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Abstract

Background: D-Ribose, an important reducing monosaccharide, is highly active in the glycation of proteins, and results in
the rapid production of advanced glycation end products (AGEs) in vitro. However, whether D-ribose participates in
glycation and leads to production of AGEs in vivo still requires investigation.

Methodology/Principal Findings: Here we treated cultured cells and mice with D-ribose and D-glucose to compare
ribosylation and glucosylation for production of AGEs. Treatment with D-ribose decreased cell viability and induced more
AGE accumulation in cells. C57BL/6J mice intraperitoneally injected with D-ribose for 30 days showed high blood levels of
glycated proteins and AGEs. Administration of high doses D-ribose also accelerated AGE formation in the mouse brain and
induced impairment of spatial learning and memory ability according to the performance in Morris water maze test.

Conclusions/Significance: These data demonstrate that D-ribose but not D-glucose reacts rapidly with proteins and
produces significant amounts of AGEs in both cultured cells and the mouse brain, leading to accumulation of AGEs which
may impair mouse spatial cognition.
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Introduction

Non-enzymatic glycation of proteins by reducing saccharides

such as D-glucose (Glc) and D-ribose (Rib) is a post-translational

modification process [1], leading to the formation of fructosamine

[2] and advanced glycation end products (AGEs) [3]. The role of

Glc in the glycation of proteins has been widely studied, how-

ever the role of other reducing monosaccharides such as Rib in

glycation and their resulting effects on cell metabolism has

received much less attention.

D-ribose is a naturally occurring pentose monosaccharide

present in all living cells including the blood and is a key

component of many important biomolecules such as riboflavin

(i.e., vitamin B2) [4], ribonucleic acid (RNA) [5], and adenosine

tri-phosphate (ATP) [6]. As a reducing monosaccharide, Rib has

the ability to react with proteins to produce glycated derivatives.

Glycation with Rib (ribosylation) gives rise to AGEs more rapidly

than glycation with Glc which requires a relatively long time [7].

Rib, however, is also closely associated with many fundamental

processes in cellular metabolism. For this reason, glycation of

proteins with Rib needs to be addressed and investigated.

The rate of glycation depends upon monosaccharide concen-

tration and anomerization rate and is inversely proportional to the

number of carbon atoms in the reducing monosaccharide [8].

Under physiological conditions, the anomerization rate of Rib is

much higher than that of Glc. The aldofuranose five-membered

ring of Rib is not planar but occurs in one of a variety of

conformations generally described as ‘‘puckered’’ [9]. This

unstable aldofuranose ring is vulnerable to reactions with amino

groups, giving rise to its high efficiency in protein glycation.

Therefore, comparing ribosylation with glucosylation should

provide new clues for clarifying some of the important complica-

tions caused by advanced glycation end products in vivo.

In vitro studies on the role of Rib in glycation have been carried

out. Rib can glycate rat tail tendon collagen in vitro and the

structure of the collagen is significantly altered by Rib-induced

glycation [10]. Luciano and colleagues prepared glycated fetal calf

serum with Rib and found that while ribosylation reduces the

proliferation of pancreatic islet beta-cells, cell necrosis and cell

apoptosis rate increase correspondingly [11]. Ribosylated bovine

serum albumin polymerizes and forms globule-like aggregates

with high cytotoxicity [12]. However, the relationship between

ribosylation and neurodegenerative diseases is still unknown.

In this laboratory we have observed that glycation induces

inactivation and conformational change of D-glyceraldehyde-3-

phosphate dehydrogenase [13,14]. We have also compared the

characteristics of ribosylation on neuronal Tau protein [15], and

a-synuclein [16] with those of glucosylation in vitro, showing that
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ribosylation occurs much more rapidly than glucosylation.

Ribosylated neuronal protein is much more cytotoxic than

glucosylated protein. Nevertheless, little is known about whether

Rib can rapidly induce glycation in cells and the AGEs produced

by ribosylation can impair the cognitive function. Here, we treated

cultured cells and mice with Rib and Glc to compare ribosylation

and glucosylation for the production of AGEs. We found that Rib

reacted rapidly with proteins and produced significant amounts

of AGEs in cultured cells and mouse brain tissues, and that

accumulation of AGEs impaired mouse spatial cognition. This

finding implies that Rib-derived AGEs may be related to

impairments of learning and memory ability.

