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Abstract

Epistasis plays an important role in genetics, evolution and crop breeding. To detect the epistasis, triple test cross (TTC)
design had been developed several decades ago. Classical procedures for the TTC design use only linear transformations Z;,
Z, and Z3, calculated from the TTC family means of quantitative trait, to infer the nature of the collective additive,
dominance and epistatic effects of all the genes. Although several quantitative trait loci (QTL) mapping approaches in the
TTC design have been developed, these approaches do not provide a complete solution for dissecting pure main and
epistatic effects. In this study, therefore, we developed a two-step approach to estimate all pure main and epistatic effects
in the F,-based TTC design under the F, and F.. metric models. In the first step, with Z, and Z, the augmented main and
epistatic effects in the full genetic model that simultaneously considered all putative QTL on the whole genome were
estimated using empirical Bayes approach, and with Z; three pure epistatic effects were obtained using two-dimensional
genome scans. In the second step, the three pure epistatic effects obtained in the first step were integrated with the
augmented epistatic and main effects for the further estimation of all other pure effects. A series of Monte Carlo simulation
experiments has been carried out to confirm the proposed method. The results from simulation experiments show that: 1)
the newly defined genetic parameters could be rightly identified with satisfactory statistical power and precision; 2) the F,-
based TTC design was superior to the F, and F,3 designs; 3) with Z, and Z, the statistical powers for the detection of
augmented epistatic effects were substantively affected by the signs of pure epistatic effects; and 4) with Z3 the estimation
of pure epistatic effects required large sample size and family replication number. The extension of the proposed method in
this study to other base populations was further discussed.
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Introduction

Epistasis, the interaction between genes, plays an important role in
genetics, evolution and crop breeding. First, it is an important genetic
component in the genetic architecture of complex traits [1,2]. Next, it
can lead to heterosis [3-7], which is very important in hybrid
breeding. In addition, it is a driving force in evolution and plays a
central role in founder effect models of speciation [1,8,9]. Over the
past several decades, many attempts have been made to detect the
epistasis. One important attempt was triple test cross (I'TC) design
developed by Kearsey and Jinks [10], which is a powerful breeding
design as well. Therefore, the great importance associated with the
epistasis necessitates an in-depth study of the TTC design.

The TTC design is to cross the ith individual (¢=1,2,...n) of an
Fy population (or backcross, recombinant inbred lines (RIL) and
near isogenic lines (NIL)) to the same three testers, the two inbred
lines (P; and Py) and their Fy, to produce 3z families. The design is
considered the most efficient model as it provides not only a
precise test for epistasis, but also unbiased estimates of additive and
dominance components if epistasis is absent [10]. In early studies,
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only the phenotypic data of quantitative traits were used in the
TTC to infer the nature of the additive, dominance and epistatic
effects of polygenes using classical generation mean [11-13] and
variance component analysis [10,12,14-17]. However, these
conventional biometrical genetic procedures deal only with the
collective effects of all the polygenes [6,7,11,12]. The introduction
of molecular markers has facilitated the mapping of quantitative
trait loci (QTL) in numerous species, and substantial progress has
been achieved in the detection of individual QTL and their
interaction in the RIL- and NIL-based TTC designs.

In the RIL-based TTC designs, Kearsey et al. [12] employed
the marker difference regression of Kearsey and Hyne [18] to
detect QTL for 22 quantitative traits in Arabidopsis thaliana.
Frascaroli et al. [16] used composite interval mapping [19] to
identify main-effect QTL and the mixed linear model approach
[20] to detect digenic epistatic QTL in the analyses of heterosis in
maize. The method has been used to identify the main-effect QTL
and digenic epistatic QTL underlying the heterosis of nine
important agronomic and economic traits in rice by Li et al. [17].
However, the additive and dominant effects estimated from the
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above approaches are confounded with epistatic effect if epistasis is
present. To overcome this issue, Melchinger et al. [21] derived
quantitative genetic expectations of Q'TL main and interaction
effects in the RIL-based TTC design. On their theoretical
findings, using one-dimensional genome scans, we can estimate
augmented additive and dominance effects [7] and QTL- by-
genetic background interaction, whereas using two-way ANOVA
between all pairs of marker loci, we can estimate additive-by-
additive (ez) and dominance-by-dominance (dd) interactions.
Kusterer et al. [22] applied the novel approaches of Melchinger
et al. [7,21] to detect QTL for heterosis of biomass-related traits in
Arabidopsis. In the above studies, only one variable was involved at
one time. To increase the power of QTL detection, Kusterer et al.
[22] adopted multi-variable joint analysis [23], as proposed by
Melchinger et al. [7] for QTL mapping in the NCIII design.

