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Abstract

P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human
health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are
widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp’s transport and to
functionally characterize members of P-gp’s network, i.e., other transporters that transport P-gp substrates in hMDR1-
MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of
amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions,
apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm
method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The
statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and
standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required
additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better
fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP
transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP
hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3:1 stoichiometry between ATP hydrolysis and
P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the
hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the
cytosol, but not out of the apical membrane.
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Introduction

P-glycoprotein (P-gp) is a member of the ATP binding cassette

(ABC) family of proteins that has been extensively studied because

of its ability to render cells resistant to many chemotherapeutic

agents and for causing clinically important drug-drug interactions

[1], [2], [3], [4]. A molecular understanding of P-gp activity requires

both structural knowledge [5], [6], [7], [8] and functional

knowledge of transport kinetics in physiologically relevant systems

[9], [10], [11], [12], [13], [14]. Confluent cell monolayers are

widely used as models for human tissues in which P-gp is expressed

[14], [15], [16], [17], [18], [19]. Here, we use a confluent

monolayer of hMDR1-MDCKII cells to develop a functional

description of the P-gp associated multi-transporter network by

obtaining elementary rate constants that regulate the flow of several

P-gp substrates between apical and basolateral compartments.

Figure 1 shows the basic transport pathways across a confluent

cell monolayer. There is partitioning of substrates into the

membranes they face; passive permeability across the lipid

bilayers; facilitated transport across both the basolateral and

apical membranes; and both primary and secondary active

transport. P-gp’s primary active transport across the apical

membrane is modeled using Eq (1), the standard Michaelis-

Menten reaction

T0zCPC /��?{
k1

kr

{ TC �?
k2
{ T0zCA ð1Þ
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where T0 is the empty transporter, CPC is the concentration of

substrate in the inner apical membrane, T1 is the transporter

bound to substrate, and CA is the substrate after efflux into the

apical compartment. P-gp’s ATPase activity is not measured

within a confluent cell monolayer, but is required for efflux from

P-gp into the apical compartment [20], [21], [22]. However, we

have shown that P-gp efflux rates are the same at the beginning of

an experiment and 3 hr later, so the required ATP levels are being

maintained throughout the 4–6 hr experiment [23].

Typically, the kinetic analysis of transcellular transport uses some

form of Michaelis-Menten steady state equations [2], [10], [12],

[14], [16], [24], [25], [26]. While these equations can often fit the

efflux data for confluent cell monolayers, the fitted Vmax and KM

parameters are complex convolutions of the elementary rate

constants. We showed this using simulated transport kinetics from

our mass action model for the confluent cell monolayer. We

analyzed the model data using Michaelis-Menten steady state

equations [27]. The basic conclusion was that the value of the fitted

Michaelis constant KM to the simulated data was not correlated with

the standard value of KM = (k2+kr)/k1, from the elementary rate

constants used to create the simulations in the first place. Thus, two

experimentally fitted KM values that are close to one another

numerically could come from original (k2+kr)/k1 values that differ by

as much as 3 orders of magnitude. This is the consequence of the

convolution of all the kinetic parameters that drive P-gp transport

into just a single ‘‘KM’’, which has a small probability of predicting

the in vivo situation. We believe that the elementary rate constants

will extrapolate in vivo much more successfully.

The need to know the elementary rate constants extends to the

basic IC50 analysis of transport. For the confluent cell monolayer,

when the dissociation constant of the inhibitor to P-gp is denoted

KI, we have shown that the ratio of the IC50/KI increases with

increased P-gp surface density and probe-substrate elementary

efflux rate constants and decreases with the contributions of other

probe-substrate transporters [28]. The simple IC50 analysis is very

different with confluent cell monolayers, or tissue, than it is with

water soluble enzymes, upon which the standard IC50 equation

were tested [28].

Obviously, obtaining these elementary rate constants is a

difficult fitting problem requiring robust numerical approaches.

Our previous fittings were accomplished using a hierarchical

approach, with several fitting steps being manual [23], [29], [30].

It’s limitations were that it could analyze only one drug

concentration at a time per computer processor, the collation of

the consensus rate constants had to be done manually, yielding

broad ranges of ‘‘equivalent best fits’’ which changed as new

datasets were examined and, worse, about a third of the datasets

failed to yield convergent answers with the algorithm for no

apparent reasons. These were serious limitations.

To overcome these problems, we have developed two major

computational refinements: 1) a new fitting program that

determines the elementary rate constants simultaneously from all

relevant data sets, which can run serially or in parallel; and 2) the

use of a global optimization package based upon the Particle

Swarm algorithm [31], which proved to be far faster and more

accurate. The combination of these two refinements provides

robustness, i.e. all the applicable data can be fitted simultaneously.

A comparison of the two fitting algorithms showed that the

average coefficient of variation per fitted data set, ,CV/dataset.

is about 35% smaller using the Particle Swarm algorithm and fits

were completed about 20-fold faster.

The fitting of all data has led to significant changes from

previous estimates for kinetic parameters and P-gp efflux active

surface density. The fitted values of the kinetic parameters still

make sense with respect to the hypothesis that the primary

selective pressure on P-gp to respond to all of xenobiotics, many of

which it is encountering for the first time. The older algorithm

supported the same hypothesis [23].

Materials and Methods

Experimental
P-gp substrates, inhibitors, cell line and culture conditions have

previously been described [23], [29], [30]. Briefly, Madin-Darby

Canine Kidney cell line overexpressing human MDR1 (MDCKII-

hMDR1) was purchased from the Netherlands Cancer Institute

(NKI, Amsterdam, Netherlands). Cells were split twice a week and

maintained in culture media (DMEM supplemented with 10%

Fetal Bovine Serum, 50 units/ml penicillin and 50 mg/ml

streptomycin). Cells were kept at 37uC in 5% CO2.

P-gp mediated transport was measured in 12-well transwell

Costar plates fitted with polycarbonate membrane inserts. Cells

were seeded at a density of 175,000–200,000 cells per insert and

grown for four days in culture media. Cells were given fresh media

one day after seeding. Prior to the experiment, culture media was

removed and cells were preincubated for 30 minutes with either

transport medium alone (see above) or transport medium

supplemented with 2 mM GF120918 to inhibit P-gp. Transport

of a range of concentrations of amprenavir, loperamide, quinidine

and digoxin across the confluent monolayer of cells was measured

in both directions, i.e. apical to basolateral (A.B) and basolateral

to apical (B.A) in the presence and absence of GF120918. For

incubations in the presence of GF120918, the inhibitor was added

to both chambers. 0.5 mCi/ml of 3H-amprenavir, 3H-quinidine,
3H-loperamide, or 3H-digoxin was added to each respective drug

