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Abstract

The response of bivalves to their abiotic environment has been widely studied in relation to hydroenvironmental conditions,
sediment types and sediment grain sizes. However, the possible role of varying geoenvironmental conditions in their
habitats remains poorly understood. Here, we show that the hardness of the surficial intertidal sediments varies by a factor
of 20–50 due to suction development and suction-induced void state changes in the essentially saturated states of intertidal
flats and beaches. We investigated the response of two species of bivalves, Ruditapes philippinarum and Donax
semigranosus, in the laboratory by simulating such prevailing geoenvironmental conditions in the field. The experimental
results demonstrate that the bivalve responses depended strongly on the varying geoenvironmental conditions. Notably,
both bivalves consistently shifted their burrowing modes, reducing the burrowing angle and burial depth, in response to
increasing hardness, to compensate for the excessive energy required for burrowing, as explained by a proposed
conceptual model. This burrowing mode adjustment was accompanied by two burrowing criteria below or above which the
bivalves accomplished vertical burrowing or failed to burrow, respectively. The suitable and fatal conditions differed
markedly with species and shell lengths. The acute sensitivities of the observed bivalve responses to geoenvironmental
changes revealed two distinctive mechanisms accounting for the adult–juvenile spatial distributions of Ruditapes
philippinarum and the behavioral adaptation to a rapidly changing geoenvironment of Donax semigranosus. The present
results may provide a rational basis by which to understand the ensuing, and to predict future, bivalve responses to
geoenvironmental changes in intertidal zones.
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Introduction

Burrowing of macroinfauna in intertidal sediments constitutes

an intrinsic part of their basic living activities and is as fund-

amental as foraging and breeding. Burrowing performance may

thus be an important factor in determining the distribution of

species [1]–[6] and in forming the macroinfaunal community of

intertidal zones [7]. The burrowing performance of individual

species may be affected by their traits (morphology, body size, etc.)

[8],[9], sediment grain size [10]–[12], temperature [13]–[15],

salinity [16], geochemistry [17], and intertidal geomorphody-

namics in relation to swash climate [18]. Small species with

streamlined shapes may be best adapted to the dynamic swash

conditions [8].

For the macroinfauna living in intertidal sediments, physical

processes in the sediments that vary markedly in space and time

have a critical influence on their activities, particularly considering

that burrowing represents physical action in sediments [19],[20].

However, to date, the physical environments affecting the infaunal

activities and distributions have been mainly associated with

the physical processes of fluids above the sediments, such as

tides, waves, and currents [2],[3],[8],[9],[21]–[24]. Swash-induced

hydrodynamics has also been considered to govern the adaptation

of macroinfauna at exposed sandy beaches [25]. The sediment

types, such as sand and mud, have been related to macroinfaunal

distributions [4],[6]. However, because of the lack of general

understanding of the physical processes involved in intertidal

sediments [20], the response of macroinfauna to variations in their

geophysical environment remains much less known, in contrast to

their response to variations in their hydroenvironment with given

sediments.

Recently, Sassa & Watabe [19] demonstrated that the dynamics

of suction, that is, negative pore water pressure relative to

atmospheric air pressure, in association with tide-induced

groundwater level fluctuations, plays a substantial role in con-

trolling the geophysical environment of habitats. Namely, the

suction dynamics bring about the temporal and spatial evolutions

of voids, stiffness, and hardness of intertidal flat sediments. The

effects of the suction dynamics have also been shown to play a

crucial role in intertidal flat geomorphodynamics [26], and in

forming the intertidal flat stratigraphy of sandy, muddy, and sand–

mud layered sediments [27]. Understanding such salient geophys-

ics involved in intertidal sediments has facilitated close investiga-

tion of the linkage between the geophysical environment and the
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ecology of intertidal flats. This has revealed the threshold,

optimum, and critical geoenvironmental conditions for the

burrowing activity of sand bubbler crab, Scopimera globosa

(Crustacea: Ocypodidae) [20], and the close link between the

suction-induced temporal variation in sediment hardness and the

foraging behavior of shorebird, Calidris alpina [28].