In the NIL-based TTC design, Melchinger et al. [21] used two
QTL mapping methods to study heterosis in Arabidopsis. In the
generation means approach, additive, dominance and QTL x ge-
netic background epistasis effects were tested and estimated, and the
approach along with particular two-segment NILs was applied by
Reif et al. [24] to map aa digenic interaction. In addition, Zhu and
Zhang [25] derived formulae for calculating the statistical power in
the detection of epistasis; and Wang et al. [26] used interval mapping
[27] to detect QTL underlying endosperm traits and demonstrated
that the TTC provided a reasonably precise and accurate estimation
of QTL positions and effects, especially the two dominant effects,
which perfectly overcomes the drawback of the Fy.5 design.

In summary, two issues in the detection of QTL in the TTC
need to be addressed. First, only a few studies are built on Fy-based
TTC [25,26], whereas most are built on RIL [7,12,16,17,21,22]
and NIL [6,24]. Second, additive and dominance effects were
confounded with QTL-by-genetic background interaction
[7,21,22] and only aa and dd digenic interactions were evaluated
in the RIL-based TTC [16,17,21,22].

The objective of this study was to estimate, in an unambiguous
and unbiased manner, all the main and epistatic effects of QTL in
the Fy-based TTC design. A series of Monte Carlo simulation
experiments was carried out to confirm the proposed approach.
The extension of the new method to other base populations in the
TTC was discussed as well.

Methods

Genetic design and data collection

An Fy population was derived from two inbred lines (P, and Py)
that differed significantly in the quantitative traits of interest and
possessed abundant polymorphism molecular markers. A random
sample of n Fy individuals (female parents) was backcrossed to three
testers, the two parental lines and their F), to produce 3n families
(L1i, Lo and Lg;). All of the 3n families, each with m replications,
were planted. Molecular marker information was observed from all
of the n Fy individuals, whereas quantitative traits were measured for
all of the 3nm TTC progeny. The phenotypic observations were
denoted by yy;j, where t=1,2 and 3 for Ly, Ly and L3;i=1,2,--- ,n
and j=1,2,---,m. The family means were denoted by
I:,,-:Z;-":l YViij / m. Following Kearsey and Jinks [10] and Mel-
chinger et al. [21], we performed three linear transformations:
Z\i=Lyj+ Ly, Zy=L;—Ly and Z3;=Ly;+ Ly —2L3;. The
association between Z; and the marker genotypes of the Iy plants
were used to infer the genetic architecture of the trait.

Genetic models for mapping QTL in the F,-based TTC design

The expected genetic values of Zy;, Z; and Z3; depended on
the choice of the metric. Two main metrics, the Fy and F. metrics,
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were adopted for the populations derived from the cross between
the two inbred lines [28-30]. The derivation of the expected
genetic values of Zy;, Zy; and Z3; under both the Fy and the Fa
metric models was presented in Table S1, Table S2, Table S3,
Table S4, Table S5, Table S6, and Supporting Information
$2. The genetic effect symbols adopted in this study were referred
to Kao and Zeng [28].

Statistical genetic models for mapping QTL under the F,
metric model. According to the expected genetic value of Zj;
under the Fy metric model in Table S5, the phenotypic value of
Z\; can be described as:

Zli:2/4+xa1ial+xa2ia2 +xa132iia1a2 (1)

