. 2). In

the sectioned 6.5-dpc embryos, the Aebp2 expression was detected

at the highest levels in the embryonic ectoderm (Ect) and primitive

streak (PS), and at moderate levels in chorion (Ch) and allantois

(Al) (Fig. 2A). In the whole-mount embryos with 9.5, 13.5, and

14.5 dpc, the Aebp2 expression was detected in the midbrain

section, the branchial arches and along the somites (Fig. 2A). This

was further confirmed through detecting high levels of Aebp2

expression in neural tubes and neural crest cells in 9.5-dpc

embryos (Fig. 2B). In the sagittal-sectioned 15.5-dpc embryos, the

Aebp2 expression was also detected at relatively high levels in

tissues derived from neural crest cells, including dorsal root

ganglia, endocrine organs, facial cartilage and bone, and the

surface of intestine, heart, and lung (Fig. 2C–E). We also

performed RNA in situ hybridization to confirm independently the

initial observation (Figure S2), showing no major difference

between Aebp2+/b-Geo and wild-type embryos. This further

confirms that the observed expression patterns reflect the normal

expression patterns of Aebp2, but not those of the Aebp2+/b-Geo

mice. Second, we also surveyed the sectioned tissues derived from

2-month-old adult mice of both genders. The most obvious

expression sites include brain and testes (data not shown). These

results are consistent with those from previous studies, revealing

high levels of expression in early embryonic stages and adult brains

[1,2]. Overall, it is intriguing that Aebp2 expression is the most

obvious in all the tissues derived from the neural crest cell,

suggesting significant functional roles for Aebp2 in the development

of this cell lineage.

Visible phenotypes of the Aebp2+/b-Geo mice
While breeding the Aebp2 mutant line, we have observed the

following phenotypes from the Aebp2+/b-Geo mice. First, about

one quarter of the Aebp2+/b-Geo mice tend to show a pot-shaped

belly, and seem to have difficulty in discharging feces. Further-

more, when we examined the internal organs of these mice, some

of these mice displayed enlarged, green-colored colons (megaco-

lon, Fig. 3A). This megacolon phenotype is caused by the absence

of neural crest-derived ganglia and subsequent aperistalsis in the

colon [14–16]. Thus, the intestines harvested from the Aebp2

heterozygotes were analyzed using the acetylcholine esterase

staining method [20,21]. Out of the 28 Aebp2 heterozygotes

examined, 8 mice showed a 50–70% reduced density of ganglion

cells in the section between the anus and cecum as compared to

the wild-type littermates (Fig. 3A).

Second, although we maintained this mutant strain in the 129/

B6-mixed background with the black coat color (a/a), we observed

80% of the Aebp2+/b-Geo mice with white spotting at the tail tip

(Fig. 3B). The length of the white spot area varied among the

individual mice of the same litter ranging from 0.2 to 1.5 cm, but

the lengths of the white area in the littermates from the

intercrossing between the Aebp2+/b-Geo mice were longer than

those from the crossing between the wild type and heterozygotes.

About 60% of the Aebp2 heterozygotes even showed white toes

at the hind limbs (Fig. 3C). Third, 70% of the Aebp2+/b-Geo
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mice did not have a brisk acoustic startle response to clapping

sounds, suggesting potential hearing defects, although this needs

to be further substantiated through more physiologic and

pathologic tests. Overall, the three phenotypes observed from

the Aebp2+/b-Geo mice are similar to those observed from

Waardenburg syndrome Type 4 (WS4): megacolon, hypopigmen-

tation, and auditory defect.

