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Abstract

A conserved eag domain in the cytoplasmic amino terminus of the human ether-a-go-go-related gene (hERG) potassium
channel is critical for its slow deactivation gating. Introduction of gene fragments encoding the eag domain are able to
restore normal deactivation properties of channels from which most of the amino terminus has been deleted, and also
those lacking exclusively the eag domain or carrying a single point mutation in the initial residues of the N-terminus.
Deactivation slowing in the presence of the recombinant domain is not observed with channels carrying a specific Y542C
point mutation in the S4–S5 linker. On the other hand, mutations in some initial positions of the recombinant fragment also
impair its ability to restore normal deactivation. Fluorescence resonance energy transfer (FRET) analysis of fluorophore-
tagged proteins under total internal reflection fluorescence (TIRF) conditions revealed a substantial level of FRET between
the introduced N-terminal eag fragments and the eag domain-deleted channels expressed at the membrane, but not
between the recombinant eag domain and full-length channels with an intact amino terminus. The FRET signals were also
minimized when the recombinant eag fragments carried single point mutations in the initial portion of their amino end, and
when Y542C mutated channels were used. These data suggest that the restoration of normal deactivation gating by the N-
terminal recombinant eag fragment is an intrinsic effect of this domain directed by the interaction of its N-terminal segment
with the gating machinery, likely at the level of the S4–S5 linker.
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Introduction

Potassium channels encoded by the human ether-a-go-go-related

gene (hERG) mediate the cardiac repolarizing current IKr [1,2].

Mutations in the hERG gene and drug inhibition of hERG channels

underlie inherited and acquired type 2 long QT syndrome [1,3–8],

a ventricular repolarization disorder that predisposes affected

individuals to ventricular arrhythmia and sudden death [3,9,10].

Mammalian ERG channels also play an important role in setting

the electrical behavior of various cell types, including pituitary

lactotrophs, hippocampal astrocytes, glomus carotic body cells,

pancreatic b-cells, smooth muscle myocytes, neurones and several

tumour cells (reviewed in [11–15]).

The crucial determinant of the physiological roles of hERG is its

ability to operate as an inward rectifier, even though the channel

has the typical molecular topology of depolarization-activated

channels [16]. Thus, due to the slow activation superposed on a

fast inactivation upon depolarization, a voltage-dependent reduc-

tion in whole cell conductance and a bell-shaped I–V relationship

is observed at positive voltages. During repolarization, hERG

currents increase due to fast recovery from inactivation followed

by a much slower deactivation. This maintains the channels open

during longer periods of time at negative voltages, giving rise to the

typical hERG tail currents [15]. In the case of the heart, this

contributes to the repolarization of the cardiac action potential

and to the prevention of arrhythmias induced by early after-

depolarizations or ectopic beats [17,18].

The molecular basis for the slow deactivation that contributes to

the critical hERG tail currents is not totally understood. Previous

work has indicated that an N-terminal domain conserved in the

eag channel family comprising residues 1–135 of hERG (the eag

domain), determines its slow deactivation, since channels with

deletions of most of the amino terminus or of just the eag domain,

with short deletions in the N-terminal most segment of the amino

terminus, or with point mutations in the eag domain, all show rapid

deactivation kinetics [19–26]. Since short deletions at the

beginning of the N-terminus mimic the effect of more extensive

amino terminal removal, it has been proposed that the initial

subdomain segment of the eag domain (residues 1–26) acts as an

essential regulator of hERG deactivation gating [22,23,26]. The
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crystal structure of the eag domain revealed the presence of a Per-

Arnt-Sim (PAS) folding for residues 26–135, but it provided no

structural information about the initial 1–26 N-terminal segment

[21]. Recent NMR data identified two structurally differentiated

regions in the N-terminal tail of hERG, an initial flexible and

unstructured stretch extending up to residues 10–13, and an

amphipathic a-helix constituted of amino acids 13–23 [26–28].

Subsequently, both the initial flexible segment and the alpha

helical structure have been proposed to participate in conferring

slow deactivation kinetics to the channel, but different interpre-

tations about their contribution to this effect have been made.

Thus, a critical role of the N-terminal a-helix and the PAS

stabilizing the open state by an interaction with the C-terminal C-

linker and cNBD domains [27] or with the S4–S5 linker in the

central channel core [28], has been proposed. Alternatively, it has

also been suggested that, rather than being involved in specific

interactions with other domains, the amphipathic helix could act

mainly as a spacer between the initial portion of the N-terminus

and the PAS bound to some place in the central channel core, to

adequately position the initial unstructured segment for interaction

with the gating machinery at the level either of the S4–S5 linker or

of the C-linker and cNBD domains [26].

We have recently demonstrated the physical proximity between

the initial segment of the hERG N-terminus and the S4–S5 linker,

since a disulfide bond can be formed between these intracellular

domains carrying engineered cysteines, covalently locking the

channels in a non-conductive state [29]. Such close proximity

might allow for a physical interaction between these cytoplasmic

domains. On the other hand, it has also been shown that the

expression in Xenopus oocytes of a recombinant hERG N-terminal

eag domain fragment tagged with a fluorescent protein, is able to

restore normal deactivation gating properties of channels lacking

almost the whole amino terminus [30,31]. We have tried to gain

some additional insights into the molecular requirements for this

functional restoration to take place in transfected mammalian

cells. In particular, we have checked the impact of structural

alterations smaller than the truncation of the whole amino

terminus in the channel molecule, since in addition to the well

recognized influence of the initial eag domain structures on

deactivation, both activation and deactivation gating can also be

affected by the amino-terminal proximal domain under certain

conditions [24,25]. Therefore, the effect of the recombinant N1-

135/YFP fragment was systematically tested against the D2-135

channel background that only lacks the portion of the protein

corresponding to the exogenously added segment. We also

checked the influence of single point mutations in the putatively

interacting partners (i.e. the recombinant N-terminal domain, the

N-terminal most segment of the channel N-terminus, and the S4–

S5 linker), on re-establishment of normal slow deactivation. Our

data suggest that the restoration of normal deactivation gating by

the recombinant eag fragment is an intrinsic effect of this domain

driven by the interaction of its initial segment with the gating

machinery, likely at the level of the amino terminal portion of the

S4–S5 linker.