concentration to allow quantitation of transport from donor to

receiver chambers by liquid scintillation counting. In addition,

0.25 mCi/ml 14C-mannitol or 100 mM Lucifer yellow was added

to monitor cell monolayer integrity. At the indicated time points,

Figure 1. Model of the Confluent Monolayer of Polarized Cells.
Model of a confluent cell monolayer, with the apical membrane on top
and the basolateral membrane below, where it binds to the
polycarbonate insert. P-gp expressed on the apical membrane
transports substrate from the inner apical membrane monolayer into
the apical chamber. The concentration of substrate in the apical and
basolateral chambers, CA and CB, are measured, while the concentration
of substrate in the inner plasma membrane, CPC, and the cytosol, CC, are
predicted as part of the mass action modeling and data fitting process.
Some compounds use other transporters expressed by the MDCKII-
hMDR1 confluent cell monolayer. Passive permeability occurs in both
directions.
doi:10.1371/journal.pone.0025086.g001
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25 mL samples were taken from both donor and receiver

chambers, mixed with 10 ml of Ultima Gold scintillation cocktail

and counted using a Hewlett Packard Liquid Scintillation Counter

or using the Perkin Elmer TopCount [23], [29], [30]. While the

data for amprenavir, quinidine and loperamide were obtained in a

single 4–6 hour experiment, a step-wise development of the

digoxin data was used for the Particle Swarm fitting algorithm to

determine the kinetic parameters. This has been explained in the

supporting material (Text S1 and Figures S1, S2, S3 and S4).

Fitting of data sets using particle swarm
We adapted the particle swarm program [31] to fit the

elementary rate parameters for our data sets. The program is

written in MATLAB (Natick, MA), using ODE23s numerical

integrator, since other numerical integrators deviate at the long

time points. The ‘‘goodness of fit’’ to a particular drug data set was

quantified by the coefficient of variation, ,CV/dataset., defined

as the standard deviation between the data and the simulated fit

divided by the initial drug concentration. This normalizes the

comparisons of fits over different initial drug concentrations. The

fit for a particular drug would be quantified by the average of all

CV/dataset for that drug. The fittings and most simulations were

performed on a 24-Microway processor cluster at the Department

of Scientific Computing and Mathematical Modeling, GSK,

Upper Merion, PA. Drug equilibrium partition coefficients were

obtained previously [23].

Briefly, the program starts with a user assigned number of

particles that are randomly deployed over the entire multi-

dimensional parameter space, within user assigned upper and

lower bounds, unless otherwise noted. The particles are allowed to

randomly explore the entire parameter space. Each particle

reports its coordinates and CV to the manager processor, which

determines the particle with the lowest CV and then randomly

reassigns the particles to new positions, with a small bias toward to

coordinates of the current minimum CV. This dual particle and

swarm memory is used to not only stochastically explore the

parameter space, but to converge to the global minimum. This

particular version of the many implementations of particle swarm

has the advantage that it includes an additional step of local

polling of the objective function, which allows the particle to be

moved out of a local minimum. The particle swarm approach

searches all the dimensions simultaneously, so there are no implicit

biases in the search for the global minimum. The process stops

when either all of the particles have converged to the same global

minimum or when the number of function evaluations exceeds a

pre-assigned maximum.

Results

We start by showing the outcome of one fitting, out of a total of

72, in order to explain the amount and quality of the data being

fitted and how the fitting algorithm evolved. Fig. 2 shows the fit for

100 mM amprenavir. The amprenavir concentrations used were

larger than those used for the other drugs because it has the

weakest binding constant to P-gp and the fastest efflux rate

constant from P-gp that we have measured to date [32]. So

relatively large concentrations are needed to reach saturating

levels, i.e. curvature in the transport curve within 3 hrs of

transport. This curvature shows that the system is reaching steady-

state, where the P-gp efllux out of the cells into the apical chamber

equals the passive permeability and facilitated transport into the

cell from the apical chamber.

Each data set has 4 curves to be simultaneously fitted. There is

the time course for the donor and receiver chambers for B.A

transport: B:B.A (the probe-substrate concentration in the

basolateral chamber when the basolateral chamber is the donor)

and A:B.A (the probe-substrate concentration in the apical

chamber when the basolateral chamber is the donor), i.e. the

amprenavir concentration in the donor chamber and in the

receiver chamber, respectively. There is also the time course for

the donor and receiver chambers for A.B transport: A:A.B (the

probe-substrate concentration in the apical chamber when the

apical chamber is the donor) and B:A.B (the probe-substrate

concentration remaining in the basolateral chamber when the

apical chamber is the donor), respectively. The 6 min time point

establishes a measured initial concentration in both compartments.

All data sets have 9 time points ending at 4 or 6 hours,

depending upon how long it took to achieve adequate curvature in

the data. The error bars are the standard deviation from triplicate

wells. Thus, the average of triplicates yields 36 data points within

each dataset. The solid line shows the fit using the fitted kinetic

parameters shown below in Table 1. All of the amprenavir data

have been fitted with just two drug specific numbers: the

dissociation rate constant from P-gp back to the membrane, kr,

and the efflux rate constant from P-gp into the apical chamber, k2.

The drug independent numbers for the fitted values of the P-gp

efflux active surface density, T(0), the association rate constant

from the membrane to P-gp, k1, were simultaneously fitted using

all drug datasets, as shown below.

Fitting the kinetic parameters by Particle Swarm
We had a large number of drug data sets that had to be fitted

simultaneously. For each drug, the number of data sets and drug

Figure 2. Amprenavir transport over 6 hours across the
MDCKII-hMDR1 cell monolayer. Amprenavir transport A.B and
B.A over 6 hours across the MDCKII-hMDR1 confluent cell monolayer
with 100 mM on the donor side initially. The symbols show the data
points with error bars showing the standard deviation of triplicate
measurements. A:B.A denotes the substrate concentration in the
apical chamber when the basolateral chamber is the donor, while
B:B.A denotes the substrate concentration remaining in the donor
basolateral chamber. The A:B.A transport is high because P-gp actively
pumps drug into the receiver apical chamber. The B:A.B denotes the
substrate concentration in the basolateral chamber when the apical
chamber is the donor, while A:A.B denotes the substrate concentra-
tion remaining in the donor apical chamber. The B:A.B transport is low
because P-gp actively pumps drug back into the donor apical chamber.
The lines show the best fits for amprenavir transport assuming there are
no other transporters except P-gp.
doi:10.1371/journal.pone.0025086.g002
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concentrations varied. For the data in Tran et al. [23] there was:

amprenavir with 5 datasets and concentrations varying from 50–

150 mM; quinidine with 6 datasets and concentrations varying from

1–10 mM; and loperamide with 8 datasets and concentrations

varying from 0.1–1 mM. This yields 19 datasets. For the data in

Acharya et al. [29], [30] there were: amprenavir with 14 datasets

and concentrations varying from 20–100 mM; quinidine with 10

datasets and concentrations varying from 0.1–10 mM; loperamide

with 25 datasets and concentrations varying from 0.01–30 mM; and

digoxin with 4 datasets and concentrations varying from 10–50 mM.