In vivo binding of AEBP2 and PRC2 to the disease loci of
HSCR and WS

The HSCR and WS phenotypes observed in the Aebp2 mutant

are frequently associated with mutations on a set of about 10

susceptibility genes that are involved in the RET and EDNRB

signaling pathways [12,13]. Since AEBP2 is a DNA-binding

protein with NCC-specific expression, Aebp2 may control these

susceptibility loci as a DNA-binding regulator. Therefore, the in

vivo binding of AEBP2 to the disease loci of HSCR and WS was

tested using Chromatin ImmunoPrecipitation (ChIP) experiments

(Fig. 4). For this series of ChIP experiments, we prepared one set

of the cross-linked chromatin isolated from the 14.5-dpc embryos

(Fig. 4). We selected the promoter region of each of these disease

loci for this survey. The majority of these loci except Zfhx1 were

indeed bound by AEBP2 based on the detection of enrichment of

the immunoprecipitated DNA by polyclonal AEBP2 antibodies.

Figure 1. Generation of an Aebp2-knockin allele. (A) The gene trap vector has inserted into the first intron of Aebp2 gene (empty box). This
gene trap vector contains two FRT sites (empty triangle), two loxP sites (black triangle, lox71 and loxP), one splicing acceptor site (vertical line), the b-
Geo fusion protein cassette, and a polyadenylation signal. Two alternative START codons are indicated with arrow on top. (B) Genotyping with three
primers (F1, R1, R2). PCR amplification with primers F1 and R1 derives a 570-bp product from the wild-type allele (+), whereas PCR with F1 and R2
produces a 304-bp product from the knockin allele (2). (C) Southern blot analysis using genomic DNA (10 mg) from the wild-type (Aebp2+/+) and
heterozygote (Aebp2+/b-Geo) after restriction enzyme digestion with EcoRV and SacI. The wild-type and knockin (asterisk) alleles were detected as
expected. (D) qRT-PCR analyses with the total RNA from the neonatal brains of the wild-type and heterozygotes confirm the proper truncation of the
Aebp2 transcripts by the gene trap vector. (E) Western blotting using the protein extracts from neonatal brains confirmed reduced levels of the
AEBP2 protein in the Aebp2+/b-Geo mice relative to the wild-type littermates. The original image for this western result is available as Figure S1.
doi:10.1371/journal.pone.0025174.g001
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Since AEBP2 is often co-purified with the mammalian PRC2, we

also tested the binding of EZH2 and the methylation on Lys27 of

Histone 3 (H3K27me3) to these loci, which represent a key

component and a functional outcome of PRC2, respectively.

Similar to AEBP2, the majority of the loci except Zfhx1 also

showed the enrichment of the immunoprecipitated DNA by the

EZH2 and H3K27me3 antibodies. Overall, the in vivo binding of

AEBP2 and PRC2 to the disease loci of HSCR and WS suggests

that AEBP2 may regulate the disease loci through the PRC2-

mediated mechanism.

To follow up these initial observations, we performed another

series of similar ChIP experiments as described above, and

compared the levels of the binding of AEBP2, EZH2, and

H3K27me3 to these loci between the wild type and Aebp2+/b-Geo

mice (Fig. 5). In the majority of the tested loci, the enrichment

levels of the precipitated DNA by the AEBP2 antibody were lower

in the Aebp2+/b-Geo than in the wild-type embryos (Fig. 5A). This

is expected since the protein levels of AEBP2 should be lower in

the Aebp2+/b-Geo embryos than in the wild-type embryos. This

was also the case for EZH2: the enrichment levels on several loci

were similarly lower in the Aebp2+/b-Geo embryos, Snai2, Sox10,

Gdnf, and Pax3 (Fig. 5B). Interestingly, however, the methylation

levels of H3K27me3 on these loci were overall similar between the

two groups of embryos (Fig. 5C). Although we need to perform

more analyses, this might be related to the fact that our ChIP

analyses had used the entire body of embryos rather than only the

neural crest cells. We also performed another ChIP analyses using

the antibody against RING1B, which is a core component of

Polycomb Represssion Complex 1 [9,10] (Fig. 5D). The majority

of these loci are also bound by RING1B, suggesting potential

involvement of the PRC1 in the regulation of these disease loci.

Nevertheless, we did not also see any major difference in the

enrichment levels by RING1B between the two groups of

embryos, which is similar to those observed from H3K27me3.