In the present study, we demonstrate a crucial role of varying

geoenvironmental conditions in the response of bivalves with

different shapes and sizes. Although the response of bivalves to

their abiotic environment has been widely studied in relation to

the hydroenvironmental conditions and sediment types and

sediment grain sizes [2]–[][4],[6],[8],[10]–[12],[21]–[25], the

possible role of the varying geoenvironmental conditions in their

habitats remains poorly understood. Here, we studied the linkage

between the response of two common species of bivalves, Ruditapes

philippinarum (Mollusca: Veneridae) and Donax semigranosus (Mollus-

ca: Donacidae), and the relevant geophysical environmental

conditions. For this purpose, we utilized a new high-resolution

laboratory measurement system, in conjunction with the field

testing apparatus. Burrowing of bivalves is essentially different in

form from the burrowing of crabs and worms, since bivalves do

not typically create burrows (cavities). For bivalves that have

specific siphon lengths [29], vertical burrowing [30] or self-burial,

which has a deeper center of gravity than any inclined burrowing,

can maximize the stability of bivalves in sediments, thus

minimizing the risk of surface transport, i.e., sweeping away

[31], and exposure to predators [32] and direct sunlight [33]. Our

controlled laboratory experiments, together with our field surveys

and proposed conceptual model, revealed the existence and

mechanics of novel burrowing criteria and burrowing mode

adjustment to varying geoenvironmental conditions in juvenile to

adult R. philippinarum and D. semigranosus. These have led to

Figure 1. Sediment hardness as assessed by the vane shear strength. (A) High-resolution vane shear testing system in the laboratory.
Sediments with prescribed sediment relative densities Dr were formed in an acrylic cylindrical chamber set in a larger water tank. Suctions s at the
level of the sediment surface were varied by changing the water level in the tank. The vane shear testing was performed by inserting and rotating the
vane blade in the uppermost layer of the given sediment. (B) Results of the vane shear testing. The peak value of the measured vane shear stresses
represents the vane shear strength t*, namely the sediment hardness. (C) Field vane shear testing apparatus for surficial sediments. The apparatus
directly measures t*. (D) Sediment hardnesses simulated in the laboratory as functions of suctions and sediment relative densities of the intertidal
sediments taken at the Nojima tidal flat. Data in (D) were obtained using both apparatuses shown in (A) and (C) and represent mean values 6 SE.
doi:10.1371/journal.pone.0025041.g001
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substantial new insights into the distributions and adaptations of

the bivalves in intertidal flats and beaches.

Materials and Methods

Materials
The bivalve Ruditapes philippinarum, the Manila clam, inhabits

intertidal sandy flats and is commercially important to the fishery

industry not only in Japan [34],[35] but also in other countries

[36],[37]. The bivalve Donax semigranosus inhabits the intertidal

zones of exposed sandy beaches in Japan. Donax species that

belong to Donacidae have been commonly used for burrowing

studies, focusing on the influences of swash climates and sediment

grain sizes [8],[11],[12].

Our study sites in Japan involved two intertidal sandy flats as the

habitats of R. philippinarum and two sandy beaches as the habitats of

D. semigranosus. We performed field surveys from 2009 to 2010

during the spring low tides at the Nojima tidal flat (N35u199,

E139u389; Mar. 2009, Sep. 2010), the Shirakawa tidal flat

(N32u479, E130u359; Sep. 2009), Yuigahama beach (N35u189,

E139u329; Sep. 2010), and Kujyukuri beach (N35u319, E140u279;

May 2009). The intertidal sediments at the four study sites were

essentially composed of fine-grained sands with median grain

diameters in the range D50 = 0.14–0.27 mm. The silt and clay

contents were less than 25% at the intertidal flats and below 1% at

the sandy beaches.

For the burrowing experiments in the laboratory, we collected

adult to juvenile bivalves R. philippinarum at three intertidal flats:

Nojima, Banzu (N35u249, E139u549) and Furenko (N43u179,

E145u229) tidal flats. The shell lengths L ranged from 2.5 mm to

52 mm, and the individual wet weights w ranged from 0.004 g to

31.9 g. We confirmed that w was a single function of L such that

w(L) = 1.86061024?L3.043, r2 = 0.99, p,0.0001, n = 1083. We also

collected D. semigranosus at Yuigahama beach with L = 3.7 mm to

15 mm and w = 0.01 g to 0.8 g, yielding the relationship:

w(L) = 1.85361024?L3.026, r2 = 0.963, p,0.0001, n = 604.

Methods
Let us first list some relevant physical quantities that represent

the geophysical states of intertidal sediments.

Suction, s, means the tension of moisture in the sediment [38]

and is defined by

s~ua{uw, ð1Þ

where ua is the atmospheric air pressure, and uw is the pore water

pressure in the sediment. By definition, suction is equal to zero at

the groundwater level.

The void state of the sediment is represented by void ratio e,

which is related to the sediment porosity n:

e~
n

1{n
: ð2Þ

The state of sediment packing, such as dense or loose, can be

denoted by the sediment relative density Dr:

Table 1. Protocol for burrowing experiments on Ruditapes philippinarum.

W.L./G.W.L. s Dr t* L

mm kPa % kPa 4,6 mm 10,12 mm 19,21 mm 29,31 mm 49,51 mm

20 (40)a 20.2 (20.4) 40 0.07 n = 8, a = 8 n = 4, a = 4 n = 4, a = 4 n = 3, a = 2, b = 1 n = 4, a = 1, b = 3

0 0 40 0.08 n = 4, a = 4 n = 3, a = 2, b = 1

20 (40)a 20.2 (20.4) 60 0.09 n = 8, a = 7, b = 1 n = 4, a = 4 n = 4, a = 4 n = 4, a = 2, b = 2 n = 4, b = 4

