
Mutational Analysis of Photosystem I of Synechocystis
sp. PCC 6803: The Role of Four Conserved Aromatic
Residues in the j-helix of PsaB
Wu Xu1*, Yingchun Wang2*, Eric Taylor1, Amelie Laujac1, Liyan Gao2, Sergei Savikhin3, Parag R. Chitnis4¤

1 Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America, 2 Key Laboratory of Molecular and Developmental Biology,

Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China, 3 Department of Physics, Purdue University, West Lafayette, Indiana, United

States of America, 4 Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America

Abstract

Photosystem I is the light-driven plastocyanin-ferredoxin oxidoreductase in the photosynthetic electron transfer of
cyanobacteria and plants. Two histidyl residues in the symmetric transmembrane helices A-j and B-j provide ligands for the
P700 chlorophyll molecules of the reaction center of photosystem I. To determine the role of conserved aromatic residues
adjacent to the histidyl molecule in the helix of B-j, we generated six site-directed mutants of the psaB gene in Synechocystis
sp. PCC 6803. Three mutant strains with W645C, W643C/A644I and S641C/V642I substitutions could grow
photoautotrophically and showed no obvious reduction in the photosystem I activity. Kinetics of P700 re-reduction by
plastocyanin remained unaltered in these mutants. In contrast, the strains with H651C/L652M, F649C/G650I and F647C
substitutions could not grow under photoautotrophic conditions because those mutants had low photosystem I activity,
possibly due to low levels of proteins. A procedure to select spontaneous revertants from the mutants that are incapable to
photoautotrophic growth resulted in three revertants that were used in this study. The molecular analysis of the
spontaneous revertants suggested that an aromatic residue at F647 and a small residue at G650 may be necessary for
maintaining the structural integrity of photosystem I. The (P700+ - P700) steady-state absorption difference spectrum of the
revertant F647Y has a ,5 nm narrower peak than the recovered wild-type, suggesting that additional hydroxyl group of
this revertant may participate in the interaction with the special pair while the photosystem I complexes of the F649C/
G650T and H651Q mutants closely resemble the wild-type spectrum. The results presented here demonstrate that the
highly conserved residues W645, W643 and F649 are not critical for maintaining the integrity and in mediating electron
transport from plastocyanin to photosystem I. Our data suggest that an aromatic residue is required at position of 647 for
structural integrity and/or function of photosystem I.
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Introduction

Photosystem I (PS I) is a protein-pigment complex in

cyanobacteria and higher plants. It mediates the light-driven

electron transfer from plastocyanin to ferredoxin [1]. High

resolution structures for cyanobacterial [2] as well as for higher

plant PS I [3,4] are known from X-ray crystallographic studies.

Monomers of cyanobacterial PS I complex contain twelve protein

subunits, ninety six chlorophyll a molecules, twenty two b-

carotenes, two phylloquinones, four lipid molecules, and three

[4Fe-4S] clusters. Structure of cyanobacterial PS I is known at

2.5 Å resolution and the available tools of reverse genetic study for

cyanobacterial PS I make it an excellent system to investigate the

role of protein environment in modulating spectral, redox, and

electron transfer properties of cofactors in a complex system [2,5].

The PsaA and PsaB proteins of PS I form the core that binds the

P700, which is a dimer of chlorophyll a and a9 molecules, and the

chain of electron acceptors A0 (a chlorophyll a molecule), A1 (a

phylloquinone) and FX (a [4Fe-4S] cluster). In addition, the core

binds most other cofactors. The peripheral PsaC subunit binds the

terminal electron acceptors, FA and FB, both of which are [4Fe-

4S] clusters. Upon receiving energy of a photon, excitation of

P700 leads to charge separation. An electron is transferred to A0,

then to A1 and ultimately to a ferredoxin molecule through the

series of three [4Fe-4S] clusters [6,7]. On the lumenal side of

thylakoid membranes, the PS I complex accepts electrons from

plastocyanin. In cyanobacteria and algae, cytochrome c6 can

functionally replace plastocyanin-deficient strains [8] as well as

under copper-deficient conditions [9]. However, Arabidopsis

plants mutated in both plastocyanin-coding genes and with a

functional cytochrome c6 cannot grow photoautotrophically

because of a complete blockade in light-driven electron transport,

demonstrating that in Arabidopsis only plastocyanin can donate

electrons to photosystem I in vivo [10].
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Protein environment around the reaction center P700 has many

major functions: to maintain structure around the reaction center,

to impart special properties of the P700 chlorophyll pair, and to

provide pathway(s) for transfer of electrons from the docked

plastocyanin (or cytochrome c6) to P700. In the 2.5 Å resolution

crystal structure of PS I, two chlorophyll molecules of P700 are

confined by symmetrically positioned four a-helices, A-j, A-k and

B-j, B-k [2]. The histidyl residues in A-j and B-j a-helices provide

the fifth ligands to both Mg2+ of the chlorophyll dimer of P700

[11,12]. Depending on an organism, the electron donor molecules

to PS I dock on specific sites on the lumenal side of PS I [13–16].

Specific residues in PsaF form integral components of the docking

site [16]. Additionally, plastocyanin or cytochrome c6 interacts

directly with the PsaA and PsaB core subunits [15,17,18] and

donate electrons to P700+ [17,19–22]. The kinetic data of PS I

reduction by plastocyanin corresponds to a monophasic process

while the PS I reduction by cytochrome c6 follows biphasic kinetics

with the first fast component in the microsecond range [13,22].

This fast phase of PS I reduction has been typically described by a

kinetic model involving transient complex formation before the

electron-transfer step [13,22], suggesting that cytochrome c6

interacts with PS I and donates an electron to P700+ in vivo

following a mechanism more complex and more efficient than that

of plastocyanin although there are discrepancies between in vivo

and in vitro results [23]. Since P700 is positioned 10–15 Å away

from lumenal surface [24], the protein components filling the

space between the electron donor and P700 may provide a

pathway for directly or indirectly migrating electrons that reduce

P700+.

In an attempt to dissect the special structural properties of the

P700 environment in the PsaB side, we performed site-directed

mutagenesis of residues near P700. A major feature of the helical

regions near P700 is the presence of several aromatic residues.