In summary, the similar patterns observed between AEBP2 and

EZH2-ChIP further support the initial prediction that Aebp2 likely

controls the genes associated with the migration and development

of NCC through the PRC2-mediated mechanism.

Expression level changes in the disease genes of NCC in
the Aebp2+/b-Geo mice

Given the observations described above, it is also likely that the

observed phenotypes in the Aebp2+/b-Geo mice may be an

outcome of de-regulation of some of the disease loci. To test this

prediction, we measured and compared the expression levels of the

disease genes between the Aebp2+/b-Geo mice and wild-type

littermates (Fig. 6). Since the gene dosage (or expression levels) of

these loci are critical during embryogenesis, this series of qRT-

PCR analyses mainly used the total RNA isolated from the two

groups of embryos with three different stages, 10.5, 14.5 and 17.5

(Fig. 6). We first calculated the expression level of each gene

relative to that of an internal control, b-actin, and later compared

these relative values derived from the Aebp2+/b-Geo mice and wild-

type littermates. As shown in Fig. 6, the expression levels of Aebp2

in the Aebp2+/b-Geo mice were 0.5 to 0.6-fold compared to those

from the wild-type littermates, confirming the disruption of the

Aebp2 transcription. In 10.5-dpc embryos, all of the analyzed

genes, with the exception of Mitf, showed relatively high levels of

expression based on their Ct values ranging from 21 through 29

(Ct value of b-actin being 19). Most genes were down-regulated in

the Aebp2+/b-Geo mice: the genes with the most significant changes

were Sox10 (0.5 fold) and Pax3 (0.5 fold). In contrast, Snai2 showed

up-regulation (2 fold), and this up-regulation appears to be very

significant based on its high levels of expression (Ct value 21.3). In

14.5-dpc embryos, the majority of the genes in the Aebp2+/b-Geo

mice were also down-regulated as seen in the 10.5-dpc embryos.

The most significant down-regulation was also observed in Sox10

(0.5 fold). However, the down-regulation observed in Pax3

becomes much milder in the 14.5-dpc embryos than in the 10.5-

dpc embryos. This is also true for the up-regulation of Snai2: 1.1

fold in the 14.5-dpc embryos compared to 2.0 fold in the 10.5-dpc

embryos. This trend was also detected in the 17.5-dpc embryos:

the majority of the genes displayed very marginal differences in

their expression levels between the Aebp2+/b-Geo mice and wild-

type littermates (data not shown). Overall, the expression analyses

revealed that the majority of the genes involved in the migration

and development of NCC are affected during the organogenesis

stage (E10.5 to14.5), and that the expression levels of one gene,

Sox10, is significantly and consistently changed in the Aebp2+/b-

Geo mice. This further suggests that the half dosage of Aebp2 is

likely responsible for the phenotypes of HSCR and WS through

de-regulation of some of the disease genes of NCC.

Table 1. Genotype distribution of the mice from the breeding of the Aebp2 knockin mice.

Genotype F(+/2)6M(+/2) F(+/+)6M(+/2) F(+/2)6M(+/+) F(+/+)6M(+/+)

+/+ 35 (30*) 58 (50) 43 (44) 72 (72)

+/2 84 (60) 42 (50) 44 (44) 0 (0)

2/2 0 (30) 0 (0) 0 (0) 0 (0)

No. of mice 119 100 87 72

Average litter size 6 8 8 9

P value (T-Test) 0.0022 0.2002 0.2550 #

*This indicates the expected number of F2 pups based on the Mendelian ratio.
#T-Test was perform against the cross between F(+/+)6M(+/+).
doi:10.1371/journal.pone.0025174.t001

Table 2. Genotype distribution of the embryos from the
breeding of F(+/2)6M(+/2).