Results

D-ribose decreases cell viability and leads to high yields
of AGEs

To investigate whether Rib leads to decreases in cell viability,

SH-SY5Y human neuroblastoma (SH-SY5Y) cells and Human

embryonic kidney 293T (HEK293T) cells were incubated with D-

ribose or D-glucose at different concentrations. Cell viability was

measured by MTT assays at 2 and 3 days after addition of the

monosaccharide. After 2-day treatments, the viability of both cell

lines decreased significantly in media containing 10 mM (P,0.05)

or 50 mM (P,0.01) Rib, but it did not change markedly in the

presence of Glc compared with the control (Fig 1G and I). MTT

assays also gave the same results after 3 days of Rib treatment

(Fig 1H and J). Furthermore, the number of SH-SY5Y and

HEK293 cells was markedly lower after treatment with 50 mM

Rib for 3 days compared with Glc-treated and control cells (Fig 1A

to F).

It is known that AGEs have cytotoxicity [15,17] and can inhibit

cell proliferation [18]. Rib and Glc react with protein amino

groups to initiate a non-enzymatic glycation process which results

in AGE formation. Thus, we detected the presence of AGEs in

SH-SY5Y, HEK293 cell lines and primary cultured hippocampal

neurons incubated with Rib for 2 days by Western blotting. As

shown in Fig 2A, the level of AGEs in SH-SY5Y cells was

markedly (P,0.01) increased in the presence of Rib at con-

centrations of 10 mM or higher. However, in the presence of Glc,

the level of AGEs did not increase significantly under the

experimental conditions used. Similarly, the level of AGEs in

both HEK293T cells and primary cultured hippocampal neurons

was also enhanced significantly after Rib treatment (Fig 2B and C).

These results indicate that Rib is much more active in protein

glycation resulting in high yields of AGEs and reduced cell

viability.

Serum glycated proteins and AGEs significantly increase
in D-ribose-treated mice

Having determined that Rib but not Glc is able to glycate

proteins rapidly and produce high levels of AGEs in cultured cells

in vitro, we investigated whether Rib is able to induce AGE

formation in vivo.

1. D-ribose treatment does not cause significant dys-
function of the liver or kidneys. To compare the ability

of Rib and Glc to elevate the level of AGEs in vivo, we

intraperitoneally injected C57BL/6J mice with D-ribose or D-

glucose (0.2 or 2 g/kg sugar; control group injected with saline)

for 30 days. None of the sugar treatment groups showed any

significant visual abnormalities and they gained weight

normally within the period of treatment (Table 1). There were

no significant changes in serum ALT or AST in both Rib- and

Glc-treated subjects (Table 2). Furthermore, serum creatinine

concentrations did not markedly vary with the injections.

These results indicate that treated mice did not suffer from liver

and kidney damage under the experimental conditions used.

2. Glycated serum proteins and AGEs increase after
injection with D-ribose. As shown in Table 1, blood

glucose concentrations did not change markedly in Rib-treated

mice though those of the two Glc-treated mice groups were

elevated significantly (P,0.05). However, the amount of

glycated serum protein was significantly increased in the blood

of mice intraperitoneally injected with Rib at 0.2 g/kg

(P,0.05) and 2g/kg (P,0.01) (Fig 3). Glycated serum proteins

increased with 2 g/kg Glc injections (P,0.05), but not with low

dose (0.2g/kg) Glc injections in the Glc-treated mice groups.

Furthermore, the concentration of glycated serum proteins

after Rib injections (2 g/kg) was significantly higher than that

after Glc-treated injections (P,0.05) under the experimental

conditions used. These results also suggest that Rib has a faster

glycation rate than Glc in vivo.