+Xay dyilaydy T Xdyayildyay +Xd dyilddy +e1i

where p is the mean genotypic value of the Iy population; a; and
di are additive and dominance effects of the Aith QTL,
respectively; ia] as> igldz, idlaz and idl dy are additive-by-additive,
additive-by-dominance, dominance-by-additive and dominance-
by-dominance interactions between the Ist and 2nd QTL,
respectively; Xaji, Xayi, Xajayis Xajdyi> Xdjapi and Xdd,i are
dummy variables and determined by the genotype of the ith Iy
plant (Table S5); and ej; is the residual error with an N(0,0%)
distribution. According to the results in Table S5, there are
Xd|dgi =Xajayi— 3 Xajdyi= — 3Xayi and Xdjayi=— ¥ To
solve the genetic parameters, model (1) must be reduced to:

o
X -
le»:,uzl +xa]ia’1‘ + Xayit5 +x?12i ipn+er; (2)
where =2u—1i ai=a;—1Li as=ay—1Li =
Hz, = 20— 3ldjdy> A1 = A1 = 3ldjay, 3 =A2 = 3laydy, 1125
; ; — — 1
layay +1dya, and lezi—xalazi—xdlemL 5

If the quantitative trait was controlled by ¢ QTL, model (2)
should be extended to:

q 9=1 4 o
Zi=lz + Y Nadp+ Yy D Xe dgte;  (3)
k=1

k=ti=k+1 K

=1 q
where model mean ,uzl=2/,t—% > lagdy; A =ax—
k=11=k+1

q o
1 . . .. . . .
5];( id a; is augmented additive effect of QTL k; i i =laga; +

laq; is augmented epistatic effect between QTL k and [; and Xay i

and x— are determined by the genotypes of the Ath and /th QTL
1k)?
(marker) of the ith Fy plant (Table 1). The coefficients for the

genotype MmyM;m; were integrated by the frequencies of
MM, /mym; and Mym;/my. M. The augmented epistatic effects
(TU) are ignored in Melchinger et al. [21], this may result in a
bigger residual error and lower statistical power.

In the same way, the phenotypic value of Z; can be described as:

Zoi=ay +uqid) + a2 + Uy idr + U ayilay ay + Uay dyilag dy @

udl aziidl ap + e

where Uq, i, Udyis Uajayis Uajdyi and Udyay; are determined by the
genotype of the ith Fy plant (Table S5); and ey; is the residual error
with an N (0,0‘%) distribution. According to the results in Table S5,
there are | dyi =Ud api and thy ayi = — %(Hdli +ud2,-). To solve the
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genetic parameters, model (4) must be reduced to:

* * =
Z3i = iz, U idy +uayidy +i i+ e (5)
1 1 b
where Uz, =a1 +a, df =d — 2 lajay» d; =d,— Flajay, 2=
laydy +idyay and Uy i = Uaydyi = Udjayi-
If the quantitative trait was controlled by g QTL, model (5)
should be extended to:

qg—1 q

q
2 =iz, + Z udkid; + Z uikll.ikj + e (6)
k=1 k=1l=k+1

q q
where model mean tz, = 3 ax; dif =di— % > lagq is augment-
k=1 1#k

ed dominance effect of QTL k; ;k]:iakdl+idk”] 1s augmented

epistatic effect between QTL k and /; and dummy variables ug, ;

and u; ; are determined by the genotypes of the kth and ith QTL
k1!

of the ith Iy plant (Table 1). The augmented epistatic effects (i)
are overlooked in Melchinger et al. [21], this may result in a bigger
residual error and lower statistical power.

Similarly, the phenotypic value of Z3; can be described as:

Z3i =rialaz +Va1d2iia]d2 + leaziidlaz + Vd1d2iid1 dy +e3;

= Uzy Vaydyilaydy TV ayildyay +Vd dyildy dy €3

where tiz, =riala2; r is the recombination fraction between two
QTL under study; and dummy variables vy dyis Vdjayi and vd,d,i
are determined by the genotype of the ith Fy plant (Table 1 and
Table S5). Here pure ad, da and dd epistatic effects can be
estimated with two-dimensional genome scans. This differs from
that in Melchinger et al. [21], in which only dd epistasis is
estimated with two-way ANOVA.