Genotype 10.5 dpc 14.5 dpc Live birth

+/+ 4 8 30

+/2 18 12 73

2/2 0 0 0

Resorbed 0 2 0

Total No. 22 22 103

doi:10.1371/journal.pone.0025174.t002
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Discussion

In the current study, the in vivo roles of Aebp2 have been

investigated using a mutant mouse line disrupting its trans-

cription. Aebp2 is essential for early mouse development based

on the lethality observed from Aebp2-mutant homozygotes

(Aebp2b-Geo/b-Geo). Furthermore, the half dosage of Aebp2 appears

to be insufficient for the proper development of some neural crest

cells that the Aebp2 heterozygotes (Aebp2+/b-Geo or b-Geo/+) display

a set of phenotypes very similar to those from HSCR and WS. The

majority of the genes involved in the RET and EDNRB signaling

pathways appear to be downstream target genes of Aebp2 and

PRC2, and also changes in the expression levels of some of these

genes are likely accountable for the phenotypes observed in the

Aebp2+/b-Geo mice. These results suggest that Aebp2 may control

these genes through the PRC2-mediated epigenetic mechanism,

and also that epigenetic mechanisms are likely involved in the

pathogenesis of WS and HSCR.

Genetic breeding experiments revealed embryonic lethality in

the Aebp2-mutant homozygotes (Aebp2b-Geo/b-Geo) but survival of

the heterozygotes (Aebp2+/b-Geo or b-Geo/+) to adulthood with

fertility (Table 1). The embryonic lethality of the Aebp2

homozygotes is similar to that observed from the other

components of PRC2, such as Ezh2, Eed, and Suz12 [22–24].

The null mutants for these genes fail to form the three germ layers

after implantation, suggesting essential roles for these genes in the

lineage specification of the germ layers. Given the interactions

between Aebp2 and PRC2 [9,10], we predict that Aebp2 might also

play critical roles in establishing the three germ layers. The

evolutionary conservation of Aebp2 is also noteworthy: its

homologues are present in species ranging from flying insects to

humans [1]. Given this evolutionary conservation, Aebp2 is most

likely involved in the regulation of a large number of genes and

pathways, and thus its depletion should be detrimental for the

survival of the embryos. Overall, the embryonic lethality observed

from the Aebp2-null mutants suggests an essential role for this PcG

gene during early embryogenesis.

The expression patterns of Aebp2 are considered to be

ubiquitous, temporally and spatially, according to the results

derived from the previous studies [1,2]. However, one unique

observation from this study is the detection of very high levels of

Aebp2 expression in neural crest cells during embryogenesis

(Fig. 2). This unexpected observation appears to be somewhat

consistent with Aebp2’s functional connection with PRC2. The

migratory NCC is regarded as a multipotent stem cell since it gives

rise to so many different cell types in the major organs of adult

vertebrates [12,13,25]. Stem cells are characterized by two core

features, multipotency and self-renewal without differentiation,

and these features are usually maintained by epigenetic mecha-

nisms, especially by PRC2 [26–29]. Migratory NCC likely

employs PRC2 to maintain these properties during embryonic

development. Therefore, Aebp2 expression in NCC may be

Figure 2. Spatial and temporal expression patterns of Aebp2. (A) b-Gal staining of whole-mount embryos with different developmental
stages. In 6.5-dpc embryos, high levels of Aebp2 is detected in ectoderm (Ect) and primitive streak (PS), modest levels in chorion (Ch) and allantois (Al).
In 9.5-, 11.5-, 14.5-dpc embryos, Aebp2 expression is consistently detected in the midbrain section and also along the somites. Bars, 100 mm (E6.5)
and 1 mm (E9.5, 11.5, 15.5). (B) b-Gal staining of E 9 embryos: dorsal view showing high expression of Aebp2 in neural tubes (left) and a zoomed view
(center). A transverse section shows Aebp2 expression in neural tubes and also neural crest cells (right). (C) b-Gal staining of a sagittal-sectioned slide
from a 15.5-dpc embryo. DRG (Dorsal Root Ganglion), H (Heart), and L (Liver). (D) A different sagittal section of a 15.5-dpc embryo showing the
expression of Aebp2 in thymus and pituitary gland. (E) Zoom-in views of the Aebp2 expression in the thymus, DRG, intestine, and heart of a 15.5-dpc
embryo.
doi:10.1371/journal.pone.0025174.g002