When we compared primary sequences of the A-j and B-j helices,

the j helix of PsaB was found to contain four highly conserved

aromatic amino acid residues, W643, W645, F647 and F649

(Figure 1). This arrangement of aromatic residues is absent in the

corresponding region of PsaA (Figure S1). We postulated that one

or more of these aromatic residues in PsaB could be involved in

maintaining the architecture around P700. It is also possible that

these aromatic residues are integral components of the electron

transfer path between the redox centers of plastocyanin or

cytochrome c6 and P700+ since it was reported that side chains

of aromatic residues can serve as an electron tunneling bridge

[25,26]. One recent report indicated that photo-oxidation of the

chlorophyll a/a9 heterodimer, P700, causes shifts in the vibrational

frequencies of two or more tryptophan residues in PS I,

demonstrating that role of aromatic residues in electron transfer

[27]. To test these hypotheses, we replaced each of the four

aromatic residues with cysteinyl residues. Two additional con-

served residues in the B-j helix, H651 and S641, were also replaced

by cysteinyl residues. H651 provides the fifth ligand to Mg2+ of

P700 on PsaB side. Here we present properties of the mutant

strains and their PS I complexes.

Materials and Methods

Cyanobacterial culture
Cells of Synechocystis sp. PCC 6803 [17] (thereafter Synechocystis)

were cultured at 30uC in BG-11 medium [17,28,29] supplemented

with glucose (5 mM) and appropriate antibiotics (30 mg/L

chloramphenicol or 50 mg/L kanamycin). Liquid cultures were

aerated by shaking at 120 rpm or by bubbling with air. Different

light intensities were used depending on the strains or experiments:

low (2–3 mmoles m22 s21), medium (40 mmoles m22 s21), and

high (160 mmoles m22 s21). The growth of Synechocystis cells was

monitored from density of cell cultures measured as absorbance at

730 nm (A730 nm), which was determined using an UV-160U

spectrophotometer. Cells were harvested during the exponential

growth phase, resuspended in 0.4 M sucrose, 10 mM NaCl,

10 mM MOPS-HCl (pH 7.0), and stored at 220uC for further use

[17].

Plasmids and site-directed mutagenesis
Plasmid pGEM3C+ contains the C-terminal region of the psaB

gene, resistance genes for chloramphenicol and ampicillin, and

760 bp region down stream of the psaB gene [30,31]. A PCR-

based method [32] was used to generate the mutant recombinant

DNAs using pGEM3C+ as a template. Table S1 lists the

oligonucleotides that were used to engineer the mutant DNAs.

To clone the amplified DNAs, the fragments, the third PCR

products were digested with Eag I and Apa I and ligated into

pGEM3C+ that had been digested with the same enzymes. The

amplified regions from the ligated pGEM3C+ were sequenced

completely to confirm the presence of desired mutations and to

ensure fidelity of Taq polymerase.

Transformation of Synechocystis sp. PCC 6803
Plasmid DNAs with appropriate recombinant constructions

were used to transform the recipient strain PCRTDB. Transfor-

mation and selection of transformants were performed under low

light intensity (2–3 mmoles m22 s21) at 30uC according to the

references [29–31]. Chloramphenicol-resistant transformants were

selected, segregated for more than three generations and replica-

plated to confirm the absence of kanamycin-resistance gene. After

segregation, the genomic DNAs were isolated from the mutant

strains. The fragments containing the mutated sites were amplified

by PCR and the fragments were sequenced to confirm the

mutations. The pGEM3C+ plasmid with wild type gene was

introduced back into the recipient strain PCRTDB to generate the

recovered wild type (RWT) which serves as a positive control for

these studies.

Physiological characterization of the mutant strains
All mutants, recipient strain and RWT were cultured in the BG-

11 medium with 5 mM glucose under 2–3 mmoles m22 s21 light

and were harvested at approximately 0.8 A730 nm/ml of the

culture. Cells were centrifuged at 4,000 g and pellet was

resuspended in BG-11 medium. The cells were pelletized again

and the procedure was repeated three times to remove all glucose.

Cells were grown at 30uC with or without glucose. Cultures were

shaken constantly at 120 rpm under different light intensities.

Biochemical characterization of the mutant strains
Isolation of thylakoid membranes and measurement of

chlorophyll content were performed according previously pub-

lished methods [33]. Light-driven PS I-mediated electron

transport from DAD/PC to MV was monitored using a Clark

type oxygen electrode (Hansatech, England) and used to examine

electron transport activity of PS I [34,35]. The PS I activity in the

membranes was also determined with NADP+ photoreduction

assay using cytochrome c6 and ferredoxin as electron donor and

acceptor, respectively [36]. PS II activity was measured as the

light-driven oxygen evolution, in which electrons are transferred

from water to p-benzoquinone via the PS II complex [37].

Accumulation of PS I proteins was examined by analytical SDS-

PAGE and immunodetection [38]. The antibodies for detection of

Function of Photosystem I
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PS I proteins have been described previously [36]. The PS I

complexes were purified and the mutant PS I complexes were

modified by biotin-maleimide according to a previously published

method [36]. For transient absorption spectroscopy, plastocyanin

from Synechocystis sp. PCC 6803 was purified as described

previously [39]. Kinetics of flash-induced absorbance changes in

PS I was followed at 820 nm. The experimental set-up, data

collection and kinetic analyses have been described previously

[13]. For experiments at varying ionic strength, the magnesium

salt was omitted and the ionic strength was adjusted at the desired

value by adding NaCl.

Generation and selection of spontaneous revertants
The mutant strains, that require glucose for their growth, were

cultured with 1 mM glucose under normal light and with air in

one-liter bottle for ten days. Glucose concentration for screening

revertants is five times less than the normal concentration in order

to increase the mutational frequency. The surviving cells were

collected and spread on the nutrient plates without glucose. The

plates were incubated under 40 mmoles m22 s21 light at 30uC to

screen for revertant colonies. This process was repeated until single

colonies appeared in plates after approximate 40 days. The

revertant colonies were grown in liquid medium for further

analysis. The genomic DNAs were isolated from each revertant.

The fragments containing the mutated sites were amplified by

PCR and the fragments were sequenced to examine the molecular

nature of reversion.