25 0.05 40 0.12 n = 4, a = 2, b = 2 n = 4, a = 1, b = 3

20 (40)a 20.2 (20.4) 80 0.13 n = 8, a = 1, b = 7 n = 4, a = 4 n = 4, a = 2, b = 2 n = 4, a = 2, b = 2 n = 4, b = 2, c = 2

0 0 60 0.13 n = 8, a = 1, b = 7 n = 4, a = 2, b = 2 n = 4, b = 4 n = 4, b = 3, c = 1

0 0 80 0.18 n = 8, b = 5, c = 3 n = 4, a = 1, b = 3 n = 4, b = 2, c = 2 n = 4, a = 1, b = 1, c = 2 n = 4, c = 4

210 0.1 40 0.18 n = 8, c = 8 n = 8, b = 7, c = 1 n = 4, b = 2, c = 2 n = 4, c = 4

25 0.05 60 0.20 n = 8, b = 7, c = 1 n = 4, b = 3, c = 1

28 0.08 60 0.24 n = 8, b = 5, c = 3

215 0.15 40 0.24 n = 8, c = 8 n = 4, b = 1, c = 3

23 0.03 80 0.25 n = 8, b = 1, c = 7

210 0.1 60 0.26 n = 8, c = 8 n = 4, c = 4

220 0.2 40 0.30 n = 4, c = 4 n = 4, c = 4

25 0.05 80 0.31 n = 8, c = 8 n = 4, c = 4

230 0.3 40 0.39 n = 4, c = 4

220 0.2 60 0.41 n = 4, c = 4

210 0.1 80 0.44 n = 4, c = 4

230 0.3 60 0.66 n = 4, c = 4

W.L. : Water level, G.W.L. : Groundwater level, s : Suction, Dr : Sediment relative density, t* : Sediment hardness, L : Shell length.
Air temp. : 20.260.2uC, Water temp. : 19.160.4uC, Salinity : 27 psu.
a( ): Case of L = 30, 50 mm.
Symbols a, b, and c denote the observed results. The symbol a means that the individual completed vertical burrowing (z* = 21, h = 90610u). The symbol b means that
the individual exhibited inclined burrowing (0,h,80u) and/or partial burrowing (21,z*,0). The symbol c means that the burrowing was impossible (z* = 0 and h = 0).
Air and water temperatures are mean values 6 SE.
doi:10.1371/journal.pone.0025041.t001
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Dr~
emax{e

emax{emin

: ð3Þ

For a given sediment, the maximum void ratio emax represents

the loosest possible packing, and the minimum void ratio emin

represents the densest possible packing [39]. Thus, the Dr value is

a normalized index by which to assess the packing states of sandy

sediments.

The hardness of surficial intertidal sediments can be assessed by

the vane shear strength [19],[20],[28],[40]. An important feature

of the vane shear testing is that it can evaluate an in-situ

undisturbed state of the sediment hardness by inserting a very thin

vane blade into the surficial sediment and measuring the

maximum resistance t* of the sediment to horizontal shearing

due to rotating the vane blade (Figure 1A,B,C). Sediment hardness

as assessed by the vane shear strength t* has been shown to govern

the development of burrows of sand bubbler crabs [20] and to be

closely linked with the foraging mode shift by shorebirds [28]. A

difference with these previous studies was that here we measured

the hardness of the uppermost sediment by adopting a vane blade

of 10 mm depth rather than 40 mm depth, in order to cope with

the observed higher sensitivity of the bivalve responses to the

varying geoenvironmental conditions, as described later in this

paper.

We measured the distributions of suction and hardness of the

surficial sediments in the four intertidal flats and intertidal zones of

exposed sandy beaches: Nojima and Shirakawa tidal flats and

Yuigahama and Kujyukuri beaches. Here, suctions were measured

using tensiometers [19]. Additionally, at each site of the

Yuigahama and Kujyukuri beaches, continuous measurements of

suctions were performed by installing multiple tensiometers along

the cross-shore survey transect in order to investigate the swash-

induced suction dynamics in the intertidal zones of the exposed

sandy beaches.

We compared the above field results with the laboratory

measurements. In the laboratory, sediment deposits with three

different states of packing at Dr = 40%, 60%, and 80% were

formed in a transparent cylindrical chamber, shown in Figure 1A,

by using the intertidal sediments taken from the Nojima tidal flat.

Suctions s at the level of the sediment surface were varied by

changing the water level above and the groundwater level in the

sediment by using the system in Figure 1A. Both the laboratory

and field apparatuses (Figure 1A,C) were used to measure the

hardnesses of the sediments formed. Figure 1D shows that both

measurements were precisely performed, as indicated by the small

error bars. The sediment hardness t* increased with increasing

suction s and sediment relative density Dr, and depended only on

sediment relative density Dr under negative suctions (submerged

condition).

The protocols of the burrowing experiments for R. philippinarum

and D. semigranosus are shown in Tables 1 and 2. Here, the

prescribed different suctions s and relative densities Dr gave rise

to different states of the sediment hardness t*, as described

above.