Figure 3. Phenotypes of the Aebp2+/b-Geo mice. (A) Comparison of internal organs between the wild-type (WT) and Aebp2+/b-Geo mice (upper
panel). Some of the Aebp2+/b-Geo mice display an enlarged green-colored colon (Megacolon), which is easily detectible as compared to the normal-
size colon from the wild-type mice. Acetylcholinesterase staining further indicates that the Aebp2+/b-Geo mice have much less ganglion cells in the
intestinal section between the anus and cecum than the wild-type mice. The ganglion cells are shown as brown thin fibers on the surface of the
intestines (lower panel). Some of the Aebp2+/b-Geo mice also display white spotting at the tail tip (B) as well as the toes (C).
doi:10.1371/journal.pone.0025174.g003
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designed to provide these two properties to this stem cell

population. If this is the case, the other components of PRC2

should also be highly expressed in NCC, as is Aebp2. This will

require further study in the near future.

Although the homozygotes for the Aebp2-knockin allele are

lethal, the heterozygotes are viable and fertile, and display an

intriguing set of phenotypes, enlarged colon and hypopigmenta-

tion (Fig. 3). Since the Aebp2-knockin allele disrupts the

transcription of Aebp2, this mutation is regarded as a loss-of-

function-type mutation. The phenotypes generated by this Aebp2

mutation are also regarded as dominant traits based on their

detection in heterozygotes. Therefore, the dominance of these

phenotypes is likely an outcome of haploinsufficiency, meaning the

reduced dosage of Aebp2 is responsible for the observed

phenotypes. Similar situations also occur in human patients with

Hirschsprung’s disease (HSCR) and Waardenburg Syndrome

(WS). In most cases of these disorders, mutational defects are

found in the genes involved in the migration process of NCC,

RET and EDNRB signaling pathways [15,16]. The disease alleles

are also loss-of-function-type mutations, and inherited as autoso-

mal dominant traits. Therefore, haploinsufficiency is also the

primary mode for the dominant phenotypes by these disease

alleles. Overall, there are many similarities between the Aebp2-

knockin allele and the disease alleles of HSCR and WS. In

particular, the similar mode of the phenotype dominance,

haploinsufficiency, may indicate that the migration process of

NCC is very susceptible to changes in the gene dosage of the

participating loci. Thus, it is likely that the gene dosage of Aebp2 is

very critical for the proper migration and development of NCC.