Spectroscopic characterizations of the revertants
The optical pump-probe spectroscopy system has been

described in detail elsewhere [40,41]. Pulses from a self-mode-

locked Ti:sapphire laser were amplified by a factor of ,105 at

1 kHz repetition rate in a regenerative amplifier. The 780 nm

output was converted to infrared signal and idler pulses in a Type I

BBO optical parametric amplifier. The signal output pulses were

frequency-doubled into tunable visible light pulses (600–730 nm),

which served as sample excitation pulses. Sample absorption was

probed with single filament broadband continuum light pulses

generated in a sapphire plate; cross-correlations between the pump

and probe pulses were typically 100–200 fs fwhm. Continuum

pulses were split into signal and reference beams, dispersed in an

Oriel MS257 imaging monochromator operated at ,3 nm

Figure 1. Amino acid sequence alignments of the A-j and B-j helices of the PS I core. The deduced protein sequences of the j-helices from
the PsaA and PsaB proteins of maize (Zea mays), rice (Oryza sativa), spinach (Spinacia oleracea), Arabidopsis thaliana, Chlamydomonas reinhardtii,
Synechocystis sp. PCC 6803, Synechococcus sp. PCC 7002 and Synechococcus elongatus PCC 7942 were aligned using Invitrogen software (Carlsbad,
CA). P700 ligands are indicated (P700).
doi:10.1371/journal.pone.0024625.g001
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bandpass, and directed onto separate Hamamatsu S3071 Si pin

photodiodes. Noise performance was near shot noise-limited; the

rms noise in DA was ,1025 for 1 sec accumulation time.

Operation in the annihilation-free regime was ensured by control

experiments in which the pump power was varied; all experiments

were performed at room temperature. Unless otherwise specified,

the pump and probe polarizations were separated by 54.7u
resulting in isotropic kinetic measurements.

All PS I samples contained 20 mM sodium ascorbate. As shown

by Savikhin et al. [42], samples in experiments conducted in total

darkness contained predominantly open reaction centers; contin-

uous illumination of the sample cell by a 3 V flashlight bulb

yielded samples in which the reaction centers were almost

exclusively closed. While it is known that recombination occurs

from the terminal acceptor (FA/B) with ,45 ms kinetics [43], we

have found that essentially all of the reaction centers are converted

into P700+ after ,4 sec of continuous illumination; regeneration

of P700 under dark conditions requires ,120 sec in 20 mM

ascorbate solution for WT. The latter process occurs directly from

the ascorbate anion: its kinetics are single-exponential, with rate

constant proportional to ascorbate concentration for concentra-

tions $20 mM. 1–5% of the unpaired electrons on FA/B
2 are

typically scavenged from the PS I complex prior to recombination,

and each PS I complex is excited hundreds of times during 4 sec

illumination. Hence, while continuous illumination can cause

substantial population buildup of long-lived P700+, such buildup is

negligible under short-pulse excitation [43]. Steady-state absorp-

tion spectra of PS I samples with open and closed reaction centers

were accumulated in a Perkin-Elmer Lambda 3B spectrophotom-

eter. The spectrophotometer modification for low-noise measure-

ment of absorbance changes in samples with closed and open

reaction centers has been described earlier [42].

Theoretical study of the point mutations
We performed a computational modeling study of a decapep-

tide fragment of PS I. The study focused on a target decapeptide of

PsaB from Synechococcus elongates (PDB ID: 1JB0), amino acids 650–

661 and P700 (Chlorophyll ID: A1011 and B1021). For inclusion

of amino acid environment, this study considered only PsaA and

PsaB, some 23,000+ atoms in all. This entailed removal of all other

polypeptide chains, chlorophylls, iron sulfur moieties, waters of

hydration and other noncovalent species associated with either

PsaA or PsaB. Amino acid replacements to derive the mutant cases

followed the replacements in the experimental protocols previously

discussed and nomenclatures were correspondingly changed to

Synechocystis in order to easily correlate this theoretical study to the

experimental results. In examining the mutational effects of

replacing amino acids from an energy standpoint, it was necessary

to retain the molecular environment of the targeted amino acids.

Thus examination of the energy of the native amino acid

sequences and then the energy of the mutant versions allowed

direct comparison within the same overall molecular environment

of PsaA and PsaB. The energy determinations involved first

establishing a base-line energy of the overall the WT PsaA and

PsaB. Replacement of each targeted amino acid with its mutant

amino acid then permitted determination of the energy of each

mutant system in turn.

The computational study employed HyperChem 7.52 (Hyper-

cube, Inc., Gainesville, FL, USA). In examining the WT structure

with HyperChem, the chlorophylls did not exhibit any atomic

charges. We employed the Extended Hückel method embodied

within the HyperChem program for assigning atomic charges to

the chlorophyll moieties. We used Mm+ of the HyperChem

program as the method for determining energies. Utilizing the

HyperChem Single Point (SP) energy calculation method, we

established a base-line energy, EWT, of the WT PsaA and PsaB.

The SP energy offers static properties of the target molecule. The

energy includes potential energy, electrostatic potential, molecular

orbital energies, etc. By repeating this SP calculation for each

minimized mutant variant in turn, each yielded an energy, Emut,

permitting the determination of each mutant’s DEmut = Emut

2EWT. Since replacing a native amino acid with another, the

mutant, the mutant amino acid side chain would not likely be

minimized as to its environment energy within PsaA and PsaB as

initially placed in the PS I fragment, though the native peptide

conformation was retained for the mutant. Before determining

DEmut, each mutant case amino acid replacement was minimized

within its local environment using Mm+. Once minimized, the SP

energy was determined for the overall mutant PS I system yielding

Emut for each mutant case affording direct comparison to the WT

PsaA and PsaB.