Having established that injection of Rib leads to an increase in

glycated serum proteins, we measured changes in serum AGE

formation in mice treated with Rib and Glc to determine whether

high levels of glycation lead to AGE production (Fig 4). Strikingly,

serum AGEs were markedly elevated in the sera of mice that

had been injected with Rib. Those treated with Glc were not

significantly different from the control group. Similar results were

also obtained when the anti-pentosidine antibody was used. Serum

pentosidine level was markedly increased in the presence of Rib

(both 0.2 g/kg and 2 g/kg) (P,0.05). These results demonstrate

that Rib significantly elevates the glycation of proteins in the blood

resulting in accelerated AGE formation under our experimental

conditions.

D-ribose-treated mice have a marked increase in brain
AGEs

Rib can pass through the blood-brain barrier and enter the

brain by simple diffusion [19]. To investigate whether injected Rib

can elevate the glycation of proteins in the brain, we measured

AGEs in the mouse brain by Western blotting. As shown in Fig 5,

intraperitoneal injection of Rib led to the formation of significantly

more AGEs in the mouse brain. However, Glc did not have a

significant effect on AGE formation in the brain compared to the

control. This suggests that Rib can react effectively with proteins

and increase AGEs in the mouse brain.

To confirm the effect of Rib on accelerating the formation and

accumulation of AGEs in the brain, we performed immunohis-

tochemistry staining on microtome sections of the mouse brain

(Fig 6). Compared with the control group, AGEs were observed to

increase throughout the hippocampus of mice that had been

injected with Rib for 30 days. However, no obvious differences in

the hippocampus were found in the Glc-treated and control mice

groups. Furthermore, AGE signals were more clearly evident in

the cortex of Rib-treated mice, compared with those treated with

Glc. This indicates that the rapid formation of Rib-induced AGEs

occurred in both the hippocampus and cortex.

We used immunofluorescent staining to further demonstrate

that Rib is able to induce AGE formation in the mouse brain. As

shown in Fig 7, AGE signals were clearly visible in the cortex of

mice treated with Rib but not in those treated with Glc or saline.

The fluorescent signals of AGEs were mainly localized outside the

nucleus. Similar results were also observed in the hippocampus of

the Rib group though the signals were relatively lower than those

in the cortex.

Ribosylation, AGEs and Cognitive Impairment
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Impairment of spatial learning and memory in the Morris
water maze

AGEs, which have been found in the brains of senile dementia

patients [20], are cytotoxic [12,17]. To assess changes in the

spatial learning and memory of mice whose brain AGE levels

were elevated after injection of Rib, we tested their behavior in

the Morris water maze. During the training session, all mice

improved their performance as indicated by shortened escape

latencies over successive days, and mice from each treatment

group had the same level of performance (no significant

individual effect was observed in the first three trials on day 1)

prior to treatment. Escape latencies of mice injected with Rib

(0.2 g/kg) were not significantly different compared with the

control group (Fig 8B). However, the escape latency of mice

injected with Rib (2 g/kg) on days 6 and 7 was higher than that

of control mice (P,0.05), but there was no significant difference

between the control group and the Glc (2 g/kg) -treated group

(Fig 8A).

Withdrawal of the platform induced a general tendency to swim

in the quadrant where the platform was previously located and in

the platform zone, in preference to other equivalent zones. Control,

Rib (0.2 g/kg) -treated and Glc (both 0.2 g/kg and 2 g/kg) -treated

mice spent significantly more time swimming in the target quadrant

Figure 1. Changes in cell viability in the presence of D-ribose. The morphology of SH-SY5Y cells was observed by inverted contrast
microscopy after incubation with 50 mM Rib (A), or 50 mM Glc (B) for 3 days. Untreated cells were used as controls (C). HEK293T cells treated with the
same concentration of Rib (D), Glc (E) and control cells (F) were imaged under the same conditions. SH-SY5Y (G and H) and HEK293T (I and J) cells
were incubated with Rib or Glc as indicated and cell viability was measured using the MTT assay at day 2 (G and I), and day 3 (H and J) after addition
of the monosaccharides.
doi:10.1371/journal.pone.0024623.g001

Ribosylation, AGEs and Cognitive Impairment
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(where the platform was located) (no significant differences were

observed among these four groups), than Rib (2 g/kg) -treated mice

(P,0.01), whose time in each quadrant was more evenly distributed

(Fig 8C). These results indicate that spatial learning and memory

ability in Rib-treated mice are significantly impaired.