Models (3), (6) and (7) were working models for our QTL
mapping approach in the Fy-based TTC design. Here we
proposed a two-step approach to obtain all the pure main and
epistatic effects in the presence of epistasis. In the first step, model
(8) can be used to estimate the augmented additive (a;) and
epistatic (7z) effects, model (6) can be used to estimate the
augmented dominance (d}) and epistatic (ix1) effects, and model (7)
can be used to estimate three types of pure epistatic effects (iy,q,,
ig.q, and ig.q,). In the second step, all estimated epistatic effects in
models (3), (6) and (7) were integrated for the estimation of all four
types of the pure epistatic effects wusing iya =ik —Iidd,
iapdy =kt + 2l —iga) /3 and g =0 — ined + 2iga) /3-
These pure epistatic effects further integrate with the estimates
of both a; and d for the estimation of pure additive and
dominance  effects, using ax=(aj+3>1_ 1, 4 ida) and
de=(di+ 331 LI %k lazy)- When epistasis is absent, pure additive
(ax) and dominance (di) effects can be directly obtained from
model (3) and model (6), respectively.

Genetic models for mapping QTL under the F. metric
model. With Z;, Z; and Z3; genetic models for mapping Q'TL
under the F., metric model have the same forms as described in
models (3), (6) and (7), respectively. The detailed derivation was
described in Table S6 and Supporting information S1 and the
detailed comparisons were given in Tables 1 and 2. The pure
epistatic effects under the two metrics are calculated in the same
way and the pure additive and dominance effects under the two
metrics are calculated in different ways, here ar=la;—
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E 3 %Zlq: 1LI#k (i“kdl - idkal)} and di = [df + %ZIq: 1,1 #k (i“kal —lded) )}
= o
9 n n =
E £ L2
- © ) =
g5 o o
IR~ T § 5 Geneti t timation
[ g g 5 enetic parameter estl |
§ g s 3 £ Models (3) and (6) have a uniform appearance. However, the
] g3 & & 2 true number of QTL (g) is hard to determine. Variable selection
< via a stepwise regression or a stochastic search variable selection is
3 ¥ the common procedure for epistatic QTL analysis. But these
S 2 methods are computationally intensive and may not be optimal
2 s _ [31-33]. Thus, we adopted the empirical Bayes (E-Bayes) method
g ] 5 3 S of Xu [33] for the estimation of parameters in the above models.
N E J; T E" The E-Bayes approach assumes that there is one QTL standing on
"; gg |~|; £ 3 each marker throughout the genome and shrinks the genetic
< 25| .z ]g :; effects of all “nonsignificant” QTL toward zero. Here, we only
T gave some necessary procedures; for the technical details of the E-
© Bayes refer to the original study of Xu [33].
w Models (3) and (6) can be uniformly written as:
£ ' =
§ : "i T: q g=1 q P
> Bl s < Yyi=p+ Zxkigk + Z Xplitks 4 €= i+ szi?/j'i‘é’i (8)
7 e R SRR k=1 k=11=k+1 Jj=1
1 ¥ ¥
e} - —ley —le
< S| + I
© £ = & .
N o i i where gt 1s the model mean; g is the augmented main effect of the
l\'l: < s < kth QTL; ij; is the augmented epistatic effect between the Ath and
s th QTL; p= %q(q+1) is the total number of genetic effects,
2 _ including the augmented main and epistatic effects; and
3 § < ei~N(0,6%) is the residual error. Model (8) can be expressed in
s | o7
€ s P WL S5 matrix form:
9 = E| L T8
5] §| 5| & WL
5 13 'g ||_ ||~ ||m
o u = T2 y=Xp+Zy+¢ 9)
@
<
B -
S gl = where y=(1.p2. )3 X=(LL-. DY p={u}; Z=(Z1,
g E ‘:':’ f f A,;g e >Z[7); y:(Vl P ’Vp)T and £~N(0>102)-
g g 'g 3 I £ In the expectation and maximization (EM) algorithm of the E-
c 2| L I g Bayes method [33], model (9) is a typical mixed model and f is
2 <o s o= = treated as a fixed effect, whereas y is treated as a random effect.
E Therefore, y has a multivariate normal distribution with the
'5 c mean #=Xf and the variance-covariance matrix V= Z?:l
K] g g 7T 2 2 '
5 £ IS Z,Z; o; +}” : ] . )
< o S ARSI n the algorithm of E-Bayes, the genetic parameters p are
5 o DRI In the EM algorithm of E-Bayes, the g p
£ € o the focus of interest and the normal prior is assigned to y;,
g E ¥ ﬁ‘ TT ie., ;"N (0,(7/2) and (T/2 is further assigned a scaled inverse % prior,
S & *o X w
_r% £ <o S : ie, o7 ~ InV—Xz(r,w)oc(ajz)’%(Hz) exp| =5 |- The B has
= 2 uniform prior distribution. Jj
o é. < The EM algorithm procedures are as follows:
g g = 1) Choose ¢=(7,0)=(0,0) and assign initial ;falues: o=
—1
5 5|5 SAH o= =0, =10,=(X"X)"'X"y, > =(y—XB)' (y—XP)/n.
o - TN% N 2) E-step: the best linear unbiased prediction (BLUP) estimation
] s |E § et s < of the expectation of the quadratic term
@ S|y £ I - gl R
£ S8 | & ML S8
S § £ % TR I oo
a slel 2] & & & E()=a;Z] V' (y—XP)
= a -
g 3 var(y) =i (1= Z] V"' Z;o}) (10)
] % £
9 3 3 E(y]y)=E@])E®;) +trlvar(y)]
N = @ S SHIEN
[J] —
- S
2 £ 3 3) M-step: the maximum-likelihood estimation for 0]2, fixed
= o N N N | o