Results

Physiological characterization of mutant strains
The mutant strains showed differences in their color, which

might be due to the different chlorophyll levels. To quantify this

observation, we measured cellular chlorophyll content of the

RWT and mutant cells (Table 1). Cells of the H651C/L652M,

F649C/G650I and F647C mutants contained much less chloro-

phyll than that of the RWT strain, whereas the W643C/A644I

W645C and S641C/V642I mutations did not affect their

chlorophyll content significantly. To assess effects of mutations

on growth, the mutant strains were transferred initially to BG-11

plates without glucose. The H651C/L652M, F649C/G650I and

F647C mutants could not form visible colonies on BG-11 plates

without glucose. In contrast, the mutants with W645C, W643C/

A644I and S641C/V642I substitutions did not require glucose to

form colonies on plates, indicating their ability of photoautotro-

phic growth. To obtain more quantitative results on photoauto-

trophic and photoheterotrophic growth, the RWT, PCRTDB, and

mutant strains were cultured in liquid medium under different

light intensities and doubling times were determined. Under low

light intensity (2–3 mmoles m22 s21) with glucose in the BG-11

medium, all mutant strains except the recipient strain PCRTDB

showed similar doubling time of 25 to 34 hours (Table 1). While

the PCRTDB strain is known to grow only under the light

activated heterophotoautotrphic growth (LAHG) condition [44],

in our experiments it did not grow most likely because of the excess

reductants generated by PS II. Comparable rates of growth under

photoheterotrophic conditions indicated that the mutations did

not impair the ability to use glucose as an energy source. When the

RWT and mutant strains were cultured with glucose, all mutant

strains except the one with F649C/G650I substitution could grow

under normal light intensity (40 mmoles m22 s21) with only small

differences in their growth rates. However, their growth rates

differed significantly when grown under high light intensity

(160 mmoles m22 s21), even with glucose (Table 1). Light

sensitivity of these mutant strains indicates that the mutations

led to an imbalance between the activities of PS I and PS II.

Disrupted electron transfer path between PS I and PS II could

cause accumulation of electronic excitation energy and lead to

dangerous triplet formation and consequent damage due to singlet

oxygen. When the photoautotrophic growth of the strains was

tested under normal and high light intensity, the mutants with

H651C/L652M, F649C/G650I and F647C substitutions could

not grow under photoautotrophic conditions, which is consistent

with the observations of cell growth on plates. The mutant strains
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with W645C, W643C/A644I and S641C/V642I substitutions

could grow photoautotrophically, but at reduced growth rates.

Photosynthetic activities of mutant strains
Differences in the growth of mutants could result from reduced

PS I activity in the mutant cells. To investigate this possibility, we

studied the impact of the mutations on photosynthetic activities of

the membranes, which were estimated changes in oxygen

concentration due to electron transport through PS I or PS II

(Table 2).

The PS II activities were not affected substantially by the amino

acid replacements in a PS I core protein. The PS II activity was

assessed via oxygen evolution in which electrons are transferred

from water to p-benzoquinone via the PS II complex. On an equal

cell basis, the PCRTDB recipient and the F649C/G650I mutant

strain had lower PS II activity than that in the RWT cells. For

other mutants, the PS II activities ranged from ,90% of the PS II

activity of the RWT membranes.

PS I activity was monitored as the oxygen uptake in which

electrons are donated by DAD and accepted finally by MV

through the PS I complex. When the membranes of the recipient

strain were used in the assay, oxygen uptake was 216.67 nmol

O2/O.D.730?h, which is considered as the background activity.

Membranes of the RWT strain had an activity of 2405 nmol O2/

O.D.730?h. The H651C/L652M, F649C/G650I and F647C

mutants that contain substitutions in the interior of the B-j

transmembrane helix had lower activities (24%, 6% and 30% of

the RWT PS I activity, respectively). In contrast, the W645C,

W643C/A644I and S641C/V642I mutations that are close to the

exterior end of the helix did not affect the PS I mediated electron

transfer activity significantly. P700 content of the thylakoids, as

measured from the light-induced absorption changes at 820 nm,

was consistent with the PS I mediated electron transfer activities

(Table 2).

When plastocyanin, a physiological electron donor, was used in

the assay, the membranes of mutants with W645C, W643C/

A644I, and S641C/V642I substitutions showed similar activities

as with the artificial electron donor. In contrast, the membranes of

mutants with F647C substitution had near-zero activity and

H651C/L652M substitution had lower activity with plastocyanin

Table 1. Physiological characterization of the mutant cells.

Strains
Chlorophyll content
(mg/OD730/ml) Doubling Time (Hours)

With Glucose Without Glucose

Low Light Normal light High Light Normal Light High Light

RWT 3.5460.08 24.760.6 17.060.0 15.360.6 40.360.6 62.063.0

PCRTDB - -1 - - - -

H651C/L652M 1.4760.06 27.760.6 - - - -

F649C/G650I - 34.061.0 - - - -

F647C 1.5060.06 31.760.6 28.361.5 - - -

W645C 3.4760.05 27.060.0 17.660.6 17.660.6 42.361.2 64.764.5

W643C/A644I 3.5160.05 25.360.6 20.360.6 26.360.6 47.363.1 96.766.1

S641C/V642I 3.5160.09 25.360.6 17.760.6 15.760.6 41.062.0 61.764.5

1: ‘-’ indicates that the strains died or did not grow.
doi:10.1371/journal.pone.0024625.t001

Table 2. Biochemical characterization of the thylakoid membranes of the mutant strains.

Strains
PS II Activity (nmol
O2NOD730

21Nh21) PS I Activity1
P700 content of
thylakoids

DAD to MV (nmol
O2NOD730

21Nh21)
PC to MV (nmol
O2NOD730

21Nh21)
cyt c6 to fd (mmol
NADPHNOD730

21Nh21 (104 P700Ncell21)

RWT 287.067.0 (100) 2405.069.0 (100) 2617.0625.0 (100) 70.064.0 (100) 7.1

PCRTDB 199.3611.4 (69.4) 216.764.2 (4.1) Nd2 nd nd

H651C/L652M 268.7610.3 (93.6) 295.367.0 (23.5) 238.363.5 (6.2) 3.961.0 (5.6) 2.8

F649C/G650I 221.0615.5 (77.0) 223.064.6 (5.7) nd nd nd

F647C 256.7615.0 (89.4) 2121.0613.5 (29.9) 0.060.0 (0.0) 0.060.0 (0.0) 2.5

W645C 283.066.6 (98.6) 2396.3627.0 (97.9) 2606.0623.6 (98.2) 67.068.5 (95.7) 6.8

W643C/A644I 27868.2 (96.9) 2359.0623.6 (88.6) 2599.3621.5 (97.1) 65.369.1 (93.3) 7.3

S641C/V642I 285.3610.7 (99.4) 2403.3616.3 (99.6) 2608.7623.5 (98.7) 67.365.1 (96.1) 6.8

1: The activity results were normalized on equal cell basis and expressed as percentage of RWT level that is shown in parentheses. Level of P700 in DM extract was
expressed as 104 P700 per cell.