Discussion

As a reducing saccharide, Rib reacts with protein amino groups

to initiate a post-translational modification process widely known

as non-enzymatic glycation [1]. This reaction proceeds from

reversible Schiff bases to stable, covalently-bonded Amadori

rearrangement products. Once formed, the Amadori products

undergo further chemical rearrangements to form irreversibly

bound AGEs, which are a heterogeneous group of structures

including pyrraline, pentosidine, crossline, and carboxymethyl-

lysine [3]. As described previously, Rib is much more active in

protein glycation than Glc in vitro [12,15,16]. Here, we also found

that Rib reacts rapidly with proteins and showed that Rib

treatment results in a significantly higher level of AGEs both

in cultured cells and in the mouse serum and brain. This

demonstrates that AGEs result from ribosylation not only in

mixtures of Rib and proteins in a test-tube, but also in cultured

cells, and in the mammalian serum and brain.

Even though glycation of proteins with reducing saccharides has

been widely studied, the formation of monosaccharide-induced

intracellular AGEs has not previously been observed. Here,

10 mM Rib enhanced AGE formation in cultured cells, and

diminished cell viability. This work is the first to show that Rib

enhances the yield of AGEs in HEK293T and SH-SY5Y cells and

primary cultured hippocampal neurons. Rib showed significantly

higher cytotoxicity than Glc in cell culture. The high cytotoxicity

of Rib may result from the rapid formation of AGEs as a result of

ribosylation under these experimental conditions.

Furthermore, this monosaccharide also enhances the yield of

AGEs in both the hippocampus and cortex of the mouse brain

after intraperitoneal injection. Impairment of spatial cognition was

observed to be coincident with these increases in intracellular

AGEs when Rib-treated mice were tested in the Morris water

maze. Glc, however, was unable to elevate the yield of AGEs

under our experimental conditions. This clearly demonstrates that

an overload of Rib may result in a high level of AGEs in the brain

and neurons. We would like to emphasize that Rib is much more

effective than Glc in the glycation of proteins not only in vitro, but

also in vivo. The intracellular AGE-enhanced cell model and the

AGE-enhanced cognitive impairment mouse model successfully

established here can be used for further investigation of the

mechanisms behind the phenomena observed.

Figure 2. Elevation of AGEs in cells in the presence of D-ribose. SH-SY5Y cells (panel A), HEK293T cells (panel B) and primary cultured rat
neurons (panel C) were treated with Rib and Glc as indicated for 2 days. AGEs were detected with anti-AGEs (6D12 monoclonal antibody). b-Actin was
used as a loading control. Quantification results are shown in panels A9, B9 and C9 respectively. The control value was set as 1.0. All values are
expressed as means 6 S.E.M. * P,0.05, ** P,0.01.
doi:10.1371/journal.pone.0024623.g002

Ribosylation, AGEs and Cognitive Impairment
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As shown in the results of Western blotting (Fig 2 and 5), a low

level of glycated proteins or AGEs is already present under

physiological conditions in both cells and the mouse brain since

cells and blood contain certain concentrations of reducing

saccharides. In normal human serum, approximately 6 to 10%

of the albumin is glycated [21], while in hyperglycemia, this

proportion typically increases two- to three- fold [22].

High levels of Rib are not only able to enhance AGE formation

in vivo, but also induce dysfunction of spatial cognition. This is the

first time that Rib-induced cognitive impairment has been

observed in mice. The spatial learning and memory ability of

mice markedly declined after 30 days of Rib administration.

However, those that were injected with the same concentration of

Glc did not show significant impairments of spatial cognition

compared with saline controls. This suggests that Rib overload for

a relatively long period may be harmful to brain function. This

treatment paradigm of inducing high levels of AGEs in the brain

by administration of Rib can be used as a model for the study of

dementia.