For the burrowing experiments, we used the juvenile to adult

bivalves R. philippinarum with L = 5 mm, 10 mm, 20 mm, 30 mm,

and 50 mm, and D. semigranosus with L = 10 mm. We observed the

burrowing responses of these bivalves to the prescribed different

states of the geophysical environmental conditions shown in

Tables 1 and 2. In each experiment, we measured the burrowing

depth, burrowing angle, and burrowing time for a period of six

hours after the bivalve touched the sediment surface with its foot

(Figure 2A). This starting condition was essential in obtaining

consistent results, after the bivalves showed their ‘‘intention’’ to

burrow in the sediments.

In all experiments, the air temperature, the water temperature,

and the salinity of the water and pore water were kept essentially

constant at 20 to 21uC, 19 to 20uC, and 27 psu, respectively

(Tables 1 and 2). Prior to the experiments, the bivalves were

maintained in the laboratory under aerated fresh seawater in the

intertidal sediments for over one month to ensure that any

endogenous physiological rhythms were abolished [41].

The burrowing characteristics observed in each case are

summarized in Tables 1 and 2 by using three symbols, a, b and

c. With reference to Figure 2B, C, and D, the symbol a represents

the situation where an individual bivalve burrowed essentially

vertically (h = 90610u) and buried itself underneath the sediment

surface (z* = 21). Here, the burrowing angle h denotes the angle at

the final stage of burrowing. The symbol b refers to the situation

where an individual bivalve exhibited inclined burrowing

(0,h,80u) and/or resulted in partial burrowing (21,z*,0).

The symbol c indicates the situation where burrowing was

physically impossible (z* = 0 and h = 0). Under such a situation,

the bivalves often bent their feet and rebounded from the sediment

surface, as shown in Figure 2D.

In cases where all the bivalves completed the burrowing, either

vertical or inclined, the average burrowing times ranged widely

from 1.5 min to 105 min for R. philippinarum and from 18 s to 51 s

for D. semigranosus.

Table 2. Protocol for burrowing experiments on Donax
semigranosus.

W.L./G.W.L. s Dr t* L

mm kPa % kPa 10,11 mm

20 20.2 40 0.07 n = 4, a = 4

20 20.2 60 0.09 n = 4, a = 4

25 0.05 40 0.12 n = 4, a = 4

20 20.2 80 0.13 n = 4, a = 4

0 0 60 0.13 n = 4, a = 4

0 0 80 0.18 n = 4, a = 1, b = 3

210 0.1 40 0.18 n = 4, a = 2, b = 2

25 0.05 60 0.20 n = 4, a = 1, b = 3

215 0.15 40 0.24 n = 4, b = 4

210 0.1 60 0.26 n = 4, b = 3, c = 1

220 0.2 40 0.30 n = 4, b = 2, c = 2

25 0.05 80 0.31 n = 4, b = 3, c = 1

215 0.15 60 0.34 n = 4, b = 2, c = 2

225 0.25 40 0.34 n = 4, b = 1, c = 3

27 0.07 80 0.36 n = 4, c = 4

217 0.17 60 0.37 n = 4, c = 4

230 0.3 40 0.39 n = 4, c = 4

W.L. : Water level, G.W.L. : Groundwater level, s : Suction, Dr : Sediment relative
density, t* : Sediment hardness, L : Shell length.
Air temp. : 20.460.2uC, Water temp. : 18.660.2uC, Salinity : 27 psu.
Symbols a, b, and c denote the observed results. The symbol a means that the
individual completed vertical burrowing (z* = 21, h = 90610u). The symbol b
means that the individual exhibited inclined burrowing (0,h,80u) and/or
partial burrowing (21,z*,0). The symbol c means that the burrowing was
impossible (z* = 0 and h = 0). Air and water temperatures are mean values 6 SE.
doi:10.1371/journal.pone.0025041.t002
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Statistical analyses
We used a generalized linear model (GLM) with a binomial

error distribution to examine the effect of species, shell length, and

sediment hardness on burrowing depth z* and burrowing angle h.

A priori selection of candidate models was based on the principle of

parsimony and scientific plausibility [42]. We fitted the global

model with species, z* and h, and the second order interactions.

We used Akaike’s Information Criterion (AIC) to compare the

fits of candidate models. The best fitting model has the smallest

AIC.

We also used a generalized additive model (GAM) with a

binomial error distribution to examine how burrowing response

co-varied with shell length and sediment hardness in R.

philippinarum. We selected shell length and sediment hardness as

the explanatory variables and binary data for vertical burrowing

and burrowing mode shift (a and b) and failure (c) in Table 1 as the

response variable for the model. We performed all statistical

analyses using R 2.1.1.