effects and residual variance
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T
,_EGipto

j T4+2+1
B=X"V'xX)"'(XTVy) (11)

1 P
o= (= XP X 1: ZEG)

4) repeat steps 2) - 3) until a certain criterion of convergence is
satisfied, e.g. the difference of parameter estimate values between
two adjacent iterations were less than 10717,

In addition, we performed a two-dimension scan using the
maximum likelihood approach for the estimation parameters in

models (7).

Likelihood ratio test

If we only want to report QTL with relatively large effects and
give readers accurate information about how significant the
identified QTL were, statistical test should be conducted. The
usual likelihood ratio test (LR'T) cannot be carried out with the E-
Bayes method owing to an oversaturated epistatic genetic model.
We proposed the following two-stage selection process to screen
the QTL [31]. In the first stage, all QTL with ¢; = |bj|/6'j >2.0 are
picked up. In the second stage, the epistatic genctic model is
modified so that only effects past the first round of selection are
included in the model. Owing to the smaller dimensionality of the
reduced model, we can use the maximum likelihood method to re-
analyze the data and perform the LRT [31]. The test statistic is

LR;= =2[L(0-))—L(0)] (12)

where @ is the parameters vector in the statistical genetic model in
the second stage analysis of model (8); @ _; is the parameters vector
in @ excluding the currently tested genetic effect y; L(#) and
L(0_)) arc the log maximum likelihood function for @ and 6_;,
respectively. For simplicity, we took LOD=LR;/4.61=2.5 and
3.0 as the critical values in our small and larger genome simulation
experiments, respectively.

Results

Experiment |

The purpose of the simulation experiment was: (1) to evaluate
the statistical performance of the proposed approach; (2) to
compare the proposed method with previous approaches, such as
Kearsey et al. [12], Frascaroli et al. [16] and Li et al. [17] or
Melchinger et al. [7,21] and Kusterer et al. [22], according to
statistical power, standard deviation and accuracy measure; and (3)
to compare the TTC design with the Iy and Fo.5 genetic designs.