Here, we believe that the decline in learning and the loss of

memory are due to ribosylation and its resultant AGEs; glycation

with Rib induces mouse spatial cognitive impairment. This

viewpoint is based on the following observations and data. (1)

Our previous work has shown that Rib is much more active in

protein glycation than Glc in vitro [12,15]. (2) Proteins become

highly cytotoxic after they are ribosylated [12,15]. (3) Rib

decreases the cell viability and enhances the level of AGEs in

HEK293, SH-SY5Y cells and primary cultured hippocampal

neurons. (4) Rib-injected mice do not have severe liver and kidney

damage, but do have impairment of cognitive function (Table 2).

(5) As described previously, Rib can pass through the blood-brain

barrier and react with cellular molecules [19]. (6) Rib elevates the

level of AGEs in the mouse hippocampus and cortex. Finally, (7)

Decline in learning and memory is observed in Rib-injected mice,

but not in Glc-injected and control mice.

AGEs were clearly evident in the hippocampus and cortex of

Rib-injected mice (Fig 6). Glc, however, did not significantly

elevate AGEs in the mouse brain under the same conditions.

Toxic AGEs have previously been implicated in diabetes [3],

cataracts [23], renal failure [24], and other disorders [25]. Immu-

nohistochemical studies have demonstrated the presence of AGEs

in the senile plaques of brains from Alzheimer’ disease patients

[20], suggesting a link between AGEs and senile plaque formation.

Takeda and colleagues have reported that AGE deposits are

markedly increased in the hippocampus and the parahippocampus

of the brains of Alzheimer’s disease patients [26]. Furthermore, it

has recently become clear that glycation is also involved in other

neurodegenerative diseases and cognitive disorders [27]. This

indicates that an AGE overload in the brain may be related to the

dysfunction of learning and memory.

The relationship between AGE accumulation, cognitive decline

and neurodegenerative disease is still under active investigation.

Multiple studies have suggested that AGEs are directly neurotoxic

to cultured neurons [15,17]. AGEs and their precursors (methyl-

glyoxal and glyoxal) may increase the aggregation and cytotoxicity

of intracellular amyloid-beta carboxy-terminal fragments [28].

AGEs, as a kind of specific ligand, can also interact with receptors

for advanced glycation end products (RAGE) and activate an

array of signal transduction cascades [29]. By the interaction with

RAGE, AGEs may be involved in the generation of ROS and

inflammation, and may play a role as activating factors for

neuroglia cells such as astrocytes or microglias [30,31], inducing

them to produce cytotoxic cytokinelike molecules which then may

induce further neuronal cell injury and death and dysfunction of

the brain. However, whether AGEs induced by Rib are the same

as those generated spontaneously in vivo, and the mechanism by

which Rib-induced AGEs impair spatial learning and memory,

need further investigations.

Table 1. Body weight and serum glucose concentration.

Treatment

Body weight
(pre-injection)
(g)

Body weight
(post-injection)
(g)

Serum glucose
concentration
(mM)

Control 18.7260.62 25.5861.48 7.1160.45

0.2g/kg Rib 18.3560.34 25.4361.41 7.5160.35

2g/kg Rib 18.8560.72 24.2361.21 7.3660.24

0.2g/kg Glc 18.6760.87 25.0361.57 7.8560.27*

2g/kg Glc 18.7660.95 25.0061.55 8.0460.61*

Mice were injected (i.p.) with Rib or Glc as indicated for 30 days. Body weight
pre- and post-treatment is shown in grams. After treatment, serum was
collected for assaying glucose concentration. All values are expressed as means
6 S.E.M.
*P,0.05.
doi:10.1371/journal.pone.0024623.t001

Figure 3. Intraperitoneal injection of D-ribose results in an
increase in the concentration of glycated serum protein. Mice
were injected (i.p.) with Rib as indicated for 30 days and serum was
taken for assays of glycated serum protein. Mice injected with Glc and
saline were used as controls. * P ,0.05, ** P,0.01.
doi:10.1371/journal.pone.0024623.g003

Table 2. Serum ALT and AST activity and serum creatinine
concentration.