Results

Variation in geophysical environment of habitats in
intertidal flats and beaches

The hardness of the surficial intertidal sediments varied

markedly at the Nojima tidal flat, the Shirakawa tidal flat,

Kujyukuri beach, and Yuigahama beach (Figure 3A). Indeed, the

sediment hardness had strong correlations with suctions at all four

intertidal flats and beaches (r2.0.9, p,0.0001). At the Nojima

flat, the sediment hardness t* was only 0.05 kPa at negative

suctions s,21 kPa; however, it reached as high as 2.2 kPa at a

suction of 2.2 kPa. This corresponds to a 44-fold increase in

hardness of the surficial sediments. The other three sites exhibited

similar variations, showing 20- to 50-fold increases in hardness due

to suction. Notably, all of the measured data fell on a unique

relationship: t* = 1.02462s+0.17557 (r2 = 0.914, p,0.0001). Since

the suction development of magnitude 2 kPa was less than the air-

Figure 3. Interrelationships between suction, sediment relative
density, and sediment hardness in the laboratory and the field.
(A) Measured relationships between sediment hardness t* and suction s
at four intertidal flats and beaches. Both of t* and s were measured
during spring low tides at the Nojima and Shirakawa tidal flats and
during spring low tides when the swash retreated in the intertidal zones
of Kujyukuri and Yuigahama beaches. All the measured data at the
Nojima tidal flat (n = 23, r2 = 0.912, p,0.0001), the Shirakawa tidal flat
(n = 20, r2 = 0.967, p,0.0001), Kujyukuri beach (n = 12, r2 = 0.976,
p,0.0001), and Yuigahama beach (n = 14, r2 = 0.932, p,0.0001), fell
on a unique relationship t* = 1.02462s+0.17557 (n = 69, r2 = 0.914,
p,0.0001). (B) Comparison between the field and laboratory data.
The symbols represent the field data shown in (A). The three different
lines represent the laboratory data for the three different sediment
relative densities Dr = 40%, 60%, 80%, and cover higher suction ranges
than those shown in Figure 1D.
doi:10.1371/journal.pone.0025041.g003

Figure 2. Definition of burrowing behavior for Ruditapes
philippinarum and Donax semigranosus. (A) Starting condition for
each individual in the burrowing experiments. (B) Observed typical
processes of complete vertical burrowing. (C) Definition of normalized
burrowing depth z* and burrowing angle h, showing the state of
inclined and partial burrowing. (D) Observed typical processes where
burrowing was impossible, showing bending of foot and rebounding
from sediment surface. The bivalve shape represents that of Ruditapes
philippinarum.
doi:10.1371/journal.pone.0025041.g002
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entry suctions for the sediments [19], such marked variation in the

sediment hardness occurred in essentially saturated states of the

intertidal flats and beaches that represented the habitats of

Ruditapes philippinarum and Donax semigranosus.

In Figure 3B, the above field data are superimposed on the s–t*
relationships for the three different relative densities Dr = 40%,

60%, and 80% that were obtained in the laboratory for the

sediments sampled at the Nojima flat. Note that the three different

curves cover higher suction ranges than those shown in Figure 1D.

The surficial intertidal sediments became denser at locations

where higher suctions developed, yielding regions with Dr.80%.

In contrast, the sediments remained looser where low or negative

suctions ensued, yielding regions with Dr,40%.

By comparing Figures 1D and 3B, it is evident that all of the

suctions s, relative densities Dr, and sediment hardnesses t* as

simulated in the laboratory were in the ranges of the naturally

varying geoenvironmental conditions in the field.

Burrowing responses of R. philippinarum and D.
semigranosus

The observed responses of the juvenile to adult R. philippinarum

to the varying hardness t* (Table 1, Figure 1D) of the surficial

intertidal sediments are summarized in Figure 4. In Figure 4A, all

of the juvenile bivalves (L = 5 mm) completed vertical burrowing

with h = 90u and |z*| = 1, at a low t* = 0.07 kPa. However, with

increasing t*, the bivalves started to shift their burrowing modes,

showing inclined complete burrowing, and then inclined partial

burrowing. Indeed, the burrowing angle h and the normalized

burrowing depth |z*| decreased significantly with increasing t*
(p,0.0001, Table 3A,B). At this stage, individual bivalves that

failed to burrow in the sediment started to emerge (Table 1).

Eventually, when t* reached a certain value t* = 0.18 kPa, all of

the juvenile bivalves reached the non-burrowing state with h = 0

and |z*| = 0.

The above results indicate that the burrowing mode shift

occurred in a certain range of sediment hardnesses t*. This means

that there exist two burrowing criteria below or above which the

bivalves accomplished vertical burrowing or failed to burrow,

respectively. For the purpose of later discussion, we denote here

the former and latter criteria by t*v and t*f, respectively. Such

burrowing criteria and burrowing mode adjustment can also be

confirmed from the observed bivalve responses at different stages

of growth (Figure 4B, C, D, E, Table 3A,B).

A notable difference is that both the normalized burrowing

depth |z*| and burrowing angle h decreased significantly with

increasing shell length L (p,0.001, Table 3A,B). Indeed, the adult

bivalves (L = 30 mm and 50 mm) did not exhibit the vertical

burrowing regime even under the lowest hardness, t* = 0.07 kPa

corresponding to loosely packed submerged sediments with

Dr = 40% (Figure 1D). This indicates decreasing burrowing

capability toward adult stages with increasing shell lengths

(Table 3A,B).