Materials and Methods

Molecular Biology
The hERG, hERG D2-135 and hERG D2-370 clones have

been previously described [24,25]. To generate the single point

mutants V3C, Y542C and G546C, site-directed mutagenesis was

performed using the PCR-based overlap method with custom-

made primers as described previously [24,25,29,32–34]. For

mammalian cell expression, the different hERG constructs and

mutants were cloned into pcDNA3. Generation of the N- and C-

terminally labeled WT hERG channels, TRH receptors labeled

with CFP, and the hERG channel double labeled with both CFP

and YFP, has been detailed elsewhere [35]. For C-terminal

labeling of the hERG mutants, HindIII/BstEII or BstEII/BglII

fragments from the different variants were used to replace the

corresponding fragment in the full-length fluorescent hERG

channel.

To generate the C-terminally labeled eag domain construct a

HindIII/BamHI cDNA fragment containing the coding region

corresponding to hERG residues 1–135 was cloned in-frame in

pEYFP-N1 (Clontech). For this purpose a forward primer

containing a HindIII site and the coding sequence corresponding

to hERG amino acids 1–10 was used in PCR reactions with a

reverse primer containing the coding sequence for residues 125–

135 and the recognition site for BamHI. An analogous strategy

was used to obtain the different variants with point mutations in

the N-terminal segment of the labeled 1–135 YFP eag domain

(V3C, R4C, G6C, V8C) by introducing the appropriate mutation

in the forward primer used for amplification. All constructs were

verified by standard fluorescence-based DNA sequencing to

confirm the mutations and verify the absence of errors.

The membrane-localized CFP-YFP tandem construct (Rho-

PYC) was kindly provided by Dr. Teresa Giráldez (University of

La Laguna, Canary Islands, Spain). It contains the prenylation site

of Rho added to the C-terminal domain of a YFP-CFP fusion [36],

to anchor the fluorescent protein tandem to the lipids via the Rho-

lipid binding motif.

Tissue culture and transfections
Human embryonic kidney (HEK293) and Chinese hamster

ovary (CHO) cells were grown at 37uC in a humidified

atmosphere of 95% air and 5% CO2 and plated in 35 mm

diameter tissue culture plastic dishes containing poly-L-lysine

coated coverslips for electrophysiological measurements as previ-

ously described [35]. For TIRF and TIRF/FRET imaging, cells

were seeded on 35 mm poly-D-lysine coated FluoroDish tissue

culture dishes with cover glass bottom (WPI Inc, Sarasota, FL,

USA). Cells were transiently transfected using Lipofectamine 2000

(Invitrogen) with 2–3 mg of plasmid DNA as previously described

[35]. When co-transfecting constructs, plasmids were added in the

indicated ratios, to maintain a proper molar ratio of expressed

donor and acceptor fluorophores. When non-labeled channels

were used for recordings, the plasmid DNA containing the

channel construct was mixed with pEGFP-N3 encoding enhanced

green fluorescent protein (eGFP) as a marker for transfection in a

5:1 ratio. Recordings were typically performed 24–72 h after

transfection.

Electrophysiology
Ionic current recordings were performed at room temperature

in the whole-cell configuration of the patch-clamp technique as

detailed elsewhere [35]. The standard extracellular saline

contained (in mM): 137 NaCl, 4 KCl, 1.8 CaCl2, 1 MgCl2, 10

glucose, and 10 HEPES (pH 7.4 with NaOH). The pipette

solution contained (in mM): 140 KCl, 2 MgCl2, 0.7 CaCl2, 1.1

EGTA, and 10 HEPES (pH 7.4 with KOH). Kinetics parameters

of activation and deactivation were obtained as previously

described [24,25,34,35,37,38]. Time constants of deactivation

were determined from negative–amplitude biexponential fits to the

decaying phase of the tail currents upon membrane repolarization

at the indicated potentials, using a function y = Af exp(2T/tf)+As

exp(2T/ts)+C in which T is time, tf and ts are the time constants

of fast and slow components, Af and As are the relative amplitudes

Recombinant N-Terminal Domain and hERG Gating
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of these components, and C is a constant. For simplicity, only the

values of the deactivation time constants corresponding to the fast

decaying current major component at negative voltages are shown

on the figures.

TIRF microscopy and FRET measurements
Through-the-objective TIRF microscopy was achieved with a

Zeiss Axiovert 100 microscope equipped with a vibration isolation

system (Newport, Irvine, CA, USA) to minimize drift and noise, a

Zeiss 1006 oil-immersion TIRF objective (1.45 NA; Oil, Alpha

Plan Fluar), and a laser light delivery system consisting of an

Argon-Ion LGK7880ML laser outputting 488 and 514 nm lines

and a 442 nm Toptica iBeam 45 mW solid state laser. The

excitation light was selected with an acoustic optical tunable filter

(TILL Poly-line AOTF-controlled multi laser-line combiner; Till-

Photonics, Gräfelfing, Germany). The light from a Polychrome IV

monochromator was also combined with the laser into a single

condenser (Till-Photonics). The Zeiss filter cube contained a

polychroic mirror with reflection bands at 442 and 514 nm and

band-passes at 475/30 and 560/60 nm (z442/514/633 rpc;

Chroma Technology, Bockinham, VT, USA), and two z442/

5146 and z440/514 m excitation and emission filters (Chroma),

respectively. CFP and YFP emissions were simultaneously

collected using a DUAL-View Micro-Imager (Optical Insights,

Santa Fe, NM, USA) equipped with a filter cube containing a

HQ535/30 emission filter to isolate YFP emission, and a 505dcxr

dichroic mirror for separation of CFP and YFP emission

wavelengths. Images were collected and processed with an Imago

12-bit CCD camera (Till-Photonics). The camera, laser system

and monochromator were controlled by TILLvisION 4.0

software, that was also used for image recording and processing.