The simulated genome consisted of three chromosomes (chrl,
chr2 and chr3), and 11 evenly spaced markers covered each
chromosome with an average marker interval of 10.0 cM. We
simulated three main-effect QTL and one pair-wise interaction
QTL, all of which overlapped with markers. All three main-effect
QTL were located at the center (50.0 cM) of each chromosome,
and QTLy on chr2 interacted with QTLs on chr3. The genetic
parameters under both the Iy and the F. metric models were as
follows: u=100.00; a; =1.50 and d; =1.50 for QTL,; a,=2.00
and d, = —1.00 for QTLy; a3=—1.00 and d3 =2.00 for QTLg;
igyay =1.00, 4,4, =1.50, ige =1.00 and ige =1.50 for the
epistatic effects between QTL, and QTLs;. The marginal
heritabilities of these genetic effects varied from 1.01% to
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36.54%. The sample size (n), the number of individual in the Fo
population, was set at two levels: 200 and 400. The number of
individuals (m) for each TTC family was set at 1, 5 and 10. The
environmental variance (62) was set at 4.00 and 1.00. To
implement the last objective of the simulation experiment, two
other kinds of populations, the Fy and Fy.5 populations, were also
simulated. However, molecular marker information for all three
populations was derived from the corresponding Fo individuals.
Each treatment was replicated 200 times for the TTC and Fo5
designs and 400 times for the Fy design. In the analyses of the
TTC family data, two approaches were adopted: 1) Method A, the
proposed method in this study, and 2) Method B, the modified
method of Kearsey et al. [12], Frascaroli et al. [16] and Li et al.
[17] or Melchinger et al. [7,21] and Kusterer et al. [22], by
removing the augmented epistatic effects from models (3) and (6).
In the analyses of the Fy and Fy.3 datasets, all of the main effects
and all of the pair-wise interaction effects for all of the markers on
the whole genome were simultaneously included in the genetic
model. For each simulated QTL, we counted the samples in which
the LOD statistic was greater than 2.5 and the identified Q'T'L was
within 20.0 cM of the simulated QTL. The estimate for QTL
parameter was the average of the corresponding estimates in the
counted samples. The ratio of the number of such samples to the
total number of replicates represented the empirical power of this
QTL.

To achieve the first objective of the simulation experiment, Z,
Z5 and Z3 were analyzed by Method A. In the first step, with Z; or
Z, 33 augmented additive or dominance effects (aj; or dj) and 528
augmented epistatic effects (lk/ or lk/) were estimated, and with Z3
1584 pure epistatic effects (i, q;,id,4, and ig,4,) were estimated. All
the effects were tested by likelihood ratio statistic in order that real
QTL could be identified. The results for detected QTL under the
F; metric model were listed in Table 3, Table 4, Table 5. The
results show that the newly defined parameters, i.e., tiz,, ai, dj
(k=1,2,3), i3 and &3, were estimated in an almost unamblguous
and unbiased manner, and all of the main-effect QTL were
identified with a high statistical power and precision in the
estimated effects and positions of the QTL by taking the TTC
family mean as the unit_of phenotypic measurement. The
augmented epistatic QTL (l 23 and i»3) were also well detected,
except for the situation when n=200, m=>5 and 62 =4.00. In the
second step, all the pure main and epistatic effects would be
estimated in an unbiased manner (Table 6). It should also be noted
that a large sample (n>400), a greater family replication number
(m>10), and moderate QTL heritability (¢ <1. 00) are needed
for the partition of the augmented epistatic effects (723 and 12;) nto
its components (aa, ad, da and dd), and detecting dd epistasis is
more difficult than detecting ad epistasis (Tables 5 and 6). The
theoretical explanation is that ad (also da) has a larger
contribution to the genetic variance of Zsz than dd
(Ve(Zs)= é(iﬁzd; +i§2m)+ 116 iﬁzd; when r33=0.50, Supporting
Information $2). In addition, the powers in the detection of the
augmented epistatic effects (122 in Table 3 and i3 in Table 4) were
always much higher than those of pure epistatic effects (ad, da and
dd in Table 5). The possible explanations lie in that 1) the
augmented epistatic effects (i23 =iyyq; + g, and Iy = lards +ldza;)
were the sum of two epistatic effects with the same signs in
Experiment I and were inflated, and 2) these epistatic effects have
different contributions to the genetic variances of Z;, Z; and Z3
(Supporting Information S2).

To achieve the second objective of the simulation experiment,
Z; and Z, were re-analyzed by method B and the results under
the Fy metric model were also listed in Tables 3 and 4. The
results show that the <} and <5 could still be used to unbiasedly
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estimate QTL additive (a;) and dominance effect (d;) when the
QTL (QTL,) acted independently; but provided biased
estimation of QTL additive (4> and a3) and dominance effects
(d» and d3) when the QTL acted dependently (QTL, and
QTL;). The additive (a2 and a3) and dominance effects (d» and
d3) of interactive QTL obtained by Method B in Tables 3 and 4
were indeed the newly defined additive effects (¢; and a3) and
the new dominance effects (d; and dj) with slightly poorer
precision (little larger in standard deviation) in estimated QTL
effects and positions and lower statistical power. This means
that the new method was better than the previous methods of
Kearsey et al. [12], Frascaroli et al. [16] and Li et al. [17] in the
presence of epistasis. The higher statistical power and smaller
error variance for method A over method B shows that the new
method was also superior to the methods of Melchinger et al.
[7,21] and Kusterer et al. [22].