2: nd- not detected (most or all subunits of PS I could not be detected by Western blotting analysis).
doi:10.1371/journal.pone.0024625.t002
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as the electron donor, even though artificial electron donor was

able to support PS I-mediated electron transfer to 25–30% wild-

type levels (Table 2). Therefore, these mutations influence the

docking of plastocyanin and/or electron throughput from

plastocyanin to P700. A similar trend was observed when the

activity of PS I was measured as ferredoxin-mediated NADP+

photoreduction rate (Table 2). In these measurements, we used the

physiological electron donor (cytochrome c6) and the physiological

electron acceptor (ferredoxin) of PS I. Membranes of the H651C/

L652M, F649C/G650I and F647C mutants lacked the PS I

activity, whereas the W645C, W643C/A644I and S641C/V642I

mutants had PS I activities approaching the wild type levels.

Accumulation of PS I in thylakoid membranes of the
mutant strains

Reduction in the PS I activity in the mutant membranes could

result from the reduced specific activity of the complex or from the

decreased levels of PS I complex. To address these possibilities, we

estimated the P700 levels in the membranes (Table 2). There was a

variation in the cellular levels of P700 molar ratio, ranging from

undetectable levels in the F649C/G650I mutant to near RWT

levels in the W645C, W643C/A644I and S641C/V642I mutants.

The changes in the P700 content could result from altered

properties or diminished function of the special pair of chlorophyll

molecules that constitute the P700 reaction center. Alternatively,

the mutations may impair assembly or reduce stability of the

proteins and thus cause a reduction in the cellular levels of PS I

complexes. The PsaB subunit is an integral membrane protein

with eleven transmembrane helices and twelve extramembrane

loops. Mutations in the PsaB subunit could affect its folding and

assembly of the PS I complex. Western blotting was performed to

detect levels of the PS I proteins in the thylakoid membranes

(Figure 2). As expected, Western blotting showed that the PS I

subunits were absent in the thylakoid membranes of the PS I-less

PCRTDB strain, whereas all subunits were detected in the RWT

membranes. In the B-j-helix mutants, the mutants W645C,

W643C/A644I and S641C/V642I contained approximately

equal amounts of all seven subunits as compared to RWT. With

the exception of the PsaF antibody, all other antibodies showed

reduced levels of respective subunits in membranes of the mutants

H651C/L652M and F647C. However, greatly reduced amounts

of PsaA and PsaB subunits were detected and PsaL, PsaC, PsaK

and PsaI subunits could not be detected in the membrane from the

mutant F649C/G650I. Therefore, replacement of the L652,

H651, F649, G650 and F647 residues reduces the level of PS I

proteins in the membranes. The amount of PsaF subunit was

almost the same in the membranes of all six mutants, suggesting

that the levels of PsaF in the membranes are independent of the

levels of assembled PS I complexes in the membranes. This

conclusion is consistent with the detectable levels of PsaF in the PS

I-less strains of cyanobacteria [45]. The membranes of the mutant

with F649C/G650I replacement showed low levels of PsaA and

PsaB proteins, but we could not detect P700 in the membranes.

The P700 levels were estimated in the DM-solubilized membranes

and the cellular numbers were deduced from the cellular

chlorophyll ratios. The undetectable levels in the F649C/G650I

mutant could have resulted from low signal to noise ratio for these

membranes or destruction of P700 upon detergent solvation.

Modification of cysteinyl residues in the mutant PS I
complexes

The WT PsaA and PsaB proteins contain five cysteinyl residues

that can not be modified by biotin maleimide [17], which

specifically reacts with the sulfhydryl group of cysteinyl residues.

Therefore, these residues are not exposed on the surface of PS I

complexes. To study the role of four aromatic residues in the B-j

helix, we changed these residues to cysteinyl residues. PS I trimers

were purified and treated with biotin-maleimide. Modified PS I

complexes were resolved by Tricine-urea-SDS-PAGE, probed

with peroxidase-conjugated avidin, and then developed with

enhanced chemiluminescence reagents. The WT PsaA and PsaB

can not be modified by biotin-maleimide, however, the PsaB of

mutant strains W645C, W643C/A644I and S641C/V642I could

be modified (Figure S2). Therefore, small molecules at the aqueous

phase may access the W645, W643 and S641 residues in the wild

type PsaB. However, these results do not completely agree with the

structural information. In the recently published PS I structure,

W645 and W643 are located in a hydrophobic pocket, but do not

point to any important cofactor [2]. S641 is accessible to the

solvent in the structure of PS I.

Electron transfer from donor proteins to the mutant PS I
complexes

Results for electron transfer assays (Table 2) showed that

substitutions in the H651 and F647 inhibit electron transfer from

physiological electron donors to P700. Intact PS I complexes from

these mutants could not be obtained in sufficient quantities to allow

detailed kinetic studies. W645, W643, and S641 residues in the B-j

helix are towards the lumenal surface of the PS I complex. These

residues may interact with plastocyanin or may participate in the

Figure 2. Western blotting analysis of the membranes and PS I
complexes from the mutant strains. The proteins were resolved by
Tricine/urea/SDS-PAGE. The antibodies against Synechocystis sp. PCC
6803 PsaA, PsaB, PsaC, PsaF, PsaL, PsaK and PsaI were used and the
immunodetection was visualized by enhanced chemiluminescence.
Membranes were isolated from the mutant strains and samples
containing 5 mg chlorophyll were loaded in each lane.
doi:10.1371/journal.pone.0024625.g002
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electron transfer. To examine this possibility, we studied electron

transfer kinetics from plastocyanin to P700+ in the PS I complexes

with W645C, W643C/A644I, and S641C/V642I replacements.

To examine the activity of the mutant PS I complexes in accepting

electrons, the purified PS I complexes were subjected to the

photoreduction experiments using Synechocystis plastocyanin. Differ-

ent concentrations of plastocyanin were used to determine rate

constants of electron transfer (Table 3). For the RWT PS I

complexes as well as for mutants, the kinetics of P700+

photoreduction was monophasic and the observed pseudo-first

order rate constant (kobs) yielded linear dependence on plastocyanin

concentration. The linear dependence of kobs on protein concen-

tration allowed us to calculate the second order rate constant (kbim)

of P700+ reduction. All mutant PS I complexes reacted with

plastocyanin in a similar fashion as the RWT PS I complexes,

indicating that all mutant PS I complexes interact with plastocyanin

according to the oriented collisional mechanism [13]. The second

order rate constants for P700+ reduction in the mutant and the wild

type PS I complexes were of the similar order of magnitude.