Rib Glc Control

0.2g/kg 2g/kg 0.2g/kg 2g/kg

ALT 47.6612.84 30.864.13 34.464.17 4266.72 41.269.02

AST 48.167.26 38.169.36 52.265.11 48.863.06 53.768.47

Cre 41.561.28 42.660.28 40.861.43 41.660.41 41.960.51

After 30 days of treatment, serum was collected to assay the activity of ALT and
AST and creatinine concentration. All values are expressed as means 6 S.E.M.
doi:10.1371/journal.pone.0024623.t002

Ribosylation, AGEs and Cognitive Impairment
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As a readily available source of energy, ribose is used to improve

athletic performance and the ability to exercise by boosting muscle

energy. It has also been used to improve symptoms of conditions

such as chronic fatigue syndrome, fibromyalgia, and coronary

artery disease [32,33,34]. Rib, as a bioactive ingredient is used

widely in nutrition and medicine. Large quantities of Rib are

consumed as health supplements and in functional food and

beverage formulations each year. However, Rib is very active in

the glycation of proteins and its associated chronic risks should be

taken into consideration. Our results have shown that adminis-

tration of high doses of Rib over a long period can lead to high

yields of AGEs in vivo and cognitive dysfunction. Glycation affects

the biological functions of proteins and crosslinking by glycation

results in the formation of detergent-insoluble and protease-

resistant aggregates. Thus, the effects of ribosylation on the human

brain should be regularly examined during long term administra-

tions of Rib as a drug. Our findings on the importance of ribo-

sylation are relevant to medical professionals monitoring the

therapeutic use of Rib.

In summary, we have shown that Rib rapidly reacts with

proteins and produces AGEs in cells, inducing a decrease in cell

viability. Administration of Rib to mice leads to the accumulation

of a significantly high concentration of AGEs in the brain and

subsequent impairment of spatial learning and memory ability.

Administration of Rib can thus be used to establish a mouse model

of dysfunction in spatial cognition.

Materials and Methods

Ethics Statement
The handling of mice and experimental procedures were

approved by the Animal Welfare and Research Ethics Committee

of the Institute of Biophysics, Chinese Academy of Sciences

(Permit Number: SYXK2010-128).

Figure 4. Changes in serum AGEs with intraperitoneal injection of D-ribose. Conditions for the injection of monosaccharides were the same
as those given in Fig 3, except that serum AGEs were detected with an anti-AGEs monoclonal antibody (panel A) and an anti-pentosidine monoclonal
antibody (panel B). Serum albumin level was used as a loading control. Quantification results are shown in panels A9 and B9, respectively. The saline
control value was set as 1.0. All values are expressed as means 6 S.E.M. * P,0.05, ** P,0.01.
doi:10.1371/journal.pone.0024623.g004

Ribosylation, AGEs and Cognitive Impairment
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Cell culture and treatment
Human embryonic kidney 293T (HEK293T) cells [35] and

SH-SY5Y human neuroblastoma (SH-SY5Y) cells [36] were

obtained from Cell Resource Center (IBMS, CAMS/PUMC,

China). HEK293T and SH-SY5Y cells were cultured in

Dulbecco’s modified Eagle’ medium (Gibco, USA) supplemented

with 100 IU/ml penicillin and 100 mg/ml streptomycin at 37uC
in a humidified 5% CO2 incubator as described [37,38]. The

medium contained 10% fetal bovine serum (Gibco, USA). Cells

were grown to 70–80% confluence in 25 mm diameter dishes.

Primary hippocampal neuron cultures were prepared from 18-

day-old Sprague-Dawley rat embryos as described previously

[39]. Mature hippocampal neurons (cultured for 14 days) were

prepared for treatment. For all experiments, the culture medium

was replaced with serum-free medium before Rib or Glc

treatment. Cells were incubated with Rib (Amresco, USA) or

Glc (Sigma, USA) at concentrations of 10 mM and 50 mM for

48 hours. Cells were then collected to prepare cellular extracts for

Western blots.