As a DNA-binding protein, AEBP2 most likely exerts its in vivo

roles through its unknown downstream genes. As predicted, ChIP

experiments confirmed that AEBP2 indeed binds to the majority

of the genes involved in the development and migration of NCC

during embryogenesis (Fig. 4). The AEBP2 binding to these genes

also coincides with the binding of PRC2, suggesting potential

involvement of PRC2 in the development of NCC. Expression

analyses further confirmed changes in the expression levels of

some of these genes by the half dosage of Aebp2 (Fig. 6). In

particular, one gene (Sox10) is consistently down-regulated in the

Aebp2+/b-Geo mice. This is analogous to the reduced gene dosage

of SOX10 frequently linked to WS Type 4 in humans. Also, the

phenotypes observed in the Aebp2+/b-Geo mice are seen in human

patients with WS Type 4 [19]. It is possible that Aebp2 is

responsible for the observed phenotypes via Sox10. However, we

cannot rule out the possibility that the effects of the Aebp2

mutation might occur more globally and at much earlier stages

than described. If this is the case, the observed phenotypes should

not be accounted for by the mis-expression of a single gene. This is

evidenced by the observation that other genes involved in the

migration of NCC are also affected in the Aebp2+/b-Geo mice. It is

important to note that the predicted outcome by the half dosage of

Aebp2 is up-regulation of the majority of the NCC genes given the

fact that the PRC2 is a repressive complex. However, the majority

of NCC genes are down-regulated in the Aebp2+/b-Geo mice,

further suggesting that the effects of the Aebp2 mutation might

occur at much earlier stages and also more globally. At the same

time, it is prudent to note that our experiments have used whole

embryos rather than just NCCs (Fig. 6), and thus there are some

limitations in deriving meaningful conclusions regarding this issue

at the moment. Nevertheless, it will be very interesting to

determine if the changes in the Sox10 expression are primarily

responsible for the phenotypes observed in the Aebp2+/b-Geo mice.

HSCR and WS demonstrate incomplete penetrance mainly due

to their oligogenic nature and other non-genetic factors involved in

their pathogenesis [14–16,30]. Identification of Aebp2 as a

potential disease locus for these disorders is an intriguing

possibility since Aebp2 involvement in these diseases might be

through the PRC2-mediated epigenetic mechanism (Fig. 4). If

Aebp2 indeed exerts its roles through PRC2, it may require optimal

concentrations of the cellular enzymes and substrates necessary for

histone modification reactions. The outcome of these reactions

may vary depending on the nutritional status and environmental

conditions of developing embryos, resulting in different levels of

histone modification among individuals. This type of inter-

individual differences, also known as epigenetic variations, may

be a major factor contributing to phenotypic variations (e.g.

incomplete penetrance) [31,32]. Unfortunately, epigenetic varia-

tions have not been discernible by traditional genetic studies,

which rely on genetic variations. We predict that this is the case for

both HSCR and WS since the majority of the associated disease

genes are modified by PRC2 (Fig. 4). It is possible that different

levels of histone modifications on the disease alleles are

accountable for the phenotypic variations (incomplete penetrance)

observed for HSCR and WS. In sum, characterizing Aebp2 as an

epigenetic regulator may provide a new and exciting direction for

the study of HSCR, WS, and other related disorders.

Materials and Methods

Generation and breeding of the Aebp2 knockin mutant
mice

One gene trap clone, BC0681 (strain 129/OlaHsd) from

SIGTR (Sanger Institute Gene Trap Resource, http://www.

sanger.ac.uk/PostGenomics/genetrap/), was injected into mouse

blastocysts to generate chimeric mice. Injection of these cells into

C57BL/6 blastocysts was performed at The Darwin Transgenic

Mouse Core Facility (Baylor College of Medicine, Houston, TX,

USA). The male chimeric mice were bred with female C57BL/6

mice, and the following F1 offspring with agouti coat color was

further genotyped to confirm the germiline transmission of the

Figure 4. In vivo binding of AEBP2 and EZH2 and the
methylation level of H3K27me3 on the NCC-associated genes.
The cross-linked chromatin from 14.5-dpc embryos was precipitated
with the anti-AEBP2, EZH, and H3K27me3 antibodies (left, middle, right).
The PCR products from ChIP were presented in the following order:
Input, IgG (pre-immune serum), AEBP2, EZH2-AB, or H3K27me3.
The majority of the genes involved in the RET and EDNRB pathways,
except Zfhx1b, are bound by AEBP2 and EZH2, and also modified with
H3K27me3.
doi:10.1371/journal.pone.0025174.g004
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Aebp2-knockin allele. This initial genotyping was performed with

PCR using a primer set targeting the NeoR coding region of the

gene trap vector (pGT2lxr). All the experiments related to mice

were performed in accordance with National Institutes of Health

guidelines for care and use of animals, and also approved by the

Louisiana State University Institutional Animal Care and Use

Committee (IACUC), protocol #10-071.

Southern blot and genotyping by PCR
Genomic DNA was purified from the spleens of the wild-type

and Aebp2+/b-Geo mice with DNAzol (Invitrogen). Ten mg of these

genomic DNA was used for each of EcoRV and SacI digestion

reactions, separated on a 0.8% agarose gel, and finally transferred

onto Hybond nylon membranes (Amersham) by capillary blotting.