This yields 53 datasets. All together there were 72 datasets, each

with 36 data points over time to be fitted, i.e. 2592 total data points.

The point is that there are far more data points to be fitted

simultaneously than the 13 parameters we eventually fit here.

For all drugs, the highest concentrations yielded nearly saturated

P-gp binding, so that P-gp mediated transport was a small

contribution to the net passive flux. The smallest concentrations

yielded fairly linear curves due to sparse P-gp binding. Overall, the

entire dynamic range of transport for each drug was covered,

allowing each of the rate constants to be measured. In other words,

there was no single step that was rate-limiting at all drug

concentrations. This is why all rate constants could be fitted and

why the Michaelis-Menten steady-state equations do not yield KM

values correlated with the elementary rate constants [27].

Fitting the drug independent values: T(0) and k1

Previously we found that the fitted total P-gp surface density,

T(0), was drug independent [23]. Since each dataset was fitted

separately in the old algorithm, a T(0) was fitted for each dataset

and we found that they clustered together. That was a benchmark

for our fitting approach, since there is only one species of P-gp. By

the old approach we also found that the association rate constant,

k1, was drug independent [23], which made sense if the entry to

the P-gp binding site is large compared to the molecular sizes of

the drugs we studied [8].

Our first step here was to determine whether the Particle

Swarm algorithm would show that T(0) and k1 could be fitted to

consensus values for all of the drug data we had. We assumed that

all drugs had a kr and k2 for P-gp, Eq. 1. Amprenavir and quinidine

required no other transporters. We verified that loperamide

required a basolateral transporter and digoxin required both a

basolateral transporter and an apical transporter, see supporting

material (Text S1 and Table S1) [29].

Preliminary separate fits of the data of Tran et al. [23] and

Acharya et al. [29], [30] showed no significant difference in the

fitted parameters. So, all the datasets were simultaneously fitted for

T(0) and k1. The drug specific kinetic parameters were fitted using

just the specific drug datasets, e.g. the digoxin specific kinetic

parameters were fitted using only the digoxin datasets.

To estimate the uncertainty of the fits for T(0) and k1, we used a

Monte Carlo approach by running 24 independent replicate

fittings. This would yield 24 independent {T(0), k1} pairs of

optimal fits, each of which had an associated vector of the other

drug-specific rate constants. If the fitting surface were a smooth

‘‘funnel’’, we would expect all replicate fits would come to roughly

the same point. This was not the outcome, but the ranges we

Table 1. Averages and standard deviations of transport parameters for the 24 independent replicate fits.

Substrate

Association
to P-gp
k1 (M21 s21)a

average±sd
{range}

Efflux Active
P-gp Surface
Density
[P-gp]
(per mm2)b

Dissociation
from P-gp
To Apical
Bilayer
kr (s21)c

Efflux to
Apical
Chamber
k2 (s21)d

Partition
Coeff.e

KPC

Binding Constant to
P-gp from Inner
Apical Membrane
KC (M21)f

= k1/kr

Passive Permeability
Coefficient at
steady-stateg

(nm/sec)

Other
Bidirectional
Transporterh

(s21)

PBA PAB kB kA

Amprenavir
(n = 19)

(160.4)610+8

{(0.6–2)610+8}
8006200
{500–1300}

(260.8)610+5

{(0.9–4)610+5}
3068
{17–45}

200620 6006100
{400–900}

420650 350630 0 0

Digoxin
(n = 4)

Same as
above

Same as above (361)610+4

{(2–7)610+4}
361
{1–6}

100i 3,0006200j

{2700–3300}
50610 40610 4063

{35–45}
40620
{20–95}

Loperamide
(n = 31)

Same as
above

Same as above (462)610+4

{(2–7)610+4}
0.460.08
{0.2–0.5}

3,0006600 3,0006400
{2000–4000}

320690 320670 10067
{90–120}

0

Quinidine
(n = 16)

Same as
above

Same as above (864)610+

{(4–20)610+3}
360.4
{1–4}

700630 (160.2)610+4

{(0.9–2)610+4}
670650 670650 0 0

ak1 is the drug independent association rate constant from the membrane to P-gp. The average value6standard deviation for the 24 independent replicate fits obtained
for all drugs is shown, while the entire range is shown in curly brackets, Fig. 3C.

bT(0) is the surface density of efflux active P-gp in the apical membrane inner monolayer for all drugs. The average value6standard deviation for the 24 independent
replicate fits obtained for all drugs is shown, while the entire range is shown in curly brackets, Fig. 3C. The units P-gp/mm2 can be converted to mmols P-gp per liter of
inner apical membrane simply by dividing by 0.8 [23].

ckr is the dissociation rate constant from the P-gp binding site into the apical bilayer. The average value6standard deviation for the 24 independent replicate fits
obtained for all drugs is shown, while the entire range is shown in curly brackets, Fig. 4A.

dk2 is the efflux rate constant from the P-gp binding site into the apical chamber. The average value6standard deviation for the 24 independent replicate fits obtained
for all drugs is shown, while the entire range is shown in curly brackets, Fig. 4A.

eThe partition coefficient between the cytosol and the inner plasma/apical monolayer, KPC [23]. Cell membrane partition coefficients were estimated using 0.1 mm
extruded unilamellar liposomes (LUV) whose lipid compositions mimic roughly the lipid compositions of the respective membrane monolayers: inner cytosolic PS/PE/
chol (1:1:1); apical outer, PC/SPH/chol; and basolateral outer, PC/chol (2:1). Only the inner cytosolic partition coefficient, KPC, is shown in this table.

fKC = k1/kr is the substrate binding constant from inner apical membrane monolayer to P-gp. The average value6standard deviation for the 24 independent replicate fits
obtained for all drugs is shown, while the entire range is shown in curly brackets, data not shown. This value is calculated from the actual fitted values, rather than the
average 1-digit values of k1 and kr reported in the Table.

gPBA and PAB refers to the +GF120918 steady-state passive permeability coefficient, B.A and A.B respectively. These values increase initially to a final steady-state value
[32], which is reported here as an average value6standard deviation over all relevant datasets.

hkB and kA refers to the 1st order rate constant for transport through a bidirectional transporter for digoxin and for loperamide. The average value6standard deviation
for the 24 independent replicate fits obtained for all drugs is shown, while the entire range is shown in curly brackets, Fig. 4B.

iDigoxin’s partition coefficients have not yet been measured. We set it to 100, as that is the lower bound for measured values.
doi:10.1371/journal.pone.0025086.t001
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found were tight enough to yield robust estimates for both the fitted

parameters and the standard deviation of the fitted parameters.