Cell viability test
To determine cell viability, we used the standard 3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT;

Sigma, USA) test, with the slight modifications suggested by Mayo

and Stein [40]. HEK293T or SH-SY5Y cells were seeded on 96-

well plates at a concentration of ,3000 cells per well. After

24 hours, the culture medium was replaced with serum-free

medium in the presence of Rib or Glc at different concentrations.

Medium without monosaccharides was used as a control. After 48

or 96 hours of treatment, MTT (final concentration 0.5 mg/ml)

was added and the plates were incubated at 37uC for 4 hours. The

reaction was stopped by replacement of the MTT-containing

medium with 150 ml DMSO (Amresco, USA), and absorbance at

540 nm was measured on a Multiscan MK3 spectrophotometer

(Thermo, USA).

Animals and administration
Male C57BL/6J mice (8–10 weeks) were obtained from Vital

River Laboratory Animal Technology Co. Ltd. (China). After 1

week of acclimatization to the cages, mice were randomly

divided into five groups and received intraperitoneal injections

each day for 30 days with Rib at doses of 0.2 or 2 g/kg, or Glc

at doses of 0.2 or 2 g/kg, or 0.9% saline (controls). All mice

Figure 5. Enhancement of brain AGEs injected with D-ribose.
Conditions for the injection of Rib were the same as those given in Fig 3,
except that AGEs in the mouse brain were detected by Western blotting
using anti-AGEs (6D12 monoclonal antibody, panel A). b-Actin level was
used as a loading control. Quantification results are shown in panel B.
The saline control value was set as 1.0. All values are expressed as
means 6 S.E.M. * P,0.05, ** P,0.01.
doi:10.1371/journal.pone.0024623.g005

Figure 6. Immunohistochemical staining of AGEs in the
hippocampus and cortex. Mice were injected (i.p.) with Rib at dose
of 2 g/kg, or Glc at dose of 2 g/kg, or 0.9% saline (controls) for 30 days.
AGEs in the mouse brain were detected by immunohistochemistry
using anti-AGEs monoclonal antibody. The areas outlined with dashed
lines are magnified in the lower panels (bar = 50 mm).
doi:10.1371/journal.pone.0024623.g006

Ribosylation, AGEs and Cognitive Impairment
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were maintained in animal facilities under pathogen-free

conditions.

Morris water maze test
After 30-days of injections, the Morris water maze (MWM)

test was performed as described previously [41]. The experi-

mental apparatus consisted of a circular water tank (90 cm in

diameter, 35 cm in height), containing water (2361uC) to a

depth of 15.5 cm, which was rendered opaque by adding ink. A

platform (4.5 cm in diameter, 14.5 cm in height) was sub-

merged 1 cm below the water surface and placed at the

midpoint of one quadrant. The water tank was located in a test

room, which contained various prominent visual cues. Each

mouse received three periods of training per day for seven

consecutive days. Latency to escape from the water maze

(finding the submerged escape platform) was calculated for each

trial. On day 8, the probe test was carried out by removing the

platform and allowing each mouse to swim freely for 60

seconds. The time that mice spent swimming in the target

quadrant (where the platform had been located during hidden

platform training) was measured. All data were recorded with a

computerized video system.

Sample collection
After behavioral testing, mice were sacrificed and their blood

(about 0.7 ml per mouse) was collected as described previously

[42] and centrifuged (20006g, 20 minutes, 4uC). Serum was

aspirated and stored at 270uC until assayed, as described below.

At the same time, the brain was quickly dissected out,

immediately homogenized in lysis buffer (Beyotime, China) and

then centrifuged to yield supernatants for Western blots, or

fixed in 4% paraformaldehyde for immunohistochemistry

experiments.