Membranes were hybridized with a 32P-labeled probe corre-

sponding the 1st intron region of Aebp2 (Fig. 1).

Mice were genotyped by PCR using the following three primers:

F1, 5-ACCAGGGTTGAAACAGAAGAACTCTG-3; R1, 5-

AGGTGCTGCACTCACACTCCCA-3; R2, 5-AACGGTAG-

GATCCCAAGGGCAGTA-3. The 570-bp product by F1 and

R1 primers is amplified from the endogenous allele of Aebp2, thus

representing the wild-type allele. In contrast, since the R2 primer

is derived from the gene trap vector, the 304-bp product by F1 and

R2 represents the Aebp2 knockin allele. PCR conditions were 33

cycles at 95uC for 30 seconds, 60uC for 30 seconds, and 72uC for

30 seconds. Also, the genders of neonatal mice and embryos were

determined by PCR using the primer set of the mouse Sry gene

under the same PCR conditions described above; mSry-F (5-

GTCCCGTGGTGAGAGGCACAAG-3) and mSry-R (5-GCA-

GCTCTACTCCAGTCTTGCC-3). To prepare genomic DNA

from clipped tails or ears, each tissue was incubated overnight at

55uC in the lysis buffer (0.1 M Tris-Cl, 5 mM EDTA, 0.2% SDS,

0.2 M NaCl, pH 8.0, 20 mg/ml Proteinase K). One ml of the lysed

extract was first diluted with 30 ml of TE, and one ml of the diluted

extract was finally used for each PCR amplification.

b-galactosidase staining
Pregnant dams with timed mating were sacrificed at various

stages during embryonic development. The embryos were fixed

overnight in fixing solution (0.2% paraformaldehyde, 0.1 M

PIPES buffer pH 6.9, 2 mM MgCl2, 5 mM EGTA). The fixed

embryos were then cryo-protected in the PBS buffer containing

30% sucrose and 2 mM MgCl2 at 4uC overnight, or until

the embryos sank to the bottom. These embryos were further

embedded in OCT and frozen at 280uC. The embedded embryos

were sectioned on a crytome (Leica CM1850) to 50 micron

thickness and placed onto poly-L-lysine coated slides. The sections

were further immobilized in the fixing solution for 10 minutes.

After rinsing in PBS for 10 minutes, they were placed in detergent

rinse solution for 10 minutes. The sections were then placed at

37uC overnight in the staining solution containing 1 mg/ml of

bromo-chloro-indolyl-galactopyranoside (X-gal). For better con-

Figure 5. Aebp2 mutation effects on the PRC2-mediated regulation of the NCC-associated genes. The levels of AEBP2 and EZH2-binding
to the NCC-associated genes were compared between the wild-type (blue) and Aebp2+/b-Geo (red) embryos with qPCR using the immunoprecipitated
DNA derived from 14.5-dpc embryos (A,B). The methylation levels of H3K27me3 was also compared between the two types of embryos (C). Potential
involvement of the PRC1 was also tested using RING1B antibody (D). The amount of each precipitated DNA is presented as a relative value (%) to that
of the input DNA (y-axis). The values derived from the wild-type and Aebp2+/b-Geo embryos are presented together per each gene (x-axis).
doi:10.1371/journal.pone.0025174.g005

Figure 6. Aebp2 mutation effects on the expression levels of the NCC-associated genes. Expression levels of the NCC-associated genes
were compared between the wild-type and Aebp2 heterozygote embryos with qRT-PCR using the total RNA isolated from 10.5 and 14.5-dpc embryos
(A,B). The fold change displayed on each gene indicates its relative expression level in the Aebp2+/b-Geo mice compared to that in the wild-type
embryos.
doi:10.1371/journal.pone.0025174.g006
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trast, the heart and thymus tissue sections were counterstained

with eosin Y [33].