Preliminary fittings showed that the upper bound for the

concentration of efflux active P-gp, T(0), had to be set to

2.561023(M) within the inner apical membrane, which would be

equivalent to P-gp occupying about 25% of the efflux active apical

plasma membrane surface. This would be too high for a final

answer, but it is acceptable as an upper bound. Reducing the

upper bound led to some clustering of intermediate fits near this

upper bound, which must be avoided. The upper bound for the

association rate constant, k1, was set at 16109 (M21 s21), which

would be in the range of lipid lateral diffusion control [23]. The

lower and upper bounds used for all of the fits are shown by the

range of the x- and y-axes in the figures. Lower bounds were

always well below the fitted values.

We found that the fittings needed to be done in sequential

rounds. The first round result for {T(0), k1} is shown in Fig. 3A,

where the axes show the upper and lower bounds for the fitting.

The empty triangles show the outcome for each of the 24 replicate

fittings. All individual fits cluster near, but not at, the upper

bounds for both parameters. The average values over the 24

independent fits of the log10{T(0) (M)} = 22.960.3 and log10{k1

(M21 s21)} = 8.160.4, shown by the solid triangle, with standard

deviations shown by the error bars. The average ,CV/

dataset. = 0.03, over all 72 datasets, while the old algorithm

gave about ,CV/dataset . = 0.04. This is a 30% improvement in

the average fit quality and the fitted rate constants are quite

different from the old algorithm.

This fitting run terminated when the maximum number of

budgeted function evaluations was exceeded, which means that the

Figure 3. Simultaneous fits of P-gp efflux active surface density, T(0), and association rate constant, k1. 24 independent replicate fits of
all 72 experimental data from Tran et al. [23] and Acharya et al. [29], [30]. All 13 kinetic parameters were simultaneously fitted to all relevant datasets.
For all figures, the x- and y-axes show the user-fixed lower and upper bounds used in each fitting round. Fig. 3A shows the 1st round of fitting for the
drug independent values of the surface density of efflux active P-gp in the apical membrane, T(0), and the association rate constant k1. The open
triangles show the 24 individual fitted values. The solid triangle shows the log-average and the error bars are the standard deviation for the 24
individual fits, which are also written onto the figure. The average coefficient of variation over all data sets and the 24 replicate fits, ,CV/dataset., is
also shown with its standard deviation. Fig. 3B shows the A:B.A trajectories of 6 randomly chosen fits from the data for 30 mM digoxin transport, as
an example. Four of the trajectories are on-target with the data, one is close and one is off-target. Fig. 3C shows the results for the 2st round of 24
independent replicate fits, which was started as a fresh run with upper and lower bounds shown by the dashed box in Fig. 3A, together with
appropriately reduced upper and lower bounds for the drug dependent kinetic parameters. The consensus average values, standard deviations and
the ranges are given in Table 1. Fig. 3D shows the A:B.A trajectories of 6 randomly chosen fits from the 2nd round for 30 mM digoxin transport, like
Fig. 3B. All six trajectories are on-target with the data and tighter than found in Fig. 3B for the 1st round, hence the reduced range of fitted values.
doi:10.1371/journal.pone.0025086.g003
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global minimum had not been found, as defined by all particles

converging to the same place. In order to visualize the end point of

this fitting run, Fig. 3B shows 6 randomly chosen curves for the fits

to the 30 mM digoxin data as an example. Four of the curves are

clustered close to the data, while one diverges higher after about

12 hrs and one curve is significantly lower than the data. All 24

curves could be displayed, but the result is cluttered and yields the

same basic conclusion, i.e. roughly a third of the fits were off target

at this stage.

The CV for all 24 replicate fits was between 0.0259–0.0262, i.e.

nearly identical. Fitting on a surface where the CV is nearly

constant is inefficient. So rather than increasing the budget of the

maximum number of function evaluations, we adjusted the upper

and lower bounds to those shown by the dashed boxed area in

Fig. 3A. In addition, we adjusted the upper and lower bounds for

all the drug dependent kinetic parameters in the same way, i.e.

including all fitted values and adding a small buffer zone, about

10–20%. This substantially reduced the volume of the parameter

space to be explored in the 2nd round, which started with a

random dispersal of particles within the upper and lower bounds.

The 2nd round of fits ended with the maximum number of

function evaluation being exceeded, like the 1st round. The result

is shown in Fig. 3C. The average values of log10{T(0)

(M)} = 23.060.1, log10{k1 (M21 s21)} = 8.060.15 and the

,CV/dataset. = 0.026, i.e. there was little change in the average

values from the 1st round. However, their standard deviations

decreased about 3-fold in all measures from the 1st round. In order

to visualize this stage of the process, Fig. 3D shows 6 randomly

chosen curves, which were not related to the 6 curves shown in

Fig. 3B, since all fitting rounds were completely restarted. All 6

curves are clustered close to the data and show the convergence of

the replicates to the same best-fit curve. None of the replicate fit

values clustered near the new upper or lower bounds.

The upper and lower bounds were adjusted for a 3rd fitting

round, as was done for the 2nd round. At the end of the 3rd round,

the average values of the fitted T(0) and k1 did not change up to 3

significant digits. However, the average ,CV/dataset. of the

replicate fits increased slightly from the 2nd round, suggesting that

some of the upper and lower bounds for the other kinetic

parameters were too restricted, despite being set outside the

endpoints of the 2nd round. Since the estimated values of T(0) and

k1 were essentially identical to those of the 2nd round and well

within experimental error of the individual experiments, we

discarded the 3rd round and continued the analysis of the fitted

values from the 2nd round. The primary function of the 2nd round

was to tighten the range for the drug dependent kinetic parameters

to within around a factor of 3 or less, which allowed the simplest

calculation of averages and standard deviations of the parameters

themselves, not their log10 values.

Consensus fits and ranges of the fits from the 2nd Round
Table 1 contains the consensus fits for the kinetic parameters.

The first column is the consensus for the association rate constant

to P-gp from the membrane k1 = (160.4)6108 (M21 s21), to 1

significant digit. The whole range for k1 in Fig. 3C for the 24

replicate fits was {0.6–2}6108 (M21 s21) is shown underneath in

curly brackets, {}, again to 1 significant digit. These numbers are

drug independent.

The efflux active P-gp surface density is the next consensus fit

shown in Table 1, in the units of P-gp/mm2. The average and

standard deviation for the 24 replicate fits was 8006200 P-gp/

mm2, while the range was {500–1300}, shown underneath in

curly brackets.

The fits for the drug dependent values for P-gp from the
2nd round: kr, k2 and KC

We next looked at the fits for the drug dependent kinetic

parameters. Fig. 4A shows the drug specific parameters {kr, k2}

accompanying the 24 replicate values for {T(0), k1} shown in

Fig. 3C. The open symbols show the individual fitted values. The

closed symbols show the consensus average values of kr and k2 for

each drug, error bars show the standard deviations. Table 1 shows

the average and standard deviations calculation from the direct

values, not their log10 values. The ranges from the 24 independent

replicate fits are shown underneath the consensus average values

in Table 1 in curly brackets.