Different concentrations of cations during the P700+ reduction

assay did not influence the reduction kinetics in the mutants any

differently than in the RWT (data not shown). When the mutant

and RWT PS I complexes were treated with maleimide biotin and

assayed for P700+ photoreduction experiments, there were no

significant changes in the kinetic parameters (data not shown).

Therefore, the amino acid replacements in the lumenal side of the

B-j helix (W645C, W643C/A644I, and S641C/V642I) did not

influence the electron transfer from plastocyanin to P700.

Generation and selection of spontaneous revertant
strains

To test the roles of histidine at the position 651 and aromatic

residues at the positions 649 and 647, the mutant strains H651C/

L652M, F649C/G650I and F647C were chosen to screen

revertants. One revertant from F647C was isolated after screening

,1012 cells. We also isolated a single revertant from ,1012 cells of

the F649C/G650I mutants. Revertants could not be generated

from H651C/L652M after screening ,1012 cells while one

revertant was obtained from the H651L mutant after screening

,1012 cells (unpublished results). The revertant cells could grow

under high intensity light with and without glucose. They also

contained similar levels of PS I complexes to that of the RWT

strain. To identify the molecular nature of the reversions, we

amplified the psaA and psaB genes of the revertants and determined

their nucleotide sequences. The nucleotide sequencing results of

the revertant from the F647C mutant showed that the TGC codon

for C647 in the original mutant strain was changed to TAC codon,

resulting in the substitution of the cysteinyl residue with a tyrosyl

residue (Figure S3). Therefore, an aromatic residue at the position

647 is a critical structural requirement in PsaB. The nucleotide

sequence of the revertant from the F649C/G650I mutant revealed

that the revertant contained a substitution of the ATA codon for

I650 to codon ACA for a threonyl residue (Figure S3). C649 in this

double mutant remained unchanged, showing that the presence of

an aromatic residue at the position 649 is not critical, but the

presence of a small hydrophobic residue at the position 650

appears to be essential for the structural integrity of PsaB. The

nucleotide sequence from the H651L mutant showed that the

revertant contained a substitution of the CTG for L651 to a codon

CAG for a glutamine residue (Figure S3).

Steady-state spectroscopy of the revertants
The traditional absorption spectra of the four studied PS I

complexes coincide with the RWT and WT spectra for F647Y,

F649C/G650T, and H651Q (not shown). Figure 3 shows the

steady-state (P700+ - P700) difference spectra for F649C/G650T,

H651Q, F647Y and H651C superimposed on the RWT difference

spectrum. The generation of H651C mutant will be reported

somewhere else. The H651C mutant is incapable of photoauto-

trophic growth. These are the revertants capable of photoauto-

trophic growth. The steady-state (P700+ - P700) difference

spectrum for F649C/G650T is slightly different from that of the

RWT. The peaks of the steady-state (P700+ - P700) difference

spectra are ,1 nm and ,5 nm narrower than that of the RWT

for H651Q and F647Y respectively. The largest deviation from

RWT is exhibited by H651C mutant where the main photo-

bleaching band is blue-shifted by ,5 nm and narrowed by ,5 nm

accompanied by noticeable changes at ,670 nm. These devia-

tions between (P700+ - P700) can translate into noticeable

differences in the time-resolved pump-probe kinetics for purified

PS I trimers probed at 690 nm (see below). The major

photobleaching components in the (P700+ - P700) difference

spectra in Figure 3 are a broad P700 band near 700 nm,

combined with a band near 655 nm that is likely dominated by

differences between the Qy vibronic features for oxidized and

reduced reaction centers. The principal absorptive features in the

difference spectrum are a sharp band (,10 nm fwhm) at

,690 nm, and an extremely broad band (.80 nm fwhm)

centered near 800 nm. The 690 nm feature has been attributed

to the monomeric Chl (hereafter C690) that emerges after

oxidation of the special pair, P700+RC690 Chl+ [46]. This

assignment was recently supported by Savikhin et al. [40,42]. The

800 nm band, attributed to oxidized monomeric Chl+, has been

used to monitor kinetics of P700+ in electron transfers from

plastocyanins and cytochromes [21,47]. The optimized parame-

ters from Gaussian analyses of the RWT and all mutant difference

spectra are listed in Table S2.

Pump-probe study of energy transfer and charge
separation

The pump-probe kinetics were accumulated for F647Y,

F649C/F650T, H651Q and H651C mutants. The complexes

Table 3. Characterization of the mutant PS I complexes.

PS I complex Chlorophyll to P700 molar ratio Kbim (61026 M21 s21) Kinf (61026 M21 s21)

RWT 111 8.6 9.7

W645C 121 6.3 5.9

W643C/A644I 132 5.4 6.2

S641C/V642I 103 7.2 7.7

The chlorophyll to P700 molar ratio and bimolecular rate constants for the mutant PS I complexes reduction by plastocyanin.
doi:10.1371/journal.pone.0024625.t003
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were excited at 660 nm while the absorption kinetics were probed

at series of wavelength between 660 and 730 nm. The obtained

data for mutants and RWT was analyzed globally resulting in

decay associated spectra (DAS) similarly to WT data published

earlier [42]. Three of the mutants (F647Y, F649C/F650T,

H651Q) and RWT could be well described with DAS with 4

decay components: ,0.5 ps, ,2 ps, 23 ps, .1 ns. These values

are essentially the same as obtained earlier for WT and the DAS

for these components mimicked closely the shape of respective

spectra for WT [42]. The two shortest components, 0.5 ps and

2 ps, have been assigned earlier to energy equilibration within the

main antenna pigments (0.5 ps) and energy equilibration with the

redmost pigments (2 ps). The 23 ps component represents the

excitation trapping time (or apparent charge separation time),

while the .1 ns component arises from the formation of the long

living P700+ state. While the DAS shapes for the H651C mutant

were similar to WT, the excitation trapping lifetime was found to

increase to 30 ps (rest of the lifetimes did not change). This can be

readily explained by somewhat narrower and blue-shifted

absorption spectrum of P700 - longer lifetimes are expected as

the energy transfer from the redmost antenna pigments to the

bluer P700 in mutant should be slower. Indeed, Monte Carlo

simulations based on a simple pigment-to-pigment excitation

hopping model that included all PS I pigments [40] showed a

similar increase in excitation trapping time from 23 ps to 30 ps

when the special pair absorption was blue-shifted from its original

position at 699.5 nm (WT) to 695.6 nm (mutant) and the band

width was narrowed from 30 nm to 25 nm.