The results of the GAM analysis further showed that there exists

a peak in the burrowing capabilities among the juvenile stages

(Figure 5). Indeed, the juvenile bivalves with L = 10 to 20 mm

achieved the highest burrowing capabilities of all growth stages for

Ruditapes philippinarum.

Donax semigranosus showed the same general burrowing charac-

teristics in response to increasing hardness of the surficial intertidal

sediments (Figure 6, Table 3A,B). Namely, there were three

distinctive burrowing regions, namely, vertical burrowing, bur-

rowing mode shift, and burrowing failure, depending on the

magnitude of the sediment hardness t*. Notably, both burrowing

criteria t*v = 0.13 kPa and t*f = 0.36 kPa for Donax semigranosus

were higher than those for all growth stages of Ruditapes

philippinarum, by comparing Figures. 4 and 6, and also as shown

in Tables 1–3.

Discussion

Mechanics of burrowing criteria and burrowing mode
shift

The above results demonstrate that in both bivalves R.

philippinarum and Donax semigranosus, there exist two burrowing

criteria and burrowing mode adjustment to variations in hardness

t*, as assessed by the vane shear strength, of the surficial intertidal

sediments. To discuss the underlying mechanics further, we

present a conceptual model based on consideration of the energy

principle of bivalve burrowing (Figure 7). With reference to

Figure 2, the bivalve burrowing consists of two processes, the

Table 3. Model selection results for (A) burrowing depth z* and (B) burrowing angle h on Ruditapes philippinarum and Donax
semigranosus.

A. Global model AIC: 201.47, best model AIC: 193.40 B. Global model AIC: 221.12, best model AIC: 216.48

Explanatory variables Estimate SE z value p Estimate SE z value p

Intercept 211.10 1.34 28.273 ,0.0001 9.53 1.16 8.222 ,0.0001

Species 3.68 0.69 5.303 ,0.0001 23.35 0.64 25.254 ,0.0001

Shell length 0.07 0.02 4.382 ,0.0001 20.05 0.01 23.402 0.0007

Sediment hardness 35.85 3.99 8.989 ,0.0001 232.17 3.54 29.100 ,0.0001

A generalized linear model (GLM) with a binomial error distribution to examine the effect of species, shell length, and sediment hardness on burrowing depth z* and
burrowing angle h. Only the best fitted models (the smallest AIC models) are shown.
doi:10.1371/journal.pone.0025041.t003

Figure 4. Burrowing criteria and burrowing mode adjustment in Ruditapes philippinarum. Measured normalized burrowing depth z* and
burrowing angle h versus sediment hardness for five stages of growth: (A) L = 5 mm, (B) L = 11 mm, (C) L = 20 mm, (D) L = 30 mm, and (E) L = 50 mm.
The sediment hardnesses t* were varied by changing suctions s and sediment relative densities Dr at 40%, 60%, 80%, as shown in Table 1 and
Figure 1D. Data represent mean values 6 SE. The results of the related statistical analyses (GLM) are shown in Table 3A,B.
doi:10.1371/journal.pone.0025041.g004
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swing-up from the sediment surface and the insertion of its body

into the sediment. The required burrowing energy E for these two

processes can be expressed in the following form:

E~
L

2
:h:w(L):gzt�:a:L3:sin h: z�j jƒEc(L), ð4Þ

where a is an intrinsic parameter pertaining to an individual traits,

and Ec (L) is the burrowing capacity, which essentially depends on

the shell length L. The second term of eq. (4) stems from the

concept of soil mechanics such that the soil resistance to insertion

depends on the soil shear strength, and the depth and angle of

insertion [39]. Eq. (4) tells us that the required energy for both the

swing-up and insertion decrease with decreasing burrowing angle

and depth (self-burial) under a given state t*.

In the vertical burrowing region (t*,t*
v), the relationship

EvEc(L) holds true, and thus the bivalve can complete the ideal

vertical burrowing naturally within its own burrowing capacity.

However, under situations where t* exceeds the vertical burrowing

region, the required burrowing energy reaches its capacity

E~Ec(L), and therefore the bivalve tries to compensate for an

excessive burrowing energy above its capacity by shifting its

burrowing mode to the inclined mode in view of eq. (4). This

means that the increase in t* in this region (t*
v#t*#t*

f) yields

continuous decreases in the burrowing angle h and the normalized

burrowing depth |z*|. Also, as the maximum burrowing capacity

has already been reached in this region, there starts to occur a

selection of individuals that can and cannot afford to undergo the

burrowing mode shift, where the latter leads to a non-burrowing

state. Eventually, insertion of the foot itself becomes impossible in

the region of burrowing failure (t*.t*
f).

The above discussions suggest that, even in the vertical

burrowing region, the bivalves may take an option of undergoing

the inclined burrowing mode due to its lower energy expenditure,

subsequently making their bodies upright in the sediment.

However, this post-uprighting process requires them to push

the sediment laterally as well as upward and to overcome the

accompanying high passive earth pressure due to sediment

pushing [39]. Therefore, the bivalves should undergo vertical

burrowing to reach the stable vertical position in the sediment.