Figure 4. 24 independent replicate fits from the 2nd fitting
round for drug dependent kinetic parameters. Fig. 4A shows the
fitted values for kr and k2 for each drug. The x- and y-axes show the
upper and lower bounds for these fits. Like Fig. 3, the open symbols
show the 24 individual fits for amprenavir (AMP, triangles), quinidine
(QND, circles) and loperamide (LPM, squares) and digoxin (DGX, x). The
closed symbols show the log-average with error bars showing standard
deviations. Fig. 4B shows the fitted values for the loperamide
basolateral transporter, kB, (LPM, squares) and for the digoxin
basolateral and apical transporters, kB and kA, (DGX, x symbols). The
closed symbols show the log-average with error bars showing standard
deviations. The x- and y-axes show the upper and lower bounds for
these parameters. The consensus average values, standard deviations
and the ranges are given in Table 1.
doi:10.1371/journal.pone.0025086.g004

Kinetic Analysis of P-gp Transporter Network

PLoS ONE | www.plosone.org 6 October 2011 | Volume 6 | Issue 10 | e25086



Table 1 also shows the consensus binding constant, KC = k1/kr,

for each drug to P-gp from the membrane, with standard deviation

and the range obtained directly from the 24 independent replicate

fits from Fig. 4A, i.e. not from the average k1 divided by the

average kr. The partition coefficients for the drugs was measured

previously, using 0.1 mm diameter unilamellar liposomes whose

compositions mimic, in a simple way, the lipids of the inner plasma

membrane, KPC, the outer apical monolayer, KAO, and of the

basolateral outer monolayer, KBO [23].

Another way we fit for the drug dependent kinetic parameters

was to fix the values of T(0) and k1 at their consensus values from

Table 1 and fit all the drug dependent kinetic parameters using 12

independent replicate fits. We obtained replicate fitted values for

{kr, k2}, all of which were essentially identical to the average values

shown in Table 1, not shown. This showed that the average {T(0),

k1} value in Fig. 4A generated the average vector of drug

dependent kinetic parameters.

The fits for the other transporters
The final consensus values we need are those for the other

basolateral and apical transporters. Fig. 4B shows the 24

independent replicate fits for the basolateral transporter required

by loperamide transport kinetics (symbol squares) shown in the

units of s21 for a first order transporter [28], [29], [30]. These

values are plotted on the kA = 0 line, since loperamide did not

require an apical transporter, either here or previously [29]. The

consensus average is ,kB.<10067 s21, to 1 significant digit,

shown by the solid square with standard deviation, while the range

was (90–125 s21). This is shown in Table 1.

The steady-state values for the +GF120918 passive permeability

coefficients of the other drugs are shown in the same column of

Table 1. GF120918 completely inhibits both P-gp and the other

transporters for loperamide and digoxin [23,28], [29], [30]. If

there are still other transporters in these cells which are not

inhibited by GF120918, then the calculated +GF120918 passive

permeability would include their contribution, in addition to the

lipid bilayer permeability coefficient.

Fig. 4B also shows the 24 independent replicate fits for digoxin’s

basolateral and apical transporters, shown in the units of s21 for

the first order transporter (symbol x). The fits for the basolateral

transporter are fairly tight. The consensus average is about

,kB. = 4063 s21, with a range of {35–45 s21}. This tightness of

this fit was anticipated by the fit shown in Figure S4, where the

basolateral transporter was essential to get a very good fit for the

first 10 hrs of digoxin transport. The drift after 10 hrs that led to

the addition of the apical transporter was not large and the wide

range of 24 replicate fits for the apical transporter reflects this. The

consensus average is about ,kA. = 40620 s21, with a range of

{20–95 s21}. These values have been shown in Table 1, together

with the relatively small +GF120918 steady-state passive perme-

ability of digoxin.

The other transporters for loperamide and digoxin are
better fitted by a bidirectional mechanism compared
with an active importer mechanism

We now address the question of whether the other transporters

are more likely to be bidirectional or active transporters based

upon best fitting of the data, since their identity is as yet unknown

[29]. If these transporters are active, then they must be importers,

since the problem shown in Fig. S4 is that without the basolateral

transporter, not enough digoxin is getting into the cells from the

basolateral chamber for P-gp to efflux into the apical chamber.

Then, after 10 hrs, without the apical transporter, not enough of

the digoxin effluxed by P-gp into the apical chamber was allowed

to return into the cells. Basolateral or apical exporters cannot fix

either of these problems.

Fig. 5A shows the fit for 30 mM digoxin assuming that the

basolateral and apical transporters are bidirectional, i.e. facilitate

transporter. Using the previous algorithm [30], we could not

obtain a fit for this particular data set, which is obviously fit well by

the new Particle Swarm based algorithm. Next, we changed the

basolateral and apical transporters to be importers only by setting

the rate constants for transport out of the cells to zero. This

automatically made the transporters active importers, without

complicating the kinetic model unnecessarily with ATP hydrolysis

kinetics. Of course, this did not affect P-gp. With {T(0), k1} fixed

at their consensus values in Table 1, the digoxin data was refit,

including the kr and k2 for P-gp. Fig. 5B shows the best fit for the

importers with 30 mM digoxin. For all the digoxin data, the fits

with importers are not as good as the fits with bidirectional

transporters. The difference is not huge, so neither possibility can

be completely rejected.

Figure 5. Fits of digoxin data with bidirectional or active
importers. Fits of all the digoxin data with the assumption that the
basolateral and apical transporters are bidirectional, Fig. 5A, or are
active importers, Fig. 5B. The best fits for each mechanism are shown
just for the 30 mM digoxin example, which is representative.
doi:10.1371/journal.pone.0025086.g005
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We refitted the loperamide data with an irreversible basolateral

importer and found that the best fit ,CV/dataset. = 0.023 over 25

datasets, as compared with ,CV/dataset. = 0.020 for the

bidirectional transporters. So, the bidirectional transporters yielded

a better fit, as was the case for digoxin. However, if we refitted the

loperamide allowing both basolateral and apical importers, then the

fits were about the same as with just the basolateral bidirectional

transporter. So, the loperamide transporters could be importers, but

then but we would also require an apical importer for loperamide.

We did not try other permutations.

Fitting model data without error
We wanted to know whether the ranges of the {T(0), k1} fits in

Fig. 3 were due to experimental error. Using the consensus values

obtained from the fits of experimental data, Table 1, we simulated

model data without error for all the four drugs with concentra-

tions: 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30 mM, while including 100 and

200 mM for amprenavir to reach P-gp saturation. If experimental

error were the cause for the range in T(0) and k1 fits, then the

simulated data without error should yield a smooth funnel-like

fitting surface with a common minimum at the parameter values

used to simulate the data in the first place. The same fitting

protocol used with the experimental data was followed.