The TIRF angle was adjusted by eye to give the signature TIRF

illumination to the experimental chamber.

FRET efficiency was measured by donor (CFP) de-quenching

following photobleaching of the acceptor (YFP) fluorophore [35].

Due to the reduced depth of field of the 10061.45 NA objective

and to the critical dependence of the TIRF images on the focal

plane, it was important to adjust the focus before every image

acquisition. Whereas this was not relevant for the photobleachable

YFP, it led to some unavoidable direct photobleaching of CFP that

compromised the rigorous quantification of CFP fluorescence

(FCFP) increases in a continuous way during the relatively long

YFP photobleaching period. This also precluded the possibility of

performing linear regression of FCFP recovery versus FYFP decrease

to extrapolate the FCFP values to zero FYFP [35]. As an alternative,

the objective was attached to a piezo focusing device controlled by

the TILLvisION software, and used to acquire a z stack series of

CFP fluorescence images both before and after YFP bleach.

Election of the best in focus focused image of the series was

subsequently performed either by eye or using the AutoFocus

function of the software. Carefully adjusting the laser power to the

necessary FCFP output in each experiment, caused little CFP

photobleaching (,2%). To attain a near maximal level of YFP

bleach to accurately know the magnitude of the FCFP increase, we

used a combination of 514 nm laser and monochromator also

tuned to 514 nm to permanently illuminate the YFP during the

photobleaching period. As previously reported [36], this increased

the bleaching level by <20%, up to around <95% of total YFP

bleaching in 60–90 s. Individual cells in which the bleach level did

not reach at least 90% were discarded from the analysis. Cells

showing dim fluorescence leading to very low signal-to-noise ratios

and those in which the FYFP/FCFP ratio did not reach a ratio that

ensured a proper YFP/CFP molar stoichiometry were also

discarded [35]. Quantitative FRET levels were calculated by

drawing regions of interest around the entire area of the cell and

subtracting the background in a cell-free region for each image.

Alternatively, the pre- and post-bleach cell masks were aligned

using the TILLvisION software to compensate for any drift during

the bleaching process, and images were compared pixel by pixel

using NIH Image J [36]. Analogous results were obtained with and

without this analysis variant. FRET was expressed as FRET

efficiency (EFRET in %), defined as described previously by the

expressions EFRET = EFRET(APP) aD6100 = [12(FDA/FD)] aD6100

in which FDA and FD are the fluorescence intensities of the donor

before and after photobleaching of the acceptor, respectively, and

aD would indicate the fraction of total donor forming donor-

acceptor complexes, a factor approaching 1 under our experi-

mental conditions [35].

Statistics
All values are presented as the mean 6 S.E. Statistical

significance was tested with the parametric unpaired two-tailed

Student’s t-test. When significant differences in standard deviation

were present an alternate Welch’s test or non-parametric

Wilcoxon or Mann-Whitney test were also used. The results

obtained were considered significant at p,0.05.

Results

Restoration of slow WT-type deactivation kinetics of
N-terminus structurally altered hERG channels by a
recombinant eag domain

Truncation of almost the whole amino terminus of the hERG K+

channel induces a marked acceleration of deactivation kinetics [19–

25]. To explore the structural determinants of this behavior, we

used HEK-293 and CHO mammalian cells in which a recombinant

hERG N-terminal eag domain fragment genetically fused to the

fluorescent protein eYFP (N1-135/YFP) was coexpressed with N-

terminus truncated channels (hERG D2-370), and also channels in

which only the region corresponding to the eag domain was deleted

(hERG D2-135). In both cases, channel constructs were also fused at

the carboxy terminus to eCFP, since it has been demonstrated that

fluorescent proteins fused to the hERG C terminus do not

appreciably modify their gating properties [30,35]. Apart from

providing a suitable platform for subsequent spectroscopic analysis,

the presence of the fluorescent label seemed to improve the

functional expression level of some mutated channels (not shown),

and did not influence the functional effects of the recombinant

domains (see below). Consistent with previous results [30,31], when

N1-135/YFP was coexpressed with hERG D2-370 (N1-135/YFP:

hERG D2-370 DNA ratio 1:3), the deactivation kinetics were

significantly (p,0.02 at all voltages) slowed to a rate similar to that

of WT hERG (Fig. 1A,B). Almost identical results were obtained

when the recombinant eag fragment was coexpressed with channels

lacking only the protein segment corresponding to the eag domain

(hERG D2-135, p,0.01), indicating that it is not necessary to

remove the whole amino terminus, but only the segment used to

restore the function (i.e. the eag domain), to achieve complete

recovery of normal deactivation properties (Fig. 1C). Remarkably,

the effect of the recombinant eag fragment was dose-dependent,

since only a modest slowing of tail current decay was attained when

the DNA ratio of N1-135/YFP to hERG D2-135 was lowered from

1:3 to 1:10 (Fig. 1C). On the other hand, further increases in the

proportion of N1-135/YFP relative to hERG D2-135 channels (at

DNA ratio 1:1) did not modify the results obtained with the 1:3 ratio

(not shown). This saturation of the regulatory effect indicates that

the deactivation slowing is not caused by a non specific binding of

the recombinant domain to the channel molecule. It is important to

Recombinant N-Terminal Domain and hERG Gating
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note that the slowing down of closing by the recombinant eag

domain is not due to a variation of the driving force at a given

voltage, because the I–V relationship of the hERG D2-135 channel

remained the same in the presence of N1-135/YFP (Fig. S1 and

Table S1). Similar results were obtained with the hERG D2-370

channel (Table S1). Therefore, no differences in total potential

energy driving deactivation (i.e., 2(DGo-zgEF), see [25,39,40]) were

expected with or without the recombinant eag fragment. Note also

that unlike the recovery in the closing rates observed with the

recombinant eag domain, the rightward shifts in steady-state

activation voltage dependence caused by the N-terminal deletions

were not reversed with N1-135/YFP. This suggests that the effect of

the recombinant eag fragment was selective for deactivation and that

the shift in the equilibrium toward the closed state caused by the

deletions was not corrected in the presence of the exogenously

added eag domain.