To achieve the third objective of the simulation experiment,
the Fy and Fy.5 data were analyzed and the results under the Fy
metric model were listed in Tables 7 and 8. The results show that
many effects could be estimated in an unambiguous and unbiased
manner in the Fy and Fo.3 genetic designs. In the situation of
m=1, the Fy design was superior to the both TTC and Fo.5
designs. The reasons are as follows. In all the above three designs,
marker genotypes were from Fy individuals. If m=1, genotype
sampling error was large for both TTC and Fo.3 designs.
Meanwhile, the proposed approach in this study did not consider
the mixed distribution of the Fo.5 (or TTC) progeny derived from

@ PLoS ONE | www.plosone.org

Table 5. Mapping QTL for Z; under the F, metric model.
n m a2 MSe Uz, QTL,xQTL;
Tayds Power Idyay Power idydy Power Position, Position;
Parameter values 0.50 1.50 1.00 1.50 50.00 50.00
200 1 4.00 49.410 0.508 4.283 0.045 5353 0.010 6.659 0.025 50.250 49.450
(4.534) (0.515) (0.377) (0.376) (1.376) (8.293) (7.843)
1.00 32.103 0.535 3.716 0.060 4.208 0.015 4.751 0.010 50.050 50.600
(3.311) (0.396) (0.235) (0.840) (0.281) (8.175) (7.274)
5 4.00 9.993 0.498 2499 0.155 2.302 0.030 3.471 0.045 49.750 50.050
(0.981) (0.218) (0.254) (0.300) (0.421) (7.120) (6.458)
1.00 6.367 0.514 2.054 0.320 1.932 0.120 2.698 0.110 49.900 50.350
(0.609) (0.175) (0.244) (0.233) (0.324) (6.260) (5.050)
10 4.00 4.961 0.509 1.809 0.440 1.748 0.135 2.336 0.150 49.950 49.850
(0.502) (0.158) (0.253) (0.222) (0.300) (5.888) (4.424)
1.00 3.158 0.505 1.627 0.815 1.392 0.310 2.088 0.370 49.650 50.150
(0.338) (0.120) (0.252) (0.178) (0.306) (4.179) (3.396)
400 1 4.00 50.246 0.489 3.511 0.080 3.556 0.020 5.020 0.050 49.800 50.100
(3.427) (0.350) (0.393) (0.184) (0.519) (7.432) (7.434)
1.00 31.734 0.511 2.838 0.150 2778 0.045 4,008 0.040 50.250 49.550
(2.121) (0.271) (0.406) (0.332) (0.685) (7.328) (6.821)
5 4.00 10.052 0.500 1.903 0.460 1.739 0.135 2.534 0.165 50.900 50.250
(0.675) (0.152) (0.253) (0.182) (0.267) (5.947) (4.853)
1.00 6.391 0.515 1.627 0.800 1.450 0.225 2.009 0.350 49.850 50.300
(0.489) (0.123) (0.260) (0.191) (0.289) (4.646) (3.739)
10 4.00 5.003 0.506 1.540 0915 1319 0.375 1.882 0.490 50.100 50.300
(0.386) (0.124) (0.277) (0.190) (0.256) (3.750) (2.820)
1.00 3.174 0.495 1.495 0.995 1.117 0.755 1.633 0.820 50.400 50.250
(0.222) (0.081) (0.246) (0.179) (0.263) (2.981) (1.859)
* n denotes sample size; m is family replication number; and ¢? is residual variance for the phenotypic trait value Viij-
Uz, =F231ay0; =0.50 x 1.00=0.50, see Model (7) for details.
doi:10.1371/journal.pone.0024575.t005