For the model data without error, the 1st and 2nd rounds of fits for

{T(0), k1} with 24 independent replicate fittings, showed a similar

broad range of fits just like the experimental data fittings in Figs. 3A

and 3C, data not shown. The averages of the 24 replicate fits for the

model data were essentially identical to the values used to simulate

the data in the first place, data not shown. The ,CV/dataset. of

the model data fits were smaller by a factor of over 100-fold, as

expected. So the range in the fits of the experimental data is not due

to experimental error. The reason will be discussed below.

Discussion

Using the transport data across a confluent monolayer of

MDCKII-hMDR1 cells, we have constructed a molecular model

of the P-gp membrane transport network based upon fitting the

elementary rate constants of P-gp, the rate constants of other

required transporters, as well as the passive permeability coefficients

and partition coefficients [23], [29], [30]. All these components will

be required to simulate the P-gp transport network for these and

other drugs. Other cell lines or in vivo systems may well have other

transporters, but our new kinetic analysis can identify their

functional requirements for the observed substrate transport.

The ability to have simultaneous and relatively rapid fits over all

relevant data sets overcomes the limitations of our previous

method, while simplifying and clarifying the fitting process. For

example, we can now survey data to find which drugs require

other transporters and in which membrane, Table S1. If another

transporter is required, we can survey the fitness of the potential

mechanisms of that transporter, e.g. bidirectional/facilitated or

active/importer or exporter, by determining which mechanism

yields the best fit.

We will first discuss the sensitivity of the kinetic parameter fits,

then we will discuss how the range of the fitted parameters is due

primarily to compensation between kinetic parameters within this

P-gp transporter network rather than experimental error and finally

we will discuss how the values of the kinetic parameters explicate the

biological function of P-gp and the other transporters.

Sensitivity of the fits for the kinetic parameters
The fitted parameters from any multivariate nonlinear model

are always subject to the question of parameter sensitivity, i.e. how

much difference in the fit occurs with deviations from the ‘‘best’’ fit

kinetic parameters. To answer this question we used independent

replicate fits, i.e. a Monte Carlo approach. The maximum number

of function evaluations was set at 12,000, which yielded a

reasonable compromise between duration of a serial run, roughly

a month, and compactness of endpoint parameter ranges.

At the end of the 1st fitting round, Fig. 3A, which exhausted our

budget for function evaluations, we determined new upper and

lower bounds for all the parameters that encompassed their 24

endpoint values, with about a 10% buffer zone above and below

for each fitted parameter. We could have restarted the fits from the

endpoints of the 1st round or simply started a new run from within

the new boundaries. It was both simpler and more in keeping with

the Particle Swarm philosophy to start fresh. This resulted in the

endpoint of the 2nd fitting round in about 2–3 weeks, Fig. 3C for

T(0) and k1.

The average values of the efflux average surface density of P-gp,

T(0), and the association rate constant, k1 did not change

significantly between the 1st to 2nd rounds, Figs. 3A and 3C.

The average fit got slightly better, ,CV/dataset.. What really

changed was the standard deviation of the average parameters,

which is visualized by the difference between the six randomly

chosen fits for the 30 mM digoxin A:B.A data after each of the

two rounds, Figs. 3B and 3D. At the end of the 1st round, 4 of the 6

fits are close to target, 1 is ok and 1 is off target. At the end of the

2nd round all 6 of the fits are on target and nearly identical. Thus

the 2nd round allowed the ‘‘laggard’’ fits to hit the data and tighten

up a little, which accounts for a 3-fold decrease in the standard

deviations for the fitted kinetic parameters.

Each of the final fits for {T(0), k1} fits, Fig. 3C, had an

associated vector of the drug dependent kinetic parameters, fitted

simultaneously using just the drug specific datasets, including the

other transporters for loperamide and digoxin. With the 2nd round

of fitting, all the kinetic parameters were within a 3-fold range,

allowing us to simply average all these independent replicate fits,

using their Cartesian (not logarithmic) values, and take their

standard deviations, as shown in Table 1. The sensitivity of all

these fitted parameters is very good, e.g. the standard deviations

are ,50% of the averages, Table 1. Given the complexity of the

confluent cell monolayer and the rigor of our fitting, the error bars

on the fitted parameters shows that the data is very tight.

Our next question about the fitting process was whether the

{T(0), k1} range was due to the experimental error in the data. To

answer this question, model data without error was simulated

using the consensus values of the kinetic parameters shown in

Table 1. We fitted this simulated data following the same protocol

as was used with the experimental data, including using 24

independent replicate fits. We found that the range of fitted values

from these model data at the 1st and 2nd rounds was essentially the

same as those for the experimental data shown in Fig. 3, i.e. no

more compact. The average fitted values were essentially identical

to the consensus values used to simulate the model data in the first

place. So, the range of the fitted parameters is not due to

experimental error.

Fitted Parameter Compensation
The range of kinetic parameter fitted values is due primarily to

compensation between kinetic parameters, yielding essentially the

same transport trajectory, e.g. Fig. 3D. This compensation can

occur only over a limited range of parameter values, since

otherwise one of the parameters would be redundant. This means

that there is no single rate-limiting step for transport at all

substrate concentrations for any drug. One rate constant will

dominate at low substrate concentrations, while other rate
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constants will dominate, in turn, at higher substrate concentra-

tions, until transporter saturation was achieved. This is why the

steady-state Michaelis-Menten equations, which assume a single

rate-limiting step over the substrate concentration range, cannot

give reliable estimates of Vmax and KM in terms of the elementary

rate constants [27].

As rate determining dominance passes from one step in the

transport process to another, there is a small zone of compensa-

tion. We illustrate this with a few examples. Table 1 shows that the

value of T(0) ranges from 500–1300 P-gp per mm2, while the CV

for all runs was essentially the same. So which kinetic parameters

compensate to achieve essentially the same amount of transport

within this zone?

This is shown using amprenavir, whose transport depends only

on P-gp. The two fits showing the extreme values of T(0) out of the

24 runs, i.e. 500 and 1300 P-gp/mm2, have kr values of (1.4 and

1.9)6105 s21 and k2 values of (45 and 17) s21, respectively. kr is not

much different, but the value of k2 changes substantially. In fact, at

the T(0) extremes, the product of k2T(0) has the values of {(2.25

and 2.21)6104 P-gp/(mm2 s)}, i.e. they are essentially identical.

Previously, we found that that the product of k2T(0) was an

important determinant for the fits [23]. Small variations in the

fitted P-gp surface density can be compensated by inverse

variations in the fitted efflux rate constant k2, such that their

product remains essentially constant for a particular drug.

Likewise, small variations in k1 could be compensated by direct

variations in kr, so that their ratio, KC = k1/kr, would remain

essentially constant [23]. These two types of compensation is

strong for drugs like amprenavir and quinidine which have only kr

and k2 to provide compensation for variations in T(0) and k1.

Loperamide and digoxin have the other transporters which can

be involved in kinetic compensation. The range for loperamide’s

kB for its basolateral transporter was 90–124 s21. For the fits

showing the two extreme values, the values for kr are (2.3 and

7.2)6104 s21 and for k2 are (0.31 and 0.39) s21, respectively.