It has been proposed that the initial segment of the eag domain

constitutes an essential regulator of hERG deactivation [26–28]. We

sought to use a single point mutant in the initial residues of the

channel N-terminus, which had also shown fast rates of deactiva-

tion. Thus, we studied the behavior of a full-length channel

construct carrying a Val to Cys mutation at residue 3 of the protein

sequence (hERG V3C), both in the absence and the presence of the

recombinant N1-135/YFP fragment. Surprisingly, the accelerated

deactivation kinetics of the V3C channel mutant were significantly

slowed by N1-135/YFP (Fig. 1D), despite the maintenance of a

complete and structurally unaltered protein structure in the amino

terminus (e.g. the amphipathic a-helix and the PAS domain). This

demonstrates that the single point mutation is able to induce enough

disengagement of the N-terminus from the closing machinery,

allowing the recombinant fragment to bind and recover a

substantial fraction of deactivation slowing.

We also checked if the presence of the fluorescent protein labels

in both the channel and the recombinant fragment could influence

the observed recovery of deactivation. However, almost the same

result as that observed with the hERG V3C channel C-terminally

labeled with CFP, was obtained with unlabeled hERG V3C

(Fig. 1D). This indicates that the restoration of normal gating was

due to a specific interaction of the recombinant eag fragment with

the channel, and not to an unspecific effect directed by some

residual oligomerization of the fluorescent labels.

Role of the hERG S4–S5 linker in restoration of slow
deactivation kinetics by the recombinant eag domain

Apart from its role coupling the voltage sensor to the activation

gate [41], the S4–S5 linker region has been repeatedly proposed as

a crucial structure for the influence of the N-terminus in the hERG

gating properties [20–26,28,30,40,42–46]. In fact, it is well known

that mutations in this linker result in accelerated deactivation rates

similar to those observed when the amino terminal domain is

deleted [19–26,30,41,44,45]. However, direct proof of a physical

interaction between the amino terminal domains and the linker

has been lacking. We reasoned that if the recombinant eag domain

regulates deactivation through a direct interaction with the gating

machinery at the level of the S4–S5 linker, structural perturbations

in this linker could impair the effect of the exogenously added

fragment. Consistent with this hypothesis, introduction of a Tyr to

Cys mutation at residue 542 of the S4–S5 linker (hERG Y542C)

accelerated channel deactivation to a level similar to that observed

with the amino terminal modified channels. Furthermore, the

presence of the mutation abolished the recovery of the closing

kinetics induced by the N1-135/YFP fragment (Fig. 2A,B). An

obvious interpretation of these results could be that the

recombinant fragment is not able to compete with the wild-type

eag domain, which occludes its access to the interaction site in the

channel core. The results shown in Fig. 2C demonstrate that this is

not the case. Thus, the presence of the recombinant N1-135/YFP

domain also failed to recover the slow gating of the eag domain

deleted channel that also carries a Y542C mutation (hERG D2-

135/Y542C construct). Almost identical results were obtained

with the D2-135/Y542C channel labeled with CFP at the C-

terminus (not shown). This indicates again that the recombinant

fragment effect was not driven by any unspecific interaction

between the fluorescent protein labels.

It has been shown previously that introduction of a Gly to Cys

mutation at residue 546 of the S4–S5 linker does not accelerate

hERG channel closing [25,46]. Also, a Cys at this position is not

able to effectively establish a disulfide bond with a second cysteine

located at the beginning of the hERG amino terminus [29]. To

check the specificity of the Y542C effect, we generated a new

channel construct (hERG D2-135/G546C) lacking the eag domain

and with a G546C mutation in the S4–S5 linker. In contrast to the

results observed with the Y542C mutation, in the presence of N1-

135/YFP, the closing kinetics of the D2-135/G546C construct was

slowed down to the level observed in wild-type hERG (Fig. 2D).

These results further suggest that the structural modification of

Tyr 542 at the beginning of the S4–S5 linker specifically impairs

the noncovalent interaction of the soluble eag domain with the

channel core, precluding the restoration of normal deactivation by

the recombinant fragment.

Impairment of the recombinant eag domain effect by
mutations in the initial residues of its amino end

Recent results from our laboratory indicated that a disulfide

bond can be formed between the N-terminal most segment of the

amino terminus and the initial segment of the S4–S5 linker in

which pairs of engineered cysteines have been introduced,

demonstrating a physical proximity between these regions which

may allow for a physical interaction between these cytoplasmic

domains [29]. This prompted us to check whether mutation of the

residues located at the beginning of the N1-135/YFP N-terminus

could phenocopy the effect of the Y542C mutation. The effect of

the recombinant fragment restoring normal deactivation kinetics

of the hERG D2-135 channel was partially reversed when the

recombinant N1-135/YFP carried the V3C mutation at the

beginning of the amino terminus (Fig. 3). However, when this

construct was coexpressed with the recombinant eag domain

mutated at residues 4 or 6 of the protein sequence (R4C and G6C

eag domain mutants), the deactivation kinetics were the same as

those observed with the hERG D2-135 channel alone. Finally, the

ability of the recombinant fragment to restore slower closing was

significantly improved when the hERG D2-135 channel was

coexpressed with a recombinant N1-135/YFP domain with a V8C

mutation, indicating a certain degree of specificity for the

mutation-induced impairment of the eag domain restoration

effects. Since these data were obtained with D2-135 channels

and N1-135 fragments both carrying fluorescent labels, they

further demonstrate that the presence of the labels does not act as

a determinant for restoration of normal gating. Furthermore, they

emphasize the relevance of an unaltered structure at the beginning

of the eag domain sequence to allow its functionally productive

interaction with the gating machinery.