Figure 7. Immunofluorescent staining of AGEs in the hippo-
campus and cortex. Mice were injected (i.p.) with Rib at dose of 2 g/
kg, or Glc at dose of 2 g/kg, or saline (controls) for 30 days. AGEs in the
mouse brain were detected by immunofluorescent staining. The brain
sections were double-labeled for AGEs (green) and nuclei (blue).
doi:10.1371/journal.pone.0024623.g007

Figure 8. Decline in the performance of mice injected with D-
ribose in the Morris water maze test. Conditions for the injection
of Rib were the same as those given in Fig 3. The length of time mice
took to find the hidden platform was recorded as latency of escape
during each of the seven training days (panel A and B). The length of
the searching time spent in the quadrant when the platform was
removed during the probe trial is shown in panel C. All values are
expressed as means 6 S.E.M. * P,0.05, ** P,0.01.
doi:10.1371/journal.pone.0024623.g008

Ribosylation, AGEs and Cognitive Impairment

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e24623



Serum physiochemical assays
Glycated serum protein (GSP) [43] and blood glucose [44] were

measured using kits obtained from the Nanjing Jiancheng

Bioengineering Institute (China) according to the manufacturer’

guidelines. The activity of the serum enzymes alanine amino-

transferase (ALT) [45], aspartate aminotransferase (AST) [46] and

serum creatinine [47] was determined using a spectrophotometric

diagnostic kit from Biosino Biotechnology Company Ltd. (China).

Gel electrophoresis and Western blotting
The level of AGEs or pentosidine was determined in cultured

cells, brain tissues, and mice sera as described previously [12].

Sample protein concentrations were quantified with the BCATM

Protein Assay Kit (Pierce, USA). Equivalent amounts of protein

(20–30 mg) were resolved on 12% SDS-PAGE gels and transferred

to nitrocellulose membranes. Membranes were then incubated

respectively with anti-AGE 6D12 monoclonal antibody (Trans-

Genic, Japan), anti-pentosidine PEN12 monoclonal antibody

(TransGenic, Japan) or anti-b actin monoclonal antibody (Sigma,

USA) overnight at 4uC. Each membrane was washed three times

with PBS with 0.1% (v/v) Tween-20 (PBST, pH 7.4), then in-

cubated with horseradish peroxidase-conjugated anti-mouse IgG

for 1 hour at 37uC. The membranes were again washed three

times with PBST, and then immunoreactive bands were visualized

using enhanced chemiluminescence detection reagents (Applygen,

China). The protein bands were visualized after exposure of the

membranes to Kodak X-ray film and quantified by Quantity One

1D analysis software 4.5.2 (Bio-Rad, USA).

Immunohistochemistry and immunofluorescent staining
As described [31], mice brains were immersed in 4%

paraformaldehyde for 48 hours immediately after they were

dissected out. After fixation, brains were embedded in paraffin

blocks. Five to eight micrometer thick sections were processed for

immunohistochemical analyses. Deparaffinized and hydrated

sections were incubated in Target Retrieval Solution at 95uC for

30 minutes for enhancement of immunoreactivity, then permea-

bilized with 0.3% H2O2 in absolute methanol for 10 minutes to

block endogenous peroxidase, and incubated in 10% normal goat

serum in PBS at room temperature for 30 minutes. The specimens

were incubated overnight at 4uC in anti-AGEs 6D12 monoclonal

antibody solution diluted in PBS. After washing with PBS, sections

were subsequently incubated with biotin-labeled secondary

antibodies (37uC, 1 hour). The immunoreaction was detected

using horseradish peroxidase-labeled antibodies (37uC, 1 hour)

and red staining was visualized with an AEC system (Nikon

Optical, Japan).

Immunofluorescent staining was performed as described [48].

After deparafinization, hydrating and immunoreactivity enhance-

ment, sections were incubated in 10% normal goat serum in PBS

at room temperature for 30 minutes and probed overnight at 4uC
with anti-AGE 6D12 monoclonal antibody diluted in PBS. Bound

antibodies were visualized with Alexa 488-conjugated anti-mouse

IgG (Invitrogen, USA) and cell nuclei were stained with the DNA-

specific fluorescent reagent Hoechst 33258. Immunolabeled tissues

were observed under an Olympus FV500 laser scanning confocal

microscope (Olympus, Japan).

Data analysis
All values reported are means 6 standard errors (SE) unless

otherwise indicated. Data analysis was performed by one way

analysis of variance (ANOVA) using Origin 7.0 statistical soft-

ware. Differences with a probability level of 95% (P,0.05) were

considered significant.
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