Clearly, an increase in the value of kB, which would allow more

drug into the cell to bind to P-gp, was compensated mostly by the

increase in kr, the drug dissociation rate from P-gp back into the

membrane, which would decrease the drug binding constant to P-

gp. This yields about the same amount of drug bound P-gp and

efflux of drug into the apical chamber. The same compensation

pair is found with digoxin.

Compensation can involve more than just pairs of kinetic

parameters. Fig. 4B shows that the apical digoxin transporter

shows a large range in the fitted kA rate constant, from 95 to

22 s21. At these two extremes, the kr values are (5.35 and

5.42)6104 s21, while k2 values are (4.2 and 1.6) s21. Before simply

assigning the compensation to k2, since kr does not change much,

we must first check whether T(0), another compensatory partner

of k2, is different For the extreme values of kA, T(0) has values of

(1300 and 1100) Pgp/mm2, so the product of k2T(0) has the values

of (5.5 and 1.8)6103 P-gp/(s-mm2). The compensation is due

mostly to these three kinetic parameters: kA versus the product of

k2T(0).

Compensation explains why model data without error does not

have a funnel-like fitting surface. This points out why we cannot

expect funnel-like fitting surfaces for multivariable transport

networks, or probably any complex biochemical network.

The values of the kinetic parameters
We have shown that fitted parameters are valid and their ranges

make sense, so we can turn to what their numerical values imply.

The values in Table 1 are different than those published previously

using to the older algorithm. The difference is due to the fact that

the Particle Swarm algorithm could fit all of our data

simultaneously.

We start with the association rate constant k1. Since P-gp has its

binding site in the inner apical monolayer [3], [5], [8] and all

known P-gp substrates are amphipathic, it makes sense that the

kinetically favored pathway to P-gp would follow the inner plasma

membrane at the lipid lateral diffusion rate until it binds to P-gp.

Our fitted k1 is at the lipid lateral diffusion control range [23]. This

would be a very rapid pathway, with the drug being able to diffuse

through about half of inner monolayer of the plasma membrane,

,20 mm in diameter, in 1–2 minutes. While P-gp probably

evolved from a transporter of endogenous substrates, its current

job in humans and other species appears to be the efflux of

xenobiotic molecules, which come in all sizes and polar/nonpolar

shapes [20], [33]. Thus, it also makes sense that P-gp’s portal of

entry to its binding site is large [8], which is also required for a

large k1.

What about the efflux active P-gp surface density, T(0)? The

term efflux active simply acknowledges our finding that the height

and separation of the microvilli will determine which P-gp’s can

efflux drugs that can reach the apical chamber, where they are

collected and assayed [23], [29]. Basically, in a random walk after

efflux, only drug effluxed near the tips of the microvilli can be

expected to reach the apical chamber in a timely fashion. The rest

are adsorbed back into the microvilli membrane and recycled.

The efflux active P-gp surface density was fitted as 8006200 per

mm2 or about 261022 mg P-gp/cm2, assuming a molecular

weight of 170 kD [34]. Rosenberg et al. [34] reported electron

microscopy of P-gp proteosomes showing an average 10 nm

diameter, including lipids. This means that P-gp will occupy

roughly 100 nm2 of the apical membrane surface, i.e. close

packing would yield roughly 104 P-gp/mm2 or about 0.3 mg P-

gp/cm2. Thus, our fitted value for the P-gp surface density

occupies only about 8% of the available apical membrane surface

area, which seems reasonable for an overexpressed membrane

protein. None of the fitted values in the 2nd round came close to

the upper bounds for P-gp, Fig. 3C. A recently reported value of

over 300 mg P-gp/cm2 for the hMDR1-MDCKII cells [35]

cannot be correct, as it is about 1000-fold higher than close

packing.

The selective pressure on P-gp appears to be maintenance of

very broad substrate specificity, thus its binding constant to all

xenobiotics should be relatively weak. Table 1 shows that 1/KC is

in the mM range, with respect to dissociation back into the apical

membrane. Thus, the binding to P-gp from the membrane is

weak. However, the binding constant to P-gp relative to the cytosol

is the inverse of the product of the substrate’s partition coefficient

and its binding constant, i.e. KD = 1/(KPC.KC). Our measured

partition coefficients to liposome mimetics of the cell membrane

monolayers (23) are greater than 100. These two parameters allow

P-gp to bind and efflux substrates with micromolar cytosol

concentrations.

Since the association rate, k1, is large and the binding constant

KC is small, the dissociation rate constant back into the apical

membrane, kr = k1/KC, must be large, as the fit shows in Table 1.

The ratio of kr/k2 estimates the number of bound substrate

molecules that return to the apical membrane for each one

effluxed into the apical compartment. From Table 1, this number

ranges from about 3,000 for quinidine to 100,000 for loperamide.

Thus, only the rare substrate occupying the P-pg binding site is

actually effluxed, compared with the number dissociating back

into the lipid bilayer.

This might appear inefficient usage of ATP, but P-gp’s ATPase

activity has not been measured to be higher than the maximal rate
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of FoF1, ,100 s21 [36], which we took for the upper bound for k2

in our fitting. Protein ATPase activity may not be able to get much

larger. However, this ‘‘inefficiency’’ vanishes when we consider

that P-gp’s job is to keep xenobiotics out of the cytosol, not out of

the plasma membrane of the cell. This means that the efflux rate

constant of P-gp is not competing against the return of drug to the

membrane, but rather against permeation of the drug into the

cytosol from the inner monolayer of the plasma membrane.

Previously, we estimated that the rate of passive permeation of

these substrates from the membrane into the cell cytosol were

roughly 10 times slower than the smallest efflux rate constant [30],

[37]. We can make more accurate estimates with our new values

for the kinetic parameters. The equation needed is,

PAC :Ac=VCð Þ
k2

%
1

k2

2|PAB(nm=s) 2|1:13cm2
� �

1mL
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~4:5|10{4(nm{1)
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k2 s{1ð Þ

ð2Þ

where PAC.AC/VC is the passive permeability coefficient from inside

the apical membrane to the cytosol times the area of the apical

membrane divided by the volume of the cytosol. This is the first

order rate constant, units of s21, for the permeation from apical

membrane interior to cytosol.

For simplicity, we use the entire apical membrane and cytosol of

the confluent cell monolayer, rather than each individual cell. PAC

is roughly equal to twice the A.B passive permeability, since

passive permeability across membranes in series is like resistance,

i.e. PAB<1/(1/PAC+1/PBC) [12], [23], which accounts for the two

barriers. Assuming they are equal gives PAC = 26PAB. For the area

of the apical membrane, we have used twice the plastic insert area,

261.13 cm2, simply to get the same passive permeability

coefficient for the cell measurements, with two membranes, and

the standard measurement using the 1-barrier equation [23]. Since

the fit for k2 also assumes efflux active P-gp surface area, the effect

of the microvilli size and shape are roughly normalized out of this

ratio.