Detection of channel protein and recombinant domain
interactions by TIRF/FRET

As a direct test for the physical proximity between the

recombinant fragments and the hERG channels showing restored

Recombinant N-Terminal Domain and hERG Gating
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gating, we measured the Förster fluorescence resonance energy

transfer (FRET) levels between both putatively interacting

partners. For this purpose donor de-quenching following photo-

bleaching of the acceptor fluorophore was used (see Methods), in

order to accurately quantify the FRET efficiencies [35].

Measurements were performed under total internal reflection

microscopy (TIRF) to selectively measure FRET in the proximity

of the plasma membrane, since only fluorescent proteins at a

Figure 1. Recombinant eag domain-induced recovery of deactivation slowing in h-ERG channels carrying different structural
alterations in the N-terminus. A. Schematic of the hERG. K+ channel with N-terminal eag domain and S4–S5 linker indicated. The PAS region of the
eag domain is represented as a dotted line. The S4–S5 linker and the initial segment of the amino terminus corresponding to residues 1–26 are
illustrated as thick solid lines. The pulse protocol used to study the deactivation kinetics and a family of representative tail currents obtained from WT
channels at the times marked by the dashed box, are shown on the right. Note the initial increase in current due to recovery from inactivation and the
subsequent decay from which deactivation rates are measured at every repolarization voltage. Note also the reversion of the current flow at around
290 mV. B–D. Effect of the N1-135/YFP recombinant fragment on deactivation kinetics of hERG channels truncated in the N-terminus (D2-370; panel
B), lacking only the eag domain (D2-135; panel C) or carrying a single point V3C mutation (black sphere) at the beginning of the amino terminus (V3C,
panel D). Channel schematics and families of representative tail currents elicited using the pulse protocols illustrated in panel A, are shown on the left.
For clarity, the fluorescent labels located at the C-terminus of the channel constructs and the recombinant fragments are not represented in the
schemes. Plots of fast deactivation time constants at different repolarization voltages derived from bi-exponential fits to the decaying phase of the
tail currents (see Methods) are shown on the right. Data from WT hERG channels are also shown as dotted lines for comparison. Open and closed
symbols correspond to data obtained in the absence or the presence of the recombinant fragment, respectively. DNAs for the channel and the N1-
135/YFP fragment were maintained at a 3:1 ratio during the transfection. The triangles in C illustrate deactivation rates from D2-135 channels co-
expressed with the recombinant fragment using a DNA ratio of 10:1. Circles and squares in the right panel of D represent the results of experiments
using V3C channels with and without a C-terminal fluorescent label, respectively. n$6 cells for each.
doi:10.1371/journal.pone.0024674.g001
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distance of <100 nm above the glass coverslip where the cells are

attached are studied, thus avoiding most of the contamination

from cytoplasmic signals [47]. In our case this could be

particularly important because, unlike other typical membrane

proteins, only a reduced fraction of the total fluorescence

corresponding to properly assembled and fully functional hERG

complexes is detected in the perimeter (i.e. the plasma membrane)

of the hERG-labeled expressing cells [35]. Furthermore, the TIRF

conditions would also tend to minimize the nonspecific signal due

to the presence in the cells of the soluble eag domain labeled with

the acceptor YFP.

The advantages of using TIRF microscopy to optically isolate

the fluorescently labeled proteins in the proximity of the plasma

membrane, allowing for signal selection from the molecules

located there, are illustrated in Fig. S2. Subsequently, we

employed the CFP and YFP pairs of labeled channels and

Figure 2. The recombinant N1-135/YFP fragment does not restore slow deactivation of hERG channels carrying a Y542C mutation
in the S4–S5 linker. A. Schematic of the WT hERG K+ channel and representative tail currents obtained with the indicated protocol are shown for
comparison. B. Lack of effect of the N1-135/YFP recombinant fragment on deactivation kinetics of Y542C channels. Channel schematics and families
of representative tail currents are shown on the left. Black dots indicate the approximate position of the Y542C mutation. Plots of fast deactivation
time constants at different repolarization voltages are shown on the right. Open and closed symbols correspond to data obtained in the absence or
the presence of the recombinant fragment, respectively. Data from WT hERG channels are also shown as a dotted line for comparison. n = 10 and 6 for
Y52C and Y542C+eag, respectively. C. The N1-135/YFP recombinant fragment does not slow down deactivation kinetics of D2-135 channels carrying
a Y542C mutation in the S4–S5 linker. Open and closed symbols correspond to data obtained with the D2-135 plus Y542C construct in the absence
and the presence of the recombinant fragment, respectively. Data from WT, D2-135 and Y542C hERG channels are also shown as dotted and dashed
lines for comparison. n = 6 and 5 for D2-135/Y52C and D2-135/Y542C+eag, respectively. D. The presence of the N1-135/YFP recombinant fragment
fully restores slow deactivation gating of D2-135 channels carrying the G546C mutation in the S4–S5 linker. Open and closed symbols correspond to
data obtained with the D2-135 plus G546C construct in the absence or the presence of the recombinant fragment, respectively. Data from WT and
D2-135 hERG channels are also shown as dotted and dashed lines for comparison. n = 6 and 8 for D2-135/G546C and D2-135/Y546C+eag, respectively.
doi:10.1371/journal.pone.0024674.g002
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recombinant fragments to test for their physical proximity and/or