Theoretical calculation of energy change caused by the
mutations

We calculated the energies of the WT and mutant PsaA and PsaB

fragments in two ways. One way was to utilize bond dipole (Table 4),

and the second way was to employ atomic charges (data not shown).

The calculated minimized energy differences between the mutated

and WT protein fragments compared to the unminimized values

have much reduced level for all the replacements of amino acid,

indicating that the steric problems were alleviated somewhat on

minimization. The mutant of F649C/G650I has the highest energy

differences for both minimized (DEmut = 162 kcal/mol) and un-

minimized (DEmut = 3,508 kcal/mol) protein fragments. Replace-

ment of the Gly at 650 with Ile exhibits considerable increased steric

bulk while replacing the Phe at 649 with Cys appears to offer little

steric difficulty, suggesting that the replacement of the Gly at 650

with Ile would require considerable relaxation to accommodate the

increased bulk of the Ile side chain and may alter other steric

features of the immediate environment of the decapeptide fragment.

Discussion

Amino acid residues and polypeptide backbones near P700 are

critical determinants of the structure and properties of P700 and

consequently decide the functional attributes. In this work, we

have examined the roles of some conserved residues near P700 in

structural integrity and in electron transfer to P700. Comparison

of A-j and B-j helices of PS I reveals that B-j helix from P700 down

to the lumenal side is rich in aromatic residues. Four aromatic

residues F649, F647, W645 and W643 in this region are conserved

and were predicted then to be critical in maintaining PS I

integrity, determining the unique physicochemical properties of

P700 or providing a path for electron transfer from plastocyanin or

cytochrome c6 to P700+. To test these hypotheses, we replaced

these residues along with additional residues in the helix by

dissimilar residues and examined the role of these residues in

maintaining structurally sound PS I complexes and in electron

transfer function of PS I. Growth of the mutant strains revealed

the physiological impact of mutations. Western blotting and P700

estimation were used to analyze PS I content of the cells whereas

assays with artificial or native electron donors were used to

determine rates of PS I mediated electron transfer.

W645C, W643C/A644I and S641C/V642I substitutions al-

tered regions relatively far from P700 and closer to the lumenal

side. The previous investigations of P700+ reduction in C. reinhardtii

Figure 3. Steady-state (P700+ - P700) absorption difference
spectra for the three revertants and the mutant of H651C. Solid
and dashed curves show mutant and wild- type spectra, respectively.
The y-axis shows DA roughly in %-level in respect to absorption in the
maximum of the 680 nm band. The optimized parameters from
Gaussian fit to these and other difference spectra are given in Table S2.
doi:10.1371/journal.pone.0024625.g003
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suggested that PS I in this region may experience structural

microrearrangements, which would allow some degree of

flexibility of the PS I-plastocyanin binary complex conformation

[48,49]. The residues S641, W643 and W645 are located between

P700+ and its electron donors plastocyanin/cytochrome c6 at the

lumenal side of the protein [2]. The biotin-maleimide experiment

also supported the scenario where S641, W643 and W645 can

undergo conformational changes to some degree since they are

predicted to be accessible to small molecules. Our functional study

shows that these mutations do not influence growth of the mutant

cells, PS I levels, or PS I activity when assayed using diverse

techniques. Therefore, these aromatic residues are dispensable and

do not play essential roles in maintaining the structural integrity of

PS I complex. In addition, these residues are not essential for

electron transfer from plastocyanin to P700. These results are

consistent with the structural information. The rings of W645 and

W643 point away from P700 (Figure 4) and do not interact with

critical residues or cofactors [2,5,11].

Replacement of F647 with cysteinyl residue caused ,60%

reduction in PS I levels in the thylakoid membranes, indicating the

importance of this residue in maintaining the integrity of PS I

complex. Although significant levels of PS I were present in the

membranes, these complexes were lost during purification and

could not be isolated. Therefore, we believe that the reduced level

of PS I in this strain is due to decreased stability of the complex

and the complexes observed in the membranes are not intact. To

investigate the necessity of an aromatic residue in the position of

647, the mutant F647C, which cannot grow without glucose, was

transferred to plates without glucose and spontaneous revertants

were selected. The true revertant of the mutant with F647C

substitution contained the replacement of the cysteinyl residue at

the position of 647 with a tyrosyl residue. The revertant contained

normal level and activity of PS I. These results show that an

aromatic residue at position 647 is critical in maintaining the

integrity of PS I complex. In the 2.5 Å structure [2], the ring of

F647 directly points to P700 chlorophyll pair and could contribute

to the hydrophobic interactions between chlorophyll molecules

and protein environment around them (Figure 4). The hydropho-

bic interactions seem to be precise because an additional hydroxyl

group of the revertant of F647Y causes 5 nm narrower of P700+ -

P700 spectrum. Electron transport activity of the F647C mutant

membranes show that 3,6-diaminodurene (DAD), an artificial

electron donor, can support electron transfer through mutant PS I

complexes. DAD is a small molecule and could have an easy

access to P700 for donating an electron. Plastocyanin or

cytochrome c6 needs to dock transiently on the PS I surface and

the electron needs to travel through proteinaceous medium to

P700+. Therefore, the mutation could disturb the docking site of

plastocyanin or cytochrome c6 or electron transport from

plastocyanin or cytochrome c6 at the PS I surface to P700+.

The mutant with F649C/G650I substitutions had much lower

content of PS I in the thylakoid membranes, indicating that F649

and/or G650 play role in maintaining the integrity of PS I

complex. To further determine whether F649 and G650 function

in maintaining the integrity, spontaneous revertants with normal

PS I levels were selected. The selection of revertant F649C/

G650T from F649C/G650I indicates that the aromatic residue at

649 is not critical for maintaining PS I structure although a p stack

is found between F649 and W645 (Figure 4). Contrastingly, a

small hydrophobic residue seems to be necessary at the position

650 to maintain the integrity of PS I complex. The selection of the

revertant F649C/G650T is in agreement with the structural

Table 4. PsaA and PsaB Fragment of PS I (Mm+Bond Dipoles) (Kcal/mol).