For amprenavir, digoxin and quinidine, the Eq. (2) ratio is

roughly 0.006, 0.004 and 0.08, respectively. Thus, P-gp keeps

these drugs out of the cytosol with well over a 10-fold difference.

For loperamide, the ratio is about 0.4–0.5, due to its much smaller

fitted efflux rate constant. This suggests that loperamide is not as

well cleared by P-gp from the cytosol as the other drugs. Further

study with loperamide is warranted to understand why this is

adequate for cell viability in different cell lines and tissues.

The range of values of the efflux rate constants, k2, covers nearly

2 orders of magnitude, i.e. from 0.4 s21 for loperamide to 30 s21

for amprenavir. Rank ordering of P-gp binding constants, KC, or

equivalently the dissociation rate constants, kr, for the substrates is

not monotonic with the rank ordering of efflux rate constants,

showing that the molecular properties dominating these two

reaction steps are not identical.

It is known that ATP hydrolysis by P-gp is required to efflux

drugs [5], [9], [13], [20], [34]. The stoichiometry of ATPase

activity to transport has been studied [5], but there is no definitive

answer. The efflux rate constants we measure here will provide the

best correlation between ATPase activity and efflux stoichiometry.

The ATPase activity of P-gp depends on many factors and adding

lipid to the purified protein increases the activity [37], [38], [39],

[40], [41]. Many different values are reported, even for the same

drugs.

It has been reported that the ATPase activity of purified P-gp

reconstituted into proteosomes in 10 mM quinidine was about

4–6 mmol ATP hydrolyzed/min/mg P-gp [40]. This protocol

gives consistent measurements for ATPase rates for other drugs

[8], [22], [38]. This translates roughly to 10–15 s21 ATPase

activity compared with our fitted efflux rate constants of

k2 = 3 s21, for both drugs. This suggests that the stoichiometry is

about 3–5 ATPs hydrolyzed per quinidine molecule effluxed. This

is significantly different from the commonly cited 1:1 stoichiometry

[5]. Obviously, many more cases will have to be examined before

a conclusion can be reached. It may well be that the stoichiometry

is not the same for all P-gp substrates.

The final kinetic parameters we need to discuss are the rate

constants of the other transporters. For the loperamide basolateral

transporter, the first order rate constant for the bidirectional

mechanism was kB = 100 s21 and no apical transporter was

required. When the loperamide data was fitted using just the

basolateral importer, the fit was worse. However, when we allowed

both basolateral and apical importers for loperamide, the fits were

basically the same as for just the bidirectional basolateral

transporter. The fitted values for the importer mechanism were

kA,IMP = 50 s21 and kB,IMP = 100 s21. Interestingly, the rate

constant for the basolateral transporter did not depend on whether

it was bidirectional or an active importer. This makes sense in that

loperamide influx from the basolateral chamber was crucial to

achieving good fits the data, which would be essentially the same

whether the transporter was bidirectional or an active importer.

The apical importer value of kA,IMP = 50 s21 was compensated by

a decrease in kr, to increase P-gp binding of loperamide and

increase efflux to the apical chamber. k2 did not change much.

Thus, for loperamide, there are two reasonably clear alternatives

for the other transporters.

When the other digoxin transporters were modeled as

bidirectional/facilitated, there is the intriguing finding that both

transporters having roughly the same rate constant, raising the

possibility that it is the same transporter on both apical and

basolateral plasma membranes. This may be unusual, but not

impossible. When the digoxin transporters were modeled as

importers only, the fit was not as good as for the bidirectional fits,

Fig. 5. We do not yet have enough data for competition between

digoxin and loperamide to deduce whether they compete for the

same other transporters.

Concluding Remarks
With this new fitting algorithm, we are now in a position to

compare the kinetics of P-gp transport over a much wider range of

substrates. This will include the kinetic identification of other

transporters that affect the transport of any P-gp substrates, which

will expand the P-gp transporter network. Our fitted rate constants

make physical and evolutionary sense. The range of fitted values

we show in Table 1 is due to the compensation partnerships

between the kinetic parameters that define the P-gp transport

network, rather than experimental error. This implies that

transporter networks will not have a funnel-like fitting surface,

but rather a relatively ‘‘flat’’ global minimum neighborhood, with

respect to the coefficient of variation between the data and the

best-fit curves. This rigorous analysis of P-gp function will enhance

our understanding of how structure accomplishes this transport

function.

Future work must address how the multiple substrate binding

sites within P-gp [8] contribute to transport, whether these binding

sites are competitive or uncompetitive, and/or cooperative, either

positive or negative [11], [29], [42]. To fit cooperativity would

double the number of elementary rate constants to be fitted. The

new Particle Swarm based algorithm will facilitate rigorous surveys

of all these mechanistic possibilities.
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Supporting Information

Figure S1 Shows just the B.A transport, for clarity,
during the first 6 hrs of transport. The transport is much

slower than that shown for amprenavir, due to digoxin’s small

+GF120918 passive permeability. The dashed lines are simply

straight lines, not fits, showing that the transport data is linear. Fits

for rate constants require curvature, such as seen with amprenavir

after 2–3 hrs.

(TIF)

Figure S2 Shows the transport over 18 hrs constructed
from three separate experiments, wherein the concen-
tration endpoints of Expt. 1, 0–6 hrs, were used for the
initial concentrations for Expt. 2, 6–12 hrs. Likewise, the

concentration endpoints of Expt. 2, 6–12 hrs, were used for the

initial concentrations for Expt. 3, 12–18 hrs. The three data sets

were stitched together to create a continuous 18 hr transport curve

which showed enough curvature to fit the kinetic parameters.

(TIF)

Figure S3 Shows the culled dataset, reduced to 9
separate time points to accommodate the fitting pro-
gram, wherein the initial time points with the straight
data, Fig. S1, and then every other time point out to
18 hrs were omitted.
(TIF)

Figure S4 Shows the fitting for the other transporters.
While all datasets were fitted, only the fits for A:B.A data are

shown. The dotted black line shows the ‘‘best’’ fit using just P-gp.

The fit requires maximal P-gp transport rate constants and is 50%

too small. Adding a bidirectional apical transporter, AT shown by

the dashed black line, makes no significant difference, since

basolateral chamber is the donor here. Adding a bidirectional

basolateral transporter, BT shown by the solid black line, allows a

very good fit to the data up to about 8 hrs, after which time the fit

overestimates the digoxin concentration in the receiver apical

chamber. Adding bidirectional basolateral and apical transporters,

BT & AT shown by the solid red line, allows a very good fit to the

data over the entire time course, since the apical transporter allows

digoxin to reenter the cytosol after P-gp efflux.

(TIF)

Table S1 Effect of adding bidirectional transporters on
fits.

(DOC)

Text S1

(DOC)
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