interaction at the plasma membrane using FRET spectroscopy

under TIRF conditions. As a positive control, we first used a fully

functional hERG construct double-labeled at the amino and

carboxy terminal ends (hERG 1YFP/1158CFP), known to yield a

substantial level of FRET with epifluorescence imaging [35]. In

this case, photobleaching of YFP by more than 90% resulted in a

significant increase in CFP fluorescence (Figs. 4A,C), yielding an

EFRET value of 13.4761.04% (n = 35), similar to that obtained

with the same construct under wide-field epi-fluorescence

(11.6460.62%, n = 23; p = 0.17, Student’s t test). The level of

FRET was even higher (23.362.26%, n = 15) when we used a

plasma membrane-targeted fusion construct of CFP and YFP

(Rho-pYC) in which a near maximal proximity between both

fluorophores is expected (Fig. 4C). By contrast, the averaged

FRET efficiency became almost zero when two presumably non-

interacting CFP/YFP-tagged proteins were used, namely the

hERG channel and the TRH receptor labeled at their carboxy

ends (Figs. 4B,C; see also [35]). In all cases, we ensured that no

correlation exists between the FRET efficiency of every individual

Figure 3. Mutations in the initial segment of the recombinant N1-135/YFP fragment affect its ability to recover deactivation
slowing in hERG D2-135 channels. A. Schematic of the WT hERG K+ channel and representative tail currents obtained with the indicated protocol
are shown for comparison. B. Schematic of the D2-135 channel and the recombinant fragment with the approximate positioning of the single point
mutations (black dot). For clarity, the fluorescent labels located at the C-terminus of the channel constructs and the recombinant fragments are not
represented in the schemes. C. Representative tail currents from CFP-labeled D2-135 channels co-expressed with the N1-135/YFP recombinant
fragments carrying the indicated mutations. Horizontal scale bars correspond to 0.5 s. D. Plots of fast deactivation time constants at different
repolarization voltages. Data from D2-135 channels with and without the recombinant fragment as in Figure 1 (open symbols) are also shown for
comparison.
doi:10.1371/journal.pone.0024674.g003
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cell and the expression level of the labeled proteins (not shown).

These data indicate that the FRET signals are not due to

aggregates formed by overexpressed proteins or to random

encounters between diffusing fluorophores. Therefore, we used

the FRET/TIRF combination as a reporter of proteins in the

plasma membrane, to test for the physical proximity between the

recombinant eag domain and the channel.

In cells coexpressing eag hERG domains fused to YFP and

hERG D2-135 carrying CFP at the C-terminus, the level of EFRET

amounted to 13.2561.05% (n = 12; Fig. 5A). Interestingly, this

value was almost the same as that measured with the hERG

double labeled at the amino and carboxy ends (see above). This

demonstrates that the eag domain locates in close proximity to the

core of hERG D2-135 channels at the membrane. It also suggests

that such close proximity may allow for a physical interaction

between them related to the functional restoration of normal

deactivation by the recombinant eag fragment. By contrast, a

negligible EFRET was observed between N1-135/YFP and wild-

type hERG labeled with CFP at the C-terminus (0.4962.99%,

n = 12). In this case the covalently attached endogenous eag

domain is probably occluding access of the exogenous domain to

its interaction site in the channel core. Finally, a slightly weaker

but substantial EFRET (9.6163.8%, n = 13; p = 0.36 vs D2-135) was

observed in cells coexpressing N1-135/YFP and hERG V3C

mutant channels C-terminally labeled with CFP.

Effect of mutations in the S4–S5 linker and the amino
end of the eag domain on TIRF/FRET levels

We next asked whether the FRET efficiency could be modified

by introducing structural perturbations in the putative interacting

partners. We observed no FRET when the D2-135 channel

carried a Y542C mutation at the beginning of the S4–S5 linker

(hERG D2-135/Y542C, Fig. 5A). By contrast, a FRET signal

(12.562.1%, n = 11; p = 0.66 vs D2-135) equivalent to that

observed with the D2-135 channel, was obtained when a cysteine

substituted the endogenous glycine in position 546 of this linker

(hERG D2-135/G546C). As discussed below, these data would be

consistent with the low potency of the recombinant fragment to

restore the slow deactivation of the Y542C mutant, and also with

the full recovery of the slow deactivation kinetics of the D2-135/

G546C construct. Very reduced EFRET levels were also observed

when the recombinant N1-135/YFP fragment carried single point

mutations in residues 3, 6 or 8 (V3C, G6C and V8C mutants;

Fig. 5B). Thus, the FRET levels were minimized not only in the

presence of a mutation that fully knocked out the ability of the

recombinant eag to restore deactivation kinetics of the hERG D2-

135 channels (Fig. 3), but also with the V3C and V8C mutated

N1-135/YFP fragments, which were able to partially restore

hERG D2-135 deactivation gating. It seems unlikely that a simple

amino acid change in the otherwise unordered initial segment of

the eag domain [26–28], causes a gross perturbation in the general

structure of this domain. Therefore, the reduction of FRET in

these experiments rather suggests that the mutations could cause a

subtle alteration in the relative orientation and/or distance

between the fluorophores, due to a weakened interaction of the

mutated eag domain with the channel. Further work and perhaps

use of smaller size and/or differently located fluorophores would

be necessary to provide an adequate interpretation of these results.

Discussion

In this study, we present data indicating that subtle structural

variations either in the N-terminal most segment of the eag

domain, or in the initial portion of the S4–S5 linker, strongly

influence the ability of a recombinant eag domain fragment to

restore normal deactivation gating of hERG channels showing

accelerated closing kinetics. Using Xenopus oocytes, it has been

shown that injection of a peptide corresponding to the entire eag

domain, direct application of a peptide corresponding to the first

16 amino acids of this domain to excised membrane macro-

patches, or expression of a recombinant N1-135 eag domain, can

slow deactivation gating of N-terminally truncated hERG

channels [21,23,30]. Our results using transfected mammalian

cells demonstrate that to achieve complete recovery of normal

deactivation properties by the recombinant eag domain it is not

necessary to delete the whole amino terminus, but only the

segment corresponding to this domain. Interestingly, our data also

indicate that the exogenously added eag domain is able to revert a

substantial fraction of the acceleration of closing induced by a

single point V3C mutation at the beginning of the hERG amino

terminus. The reason for which the recombinant fragment only

partially restores slow deactivation of the V3C mutant, even

though the mutation is sufficient to cause a similar disabling of the

amino terminal-dependent slowing of deactivation as with the

more extensive truncations of the N-terminus, remains to be

established. It is probable that although the single point mutation

is able to cause enough disengagement of the N-terminus from the

closing machinery to induce a strong acceleration of closing, some

remaining endogenous channel structures may partially antago-

nize the interaction between the relatively large N1-135/YFP

fragment and the V3C channel. This could also be consistent with

the fact that the FRET/TIRF signal detected between the

recombinant eag fragment and the full length hERG V3C/

1158CFP channel is slightly smaller than that observed between

hERG D2-135 and the eag domain, which fully restores the slow

channel deactivation.