Since insertion of the body with a lower apex angle requires less

energy at a given burial depth in the sediment [43], the value of the

parameter a in eq. (4) becomes lower for a sharper apex, such as that

of Donax semigranosus, than for a more round apex, such as that of R.

philippinarum (Figure 2). This means that D. semigranosus reaches its

burrowing capacity at higher hardness t* than R. philippinarum does,

giving rise to the higher burrowing criteria for D. semigranosus.

Overall, this conceptual model is capable of consistently

accounting for the observed bivalve responses, namely, the

manifestations of vertical burrowing, burrowing mode shift, and

burrowing failure, in response to the change in hardness due to the

varying geoenvironmental conditions.

Role and implications of burrowing criteria and
burrowing mode shift

The surficial sediments of intertidal flats and beaches exhibited

distinct variations in hardness due to the effects of suction dynamics

that represent suction development and suction dynamics-induced

sediment compaction [19] (Figure 3). The simulated geophysical

Figure 5. Results of statistical analysis (GAM) for the juvenile to
adult Ruditapes philippinarum. A generalized additive model (GAM)
with a binomial error distribution to examine how burrowing response
co-varied with shell length and sediment hardness in R. philippinarum.
The response variable for the model was binary data on vertical
burrowing and burrowing mode shift (a and b in Table 1) and
burrowing failure (c in Table 1). The solid and dotted lines represent the
mean and 95% confidence intervals, respectively.
doi:10.1371/journal.pone.0025041.g005

Figure 6. Burrowing criteria and burrowing mode adjustment
in Donax semigranosus. Measured normalized burrowing depth z* and
burrowing angle h versus sediment hardness for L = 10 mm. The
sediment hardnesses t* were varied by changing suctions s and
sediment relative densities Dr at 40%, 60%, 80%, as shown in Table 2
and Figure 1D. Data represent mean values 6 SE. The results of the
related statistical analyses (GLM) are shown in Table 3A,B.
doi:10.1371/journal.pone.0025041.g006
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environmental conditions involving suction, relative density, and

hardness of the surficial intertidal sediments were all realistic values

seen in the field. Notably, both R. philippinarum and Donax semigranosus

showed acute sensitivities in their responses, giving rise to the

transitions between vertical burrowing, burrowing mode shift, and

burrowing failure, to variations in such prevailing geoenvironmental

conditions. Under conditions where burrowing fails to take place,

the bivalves become exposed at the sediment surface. Hence, they

can be easily transported away offshore or onshore by waves and

currents [31] and are exposed to fatal risks from predators [32] and

also from direct rays of the sun [33], all of which reduce the chances

of survival.

The burrowing mode shift shows a distinct ability of the bivalves

to adapt to a harder geophysical environment. Indeed, the

combined results from the experiments, field surveys, and the

conceptual model demonstrate that the bivalves assess the

hardness of the surficial sediments and sensibly adjust their

burrowing modes in order to cope with a hardness greater than

what they can cope with in their normal vertical modes. The

inclined burrowing that enables complete burial should substan-

tially reduce the risk of being caught by predators or washed away

when they persist in the normal vertical mode and become

exposed under such severe geoenvironmental conditions.

With given siphon sizes, however, inclined burrowing means

shallower burial depth, which decreases the chance of survival

[29], compared with vertical burrowing, which assures an ideal

stable position in the sediment in terms of feeding strategy and

resistance against hydrodynamic forcing. Furthermore, with

increasing hardness, inclined burrowing is accompanied by

selection of individuals exhibiting partial burrowing and burrow-

ing failure (Tables 1 and 2). Hence, vertical burrowing conditions

may represent suitable geoenvironmental conditions for burrow-

ing, and thus for their survival.

Bivalves, as suspension-feeders, consume oxygen and food from

the overlying water, whose availability may depend on the

hydroenvironmental conditions. Here, we show that the bivalve

responses to the varying geoenvironmental conditions have

important implications for the adult–juvenile spatial distributions

of R. philippinarum. Namely, for the adult R. philippinarum, the

suitable vertical burrowing conditions represented looser states of

submerged sediments with Dr,40%. In contrast, the burrowing

capability increased considerably toward juvenile stages of R.

philippinarum, who accomplished vertical burrowing even under the

densest state of submerged sediments with Dr = 80% (Tables 1 and

3A,B). This marked contrast may elucidate the mechanism

underlying the observed cross-shore distributions of adult R.