For whole-mount staining, embryos were fixed in 4%

paraformaldehyde for 2 hours and stained overnight at 37uC in

the staining solution containing 1 mg/ml of X-gal. Tissue sections

and whole-mount embryos were visualized using a dissecting light

microscope (Leica MZ75). Images were captured with a digital

camera (Model #4.2 Color Mosaic, Diagnostic Instruments Inc.).

Acetylcholinesterase Staining
The intestines from one-month old mice were harvested and

fixed in 4% paraformaldhyde for 1 hour at 4uC. After incubation

in saturated sodium sulfate overnight at 4uC, the intestines were

further incubated for 4 hours in the staining buffer (0.2 mM

ethopropazine HCl, 4 mM acetylthiocholine iodide, 10 mM

glycine, 2 mM cupric sulfate, and 65 mM sodium acetate

pH 5.5). Lastly, the acetylcholinesterase activity was detected by

incubating the intestines in 1.25% sodium sulfide pH 6 for

1.5 minutes.

Chromatin ImmunoPrecipitation (ChIP) experiments
Chromatin immunoprecipitations were performed according to

the protocol provided by Upstate Biotechnology (Upstate Biotech.)

with some modification as described previously [34]. Briefly,

mouse embryos at various stages were harvested and homogenized

in 10 ml PBS. The samples were treated with formaldehyde to the

final concentration of 1% and incubated at 37uC for 10 minutes.

Treated samples were sheared by sonication and immunopreci-

piated with anti-AEBP2 (Cat. No. 11232-2-AP, ProteinTech

Group), EZH2 (Cat. No. ab3748, Abcam), RING1B (Cat.

No. ab3832, Abcam), and H3K27me3 (Cat. No. 07-449, Upstate

Biotech.) antibodies. Precipitated DNA and protein complexes

were reverse cross-linked and purified through phenol/chloroform

extraction. Purified DNA was used as template DNA for PCR

amplification. PCR reactions were carried out for 40 cycles using

standard PCR conditions. The resulting PCR products were run

on 1.6% agarose gels containing ethidium bromide. All ChIP

assays were performed independently at least three times. The

oligonucleotide sequences used for this study are available upon

request (or Material S1).

Quantitative reverse transcription PCR and data analysis
Total RNA was extracted from tissues using Trizol (Invitrogen).

Reverse transcription was performed using the M-MLV kit

(Invitrogen). Quantitative real time PCR was performed with

the iQ SYBR green supermix (Thermo Scientific) using the icycler

iQ multicolor real-time detection system (Bio-Rad). All qRT-

PCRs were carried out for 40 cycles under the standard PCR

conditions. We analyzed the results of qRT-PCR based on the

threshold (Ct) value. A D Ct was first calculated through

subtracting the average Ct value of a given target gene from the

average Ct value of an internal control (b-actin). Later, the D D Ct

was calculated through subtracting the D Ct value of the target

gene in the Aebp2 heterozygote from the D Ct value of the same

gene in the wild-type littermate. Fold differences were determined

by raising 2 to the D D Ct powers [35]. Information regarding

individual primer sequences and PCR conditions is available upon

request (or Material S1).

Supporting Information

Material S1 Sequence information for oligonucleotides
used for ChIP and RT-PCR analyses.

(DOC)

Figure S1 Western blot results of AEBP2 and Actin
between the wild-type and Aebp2+/b-geo. The images on left

were presented Fig. 1E, which were extracted from the original

images on right.

(TIF)

Figure S2 RNA in situ hybridizations were performed
using the two types of embryos. As shown above, we did not

see any major difference between these two groups. This confirms

that the half dosage of Aebp2 most likely has no effect on the

expression patterns of Aebp2 during embryogenesis. Such that, the

expression profiles observed through the b-Gal staining should

reflect the normal expression patterns of Aebp2. In situ hybridiza-

tion was performed as described by Zakin et al. (Zakin L et al. Dev

Biol. 2008 323:6–18.) with additional RNase A treatment after

hybridization reaction to reduce nonspecific background staining.

(TIF)
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