Noticeably, the FRET was negligible between the N1-135/YFP

fragment and the D2-135 channel carrying the Y542C mutation in

the S4–S5 linker, whose deactivation is not slowed down when the

recombinant eag domain is supplied. In contrast, a maximal level

of FRET was obtained with the G546C mutant, in which the slow

deactivation rate is fully restored by the exogenous domain. Note,

however, that a precise correlation between the quantitative level

of FRET between proteins labeled with the quite voluminous

GFP-based fluorophores and the extent of the kinetic restoration

may be difficult to establish, since the molecular proximity

measured by FRET and the specific molecular interaction on

which the functional effect relies, may not necessarily coincide

[35,48]. Therefore, although strongly indicative of interactions

between the two proteins to which these fluorophores are linked,

little indication is provided by the FRET measurements about the

short range distances determining the deactivation slowing.

The fact that the eag domain-dependent recovery effect is

impaired by point mutations both in the initial portions of the

N1-135 eag domain and in the S4–S5 linker suggests that an

interaction takes place between these regions in the full-length

channels in order to regulate deactivation gating. This would also be

consistent with our recent data showing that a disulfide bond can be

formed between the N-terminal most segment of the amino

terminus and the initial segment of the S4–S5 linker after placing

a pair of engineered cysteines at residues Val3 and Tyr542,

respectively [29]. However, whereas the oxidation-dependent

modification is preferentially exerted on closed channels locking

them in a non-conducting state, the putative interactions proposed

here must take place in the open state leading to a slowing of closing.

The interaction between the initial segment of the amino terminus

and the S4–S5 linker in the closed state of the V3C+Y542C double

mutant is fully compatible with the observed modulation of

Recombinant N-Terminal Domain and hERG Gating

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e24674



activation properties by the N-terminal-most region of the channel

N-terminus and with the reported ability of the Y542C mutation to

positively shift the steady-state activation V0.5 and its less negative

DGo, therefore shifting the equilibrium toward the closed state [25].

Nevertheless, covalently locking the channels in the non-conductive

state using disulfide bond formation precludes further analysis of

additional interactions and may limit other subsequent dynamic

rearrangements of the gating machinery. Thus, it is possible that

Figure 4. Detection of FRET between hERG N- and C-terminally-located CFP and YFP tags under TIRF conditions, but not between
two non-interacting proteins. A. Fluorescence micrographs under TIRF illumination of a single cell expressing a hERG construct double-labeled
with YFP and CFP in the amino and carboxy terminal ends, respectively. CFP images were obtained before (left) and after (right) selective
photobleaching of YFP as illustrated in the middle panels. CFP and YFP images were adjusted so that the same pixel range was used before and after
photobleaching. Note that maximal pixel intensities are not the same for CFP and YFP. Note also the substantial increase in CFP emission after the
effective YFP photobleaching, indicative of FRET. A cartoon illustrating the performance of a z stack to optimally focus the micrographs
corresponding to the CFP emission channel (see Methods) is shown superimposed to the CFP images. B. Absence of CFP emission increases in cells
co-expressing hERG channels labeled with CFP at the carboxy terminus and TRH receptors C-terminally labeled with YFP. C. Positive and negative
controls for quantification of EFRET under TIRF microscopy. FRET efficiency was quantified as the fractional increase in CFP emission following
photobleaching of YFP as described in Methods. Schematics of the constructs are shown on top of the bars. Data from a hERG construct double-
labeled with YFP and CFP at the amino and carboxy terminal ends (hERG 1YFP/1158CFP), a membrane targeted tandem construct of CFP and YFP
(Rho-PYC), and co-expressed C-terminally labeled hERG and TRH receptors (hERG 1158CFP+TRH-R 412YFP), are shown. Data from 35, 22 and 15 cells,
respectively, were averaged for the graph. White and black ovals represent YFP and CFP, respectively.
doi:10.1371/journal.pone.0024674.g004
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although subtle differences may exist between the two conforma-

tional (and functional) states of the protein, a physical proximity

between the amino end and the S4–S5 linker can be maintained in

both the closed and the open states. In this context, rather than

being considered a static and permanent situation, the eag/S4–S5

interaction documented here might be considered as part of a more

extensive network of cytoplasmic interactions [29] also involving the

PAS and cNBD domains, dynamically modulated during the

different phases of the gating process.

The results presented here suggest that the N-terminal most

unstructured and flexible segment of the hERG eag domain [26–

28], plays a major role in deactivation slowing through specific

interactions with other domains of the channel. This would be

consistent with the concept that conformational flexibility and

disorder can help some protein domains to engage in fast yet

selective interactions crucial for specific functions [49,50]. Indeed,

intrinsic flexibility of the S4–S5 linker, one of the partners of the

N-terminus/core interacting pair proposed here, has recently been

recognized as an essential modulatory factor of hERG gating [46].

Poor structuralization and flexibility of the N-terminal most

segment of the amino terminus has been recognized in Shaker-like

channels as an important factor for allowing this protein segment

to snake its way to reaching its interaction site near the channel

and produce N-type inactivation [51–53]. If this characteristic is

similarly involved in docking the initial segment of the hERG

amino end with its interaction site in the channel core (e.g. to the

S4–S5 linker) remains an interesting possibility.