Figure 7. Energy-based conceptual model to account for the three distinctive burrowing regions for Ruditapes philippinarum and
Donax semigranosus. For the bivalve with an individual traits, E denotes the required burrowing energy as a function of the shell length L, sediment
hardness t*, burrowing angle h and normalized burrowing depth z*. Ec (L) denotes the burrowing capacity of the bivalve at a given growth stage. t*v

represents the burrowing criteria below which the bivalve accomplishes vertical burrowing. t*f represents the burrowing criteria above which the
bivalve fails to burrow.
doi:10.1371/journal.pone.0025041.g007

Figure 8. Sketch showing the measured relationships between
swash-induced suction dynamics and three burrowing regions
for Donax semigranosus. The average swash intervals observed during
the spring low tides at Yuigahama and Kujyukuri beaches ranged from
20 s to 10 min. When swash retreated in the course of the swash
repetitions, suction increased to 2 kPa, corresponding to a 20- to 50-
fold increase in the sediment hardness at the sandy beach habitats
(Figure 3A).
doi:10.1371/journal.pone.0025041.g008
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philippinarum that were limited to the lower intertidal zones

(Shirakawa tidal flat, [35]) where the sediments remained loose

with Dr,40% under negative suctions (Figure 3B), whereas

juveniles exhibited much wider distributions in the entire range

of intertidal zones involving denser sediments with Dr<80% ([35],

Figure 3B).

Similarly, in bar–trough intertidal sediments, suction develop-

ment and suction dynamics-induced sediment compaction at the

bar [19] hinder effective burrowing for all sizes, particularly adult

R. philippinarum (Table 1, Figure 4). This can account for the

popular concentrated shellfish gathering at the water’s edge, where

the sediments remain loose due to the absence of suction, yet are

dynamically more stable than the adjacent troughs as part of the

persistent sandbars [26], thereby preserving a suitable geoenvir-

onment for the burrowing throughout the course of the tides. This

may lead to an effective habitat design for R. philippinarum in the

framework of ecological restoration [44].

Also, once the bivalve is brought to the sediment surface due to

hydrodynamic forcings, bioturbation, or human disturbances,

whether or not the bivalve can resettle in the sediment depends on

the balance between the changing burrowing capabilities and the

ensuing geoenvironment. Such a balance could have a long-lasting

impact on the life cycle of R. philippinarum from juvenile to adult in

given particular habitats.

From conservational and fishery points of view, recruitment of

post-larval R. philippinarum can be enhanced by sediment reworking

because the burrowing capability is low until the juvenile stage

(Figure 5). This would be effectively done with the management of

suction, which is closely linked with micro-topography and

groundwater level [19], since the hardness variation is essentially

brought about by suction (Figure 3).

The burrowing criteria and burrowing mode shift manifested

in D. semigranosus at higher geoenvironmental ranges than all sizes

of R. philippinarum. Also, D. semigranosus burrowed faster than all

sizes of R. philippinarum. These may reflect the adaptations of D.

semigranosus to the geoenvironmental changes that occur more

rapidly and severely in intertidal zones of exposed sandy beaches

than in intertidal sandy flats. Indeed, the suction dynamics at

sandy beach habitats is brought about by the swash in addition to

the tide (Figure 8). Donax species are well-known for their rapid

burrowing behavior, which is considered to be governed by the

swash climates under given grain sizes [8],[11],[12],[25]. That is

to say, the bivalves that have migrated on a given swash need to

burrow rapidly in order to escape from the wash out due to the

next swash. However, our field surveys combined with the

experimental results demonstrated that between each swash,

which had intervals ranging from 20 s to 10 min, the ground-

water level fluctuated [45],[46], causing suction dynamics that

gave rise to the burrowing failure regime (Figure 8). In fact,

during the course of the swash repetitions, suction increased to

s = 2 kPa, which corresponded to a 20- to 50-fold increase in

hardness at the sandy beach habitats (Figures 3A and 8). In

contrast, D. semigranosus could not burrow when the groundwater

level became slightly below the sediment surface such that

z = 27 mm with s = 0.07 kPa for Dr = 80% and z = 217 mm

with s = 0.17 kPa for Dr = 60% that gave rise to the same

burrowing criteria t*f = 0.36 kPa (Table 2, Figure 6). The above

results clearly indicate that the bivalves need to burrow rapidly

not to escape from the next swash, but to avoid the preceding

rapidly increasing hardness of the surficial intertidal sediments,

making burrowing physically impossible (Figure 8). This demon-

strates a new mechanism for their behavioral adaptation as

governed by the rapidly changing geoenvironment at beaches.

The preceding discussion of their traits further implies that

the streamlined shape of Donax may also be a result of the

morphological adaptation to the severer geoenvironmental

changes ensuing at the beaches.

The present study has revealed two new burrowing criteria and

burrowing mode adjustment to varying geoenvironmental condi-

tions in the two different species of bivalves, R. philippinarum and D.

semigranosus. It also highlighted their mechanics, as well as their role

and implications, in the adult–juvenile spatial distributions and

behavioral and morphological adaptations at the intertidal flats

and beaches. Ongoing and future sea level rises will change the

state of long-term groundwater level fluctuations and thus suction

dynamics, relative density, and hardness of the surficial intertidal

sediments. On the basis of the integrity of the responses of the

bivalves to varying geoenvironmental conditions, the results and

discussions presented in this paper may serve as a basis of not only

the ensuing but also the future bivalve responses to geoenviron-

mental changes in intertidal zones.
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