PsaA and PsaB Fragment DEmut = Emut2EWT without minimization DEmut = Emut2EWT with minimization

WT 0 (133,353) -

H651C/L652M 444 (133,797) 38 (133,391)

F649C/G650I 3508 (136,861) 162 (133,515)

F647C 453 (133,806) 45 (133,398)

W645C 429 (133,782) 25 (133,378)

W643C/A644I 562 (133,915) 17 (133,370)

S641C/V642I 512 (133,865) 23 (133,376)

The total energies of PsaA and PsaB fragment without and with minimization are shown in parentheses.
doi:10.1371/journal.pone.0024625.t004

Figure 4. 2.5 Å structure of the mutated residues in j helix of
PsaB. The coordinates were downloaded from protein data bank (PDB ID:
1JB0) and XtalView software was used to generate the structural diagram.
The nomenclature for the corresponding amino acids was changed to
show the corresponding residues in Synechocystis sp. PCC 6803.
doi:10.1371/journal.pone.0024625.g004
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information. The long chain of I650 in B-j helix could hinder

sterically the neighboring B-k helix whereas T650 would allow

packing of these two helices. The electron transport measurement

showed that the mutant F649C/G650I had low PS I level,

resulting in low PS I activity. The PS I activity in the mutant is not

sufficient to fulfill the energy requirements for the photoautotro-

phic growth. The reduced PS I level may be due to the reduced

stability of the complex or because of the effects on the assembly of

PS I. PS I activity of the revertant F649C/G650T is very similar to

RWT (data not shown). It suggests that F649 is not directly

involved in the electron transport from plastocyanin to P700+.

The 2.5 Å X-ray structure clearly shows that H651 provides the

fifth ligand to Mg2+ of one of chlorophyll a of P700 (Figure 4) [2].

Therefore, the replacement of this residue could result in changing

the environment around P700 and affect its function. Inactive PS I

complexes might have much higher turnover rate. Indeed, the

reduced PS I level was found in the mutant H651C/L652M.

Reduced PS I level and dysfunctional P700 prevent photoauto-

trophic growth. These results agree with the observations in the

similar replacements of histidinyl residues in the reaction center of

Chlamydomonas reinhardtii (C. reinhardtii) [6,50].

The results presented here demonstrate that W645, W643 and

F649 are not critical for maintaining the integrity of PS I complex

and mediating the electron transport from plastocyanin to P700.

In contrast, a small hydrophobic residue at 650 position and an

aromatic residue at 647 position are essential for maintaining the

structural integrity of PS I complex. The F647 residue may be also

directly involved in the electron transfer from plastocyanin or

cytochrome c6 to C. reinhardtii P700+. Its detailed function is worth

to be further investigated.

It is quite interesting that in all studied revertants capable of

photoautotrophic growth the (P700+-P700) optical spectra and

kinetics of energy and charge transfer are almost identical to that in

RWT. Even H651C that is incapable of photoautotrophic growth

exhibits relatively efficient charge transfer function that is only

marginally slower than that in RWT. We suggest that the H651C

mutation may have a dramatic effect on the photostability of PS I

due to the local structural change around P700. The importance of

protein interactions in determining P700 properties has been

examined with extensive mutagenesis in both eukaryotic algae and

cynaobacteria [50–54]. These experiments identified the histidyl

residue (656 in PsaB of C. reinhardtii) that interacts closely with one of

the P700 chlorophylls [12]. Mutation of His656 to Asn or Ser

increases the oxidation midpoint potential of P700/P700+ by

40 mV [12]. In a systematic mutational survey, conserved histidyl

residues in the last six transmembrane segments of the PsaA and

PsaB in C. reinhardtii were changed to glutamyl or leucyl residues by

site-directed mutagenesis [50]. Double mutants with mutations in

the equivalent residues in both PsaA and PsaB were screened for

changes in the characteristics of P700. These studies confirmed that

PsaA-His676 and PsaB-His656 in C. reinhardtii are the axial ligands

to the P700 chlorophylls. Thus axial ligands have significant

influence on the redox properties of the reaction center. However,

the traditional view of the special pair as a primary electron donor

has been challenged by the recent ultrafast investigation of the WT

and point mutant PS I particle from C. reinhardtii [55]. The study

provides evidence that the primary electron transfer event is

initiated independently in PsaA and PsaB branches, and that initial

charge separation event occurs between A0 and accessory chl pair

and is followed by rapid reduction by P700 in the second electron

transfer step. In this work, we generated mutations in the axial

ligand histidyl residue as well as in the PsaB residues that are integral

part of the P700-binding pocket. These mutants and revertants can

be used to study further details on P700 properties.

Supporting Information

Figure S1 Sites of mutations in the C-terminal region of
PsaA and PsaB. Comparison of the PsaA and PsaB sequences

shows transmembrane helices with gradated filling, with the darker

side towards the stromal surface of the membrane. Bars above and

below the sequence show stromal and luminal extramembrane

loops, respectively. Residues forming two surface helices are boxed

with uniform filling. The histidyl, asparaginyl or methionyl

residues that are proposed to bind proximate Chl are indicated

by hexagons. The binding sites for different PS I cofactors are

shown.

(TIF)

Figure S2 Modification of the mutant PS I complexes.
Purified PS I complexes containing 5 mg chlorophyll were treated

with biotin-maleimide and analyzed by Tricine/urea/SDS-PAGE.

The blot was probed with peroxidase-conjugated avidin and

visualized by enhanced chemiluminescence reagents.

(TIF)

Figure S3 Nucleotide sequences around the mutated
sites in the mutant and revertant strains. The PCR

fragments containing the mutation sites were sequenced.

(TIF)

Table S1 The oligonucliotides used for generating the
B-j-helix mutants.

(DOC)

Table S2 The Gaussian parameters for 5-component
fits to (P700+ - P700) absorption difference spectra of PS
I mutantsa. a For each entry, the band position (in nm) is

followed by its fwhm (in nm) in parentheses; the signed number

gives its amplitude.

(DOC)
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