It should be noted that our results do not rule out the existence of

other sites of interaction between the cytoplasmic domains themselves

and between them and the transmembranal core, contributing to

modulation of activation and deactivation gating. These could

include the intra- and/or inter-subunit interaction of the PAS domain

and the amphipathic 13–23 a-helix ahead of it with the C-terminal

cNBD [26,27,31] and perhaps with some regions of the S4–S5 linker,

to adequately position the flexible N-terminal tail region towards the

gating machinery [26]. Remarkably, the N-terminal subdomains of

Figure 5. Comparison of FRET/TIRF levels using different hERG constructs and recombinant N1-135 eag domain fragments. A. Effect
of single point mutations in the amino end and the S4–S5 linker of hERG on EFRET levels between recombinant N1-135/YFP eag domains and D2-135
hERG channels C-terminally labeled with CFP. Averaged data from 7–13 cells are shown. Note the analogous EFRET values obtained with constructs
D2-135 and 1YFP/1158CFP in panel C of Figure 4, and with hERG D2-135/G546C and RhoPYC also in Figure 4C. B. Effect of single point mutations in
the initial residues of the N1-135/YFP eag domain on EFRET levels. Averaged data from 8–13 cells are shown on the graph. Data from WT and D2-135
channels co-expressed with recombinant eag domains without mutations as in panel A, are also shown for comparison.
doi:10.1371/journal.pone.0024674.g005
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the eag domain, the PAS domain and the cNBD all appear to be

required but none sufficient to maintain slow deactivation kinetics

[26,27,31]. However, the fact that in the absence of any other

structural alteration a subtle change in the N-terminal most segment

of the amino terminus (e.g the V3C mutation or the short D2–9

deletion [26]) can maximally affect deactivation, points to a direct

primary role for this region in the modulation of channel gating.

An interesting observation noted here was that the recovery of

normal deactivation kinetics of hERG D2-135 channels by the

recombinant N1-135 eag domain, was not accompanied by a

similar reversion of the positive shift in activation voltage

dependence caused by the deletion. This suggests that the

influence of the amino terminus on activation is exerted by a

different mechanism that remains impaired in the presence of the

recombinant fragment. Obvious candidates to participate in this

phenomenon are the N-terminus proximal domain, the S4–S5

linker and the C-terminus C-linker/CNBD. In the first possibility,

alterations in the electrostatic influence exerted by an amino acid

cluster near the S1 transmembranal segment on the gating

machinery at the level of the S4–S5 linker [24,40] could be

involved. Interestingly, it has been suggested that this influence

may depend on the proper orientation of the first 16 N-terminal

residues of the eag domain toward the S4–S5 linker in the channel

core [25]. Note, however, that some hormonal effects on

activation gating that require an intact amino terminus, are

exerted in the absence of this cluster [34]. Finally, a significant

impact of the CNBD on hERG activation, perhaps independent of

any interaction with the PAS domain and apart from its influence

on deactivation gating, has also recently been described [31].

In summary, based in our work and that of others [26–31] we

propose an unifying model, in which the PAS domain and the

amphipathic a-helix ahead of it act as a scaffold and a spacer

helping to correctly orientate the initial unstructured and flexible

tail of the amino end towards the amino terminal portion of the

S4–S5 linker to modulate hERG gating (this report and [26,29]).

As described for the C-terminal C-linker/cNBD regions in HCN2

[54], these regions of hERG could hang centrally below the

transmembrane core, establishing at their top and side surfaces

extensive contacts with the more peripheral eag domains [35]. This

would help to place the PAS domain and the amphipatic a-helix in

position allowing them to also influence channel gating, via the

S4–S5 linker and/or allosterically through their interaction with

those C-terminal structures [27,31] that are directly linked to the

channel gate at the bottom of helix S6. Altogether, this would

strengthen our recent proposal that physical interactions between

some cytoplasmic hERG domains constitute an essential compo-

nent of the gating machinery [29]. Further work will be necessary

to confirm the overall validity of our model and, in particular, to

unravel the details about its conformational rearrangements and

dynamic variations during the functionality of the channel.

Supporting Information

Figure S1 Recombinant N1-135 eag domain fragment
coexpression has no effect on activation voltage depen-
dence rightward shifts caused by the D2-135 deletion.

Pulse protocol and voltage-clamp recordings of a family of currents

from h-ERG D2-135 channels in the absence or the presence of

coexpressed N1-135/YFP recombinant eag domain fragments, are

shown at the top. Normalized I/V relationships for the indicated

constructs are shown at the bottom. Fractional activation curves

were obtained from tail current data at 250 mV after 1 or 5 s

depolarizations between 280 and +80 mV in 20 mV increments

from a holding potential of 280 mV. The continuous lines

correspond to Boltzmann curves h(V) = Imax [1/(1+exp((V2V0.5)/

k))], which best fitted the data. Plots corresponding to wild-type

hERG with and without CFP label in the carboxy end (ref. 35) are

also shown for comparison.

(TIF)

Figure S2 Selective excitation of fluorophores at plasma
membrane and submembrane regions near the cover-
slip-cell interface under TIRF illumination. A. Compari-

son of cell fluorescence images under wide-field epi-fluorescence

(left) and TIRF illumination (right) after focusing the objective at the

level of the glass coverslip-water interface. Note the notorious

reduction of the background and out-of-focus fluorescence under

TIRF conditions, associated with a remarkable increase in the

sharpness and contrast of the layer corresponding to the cell

footprint in contact with the glass, mainly representing the plasma

membrane environment. Fluorescence micrographs correspond to

a HEK-293 cell expressing YFP-labeled TRH receptors known to

preferentially distribute in the plasma membrane (ref. 35). B.

TIRF-induced preferential photobleaching of labeled proteins in

and near the plasma membrane abutting the coverglass. Note the

very similar fluorescence levels observed in the cells imaged with

epifluorescence microscopy and focused near the cell center, both

before and after nearly complete selective photobleaching with

TIRF illumination of the layer in contact with the glass surface.

This indicates that TIRF-based photobleaching preferentially

targets fluorescence emissions from YFP-labeled TRH-R mole-

cules at/near the plasma membrane compared with other cellular

pools of the same molecules.

(TIF)

Table S1 Comparison of activation parameters for all
constructs in the presence and the absence of the
recombinant fragment.

(DOC)
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