heterozygous Iy parents. However, the powers in the detection of
the main and epistatic QTL were smaller for the Iy design than
for the TTC design with m=35 (or 10) when sample size (1) was
small and/or environmental variance (02) was large, and the
same trend was obtained for the precision of the estimates for the
effects and the positions of the main and epistatic QTL. For
example, when #=200 and ag =4.00, the power for main effects
a; and d; were 0.850 and 0.775 and the standard deviation (SD)
were 0.253 and 0.308, respectively, in Fy design (Table 7); while
the power for a; and d; were 1.000 and 1.000 and the SD were
0.118 and 0.104, respectively, in TTC design with a family
replication of 10 (Tables 3 and 4). This may be due to the fact
that the phenotypic value is measured from Fy individuals and
from the TTC family, and the family mean can be used to
decrease the residual variance and to improve the precision of the
phenotypic data. Both the TTC and Fo.5 designs use family mean
to decrease environmental variance and improve the precision of
phenotype of quantitative trait. In addition, the dominant
components decrease significantly in the Fo.3 design due to its
self-crossing, and the statistical powers for detecting dominance
effects, additive by dominance (dominance by additive) epistatic
effect and especially dominance by dominance epistatic effect in
the Fo.5 design will be lower than that in the TTC design. For
example, when n =400, m=10 and o'g =4.00, the power of 0.170
for ig,q, in Fo.5 (Table 8) was much lower than that of 0.490 in the
TTC (Table 5). The genetic variance contributed by the
simulated three QTL under TTC and Fys designs were
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(Supporting Information S2):

1 1,
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These variance component can be used to interpret the above
simulated experiments results.

Experiment Il

The purpose of the simulation experiment was to show the
statistical properties of the proposed approach in the TTC design
when the augmented epistatic effects consisted of two epistatic
effects of equal strength in opposite directions. The genetic
parameters under both the Fy and the F. the metric models were
as follows: p=100.00; a; =1.50, dy=1.50 for QTL,; a, =2.00,
dy=—1.00 for QTLy; a3=-—1.00, d3=2.00 for QTLg;
igyay =1.00, igq, =1.50, ig,q, =—1.00 and igq = —1.50 for the
epistatic effects between QTL, and OQTLs;. The marginal
heritabilities of these genetic effects now varied from 0.98% to
38.75%. The value of m was set at 5 and 10. The other settings
were the same as those in Experiments I.

@ PLoS ONE | www.plosone.org

Table 6. Estimation of pure main and epistatic effects of QTL in the F,-based TTC design using the two-step approach under the
cases of n=400, m=10 and ¢2=1.00 (200 replicates).
Metric Statistics QTL, QTL, QTL3 QTL,xQTLs
a dh a dz as ds iaya fayds idyas Ldydy
Parameter values 1.50 1.50 2.00 -1.00 -1.00 2.00 1.00 1.50 1.00 1.50
Fa Mean 1.501 1.504 2,028 -1.128 -1.025 1.865 0.886 1.466 1.075 1.633
sD 0.052 0.058 0.108 0.214 0.100 0.214 0.262 0.200 0.190 0.263
Power 1.000 1.000 1.000 1.000 1.000 1.000 0.820 0.995 0.995 0.820
Fa. Mean 1.502 1.504 2,049 -1.051 -1.062 1.940 0.797 1.468 1.080 1724
SD 0.055 0.063 0.213 0.305 0.193 0.306 0.263 0.224 0.219 0.264
Power 1.000 1.000 1.000 1.000 1.000 1.000 0.670 0.990 0.990 0.670
doi:10.1371/journal.pone.0024575.t006

The results for Experiments II are listed in Table 9, Table 10,
Table 11. The results show that the powers in the detection of the
augmented epistatic effects (lzq in Table 9 and 73 in Table 10)
were very low. The results are reasonable because the genetic
contributions of the augmented epistatic effects to the genetic
variance of Z; and Z; were low. However, the powers for pure
epistatic effects (iuq, igq and igg) remained steady (Tables 5 and 11)
because the genetic contributions for these effects do not change.

Experiment Il

We simulated a large genome to explore the performance of the
proposed method in real data analysis. The simulated genome was
1000.0 cM in total length and covered by 210 markers (10
chromosomes, each covered with twenty-one 5.0 cM equally
spaced markers). Ten main-effect QTL and three pairs of
interacted Q'TL, which totally explained ~50% variation of L,
Ly and Ls, were assumed (Tables 12 and 13). The environmental
variance (62), sample size and family replication number were set
at 6.0, 500 and 10, respectively. The mapping results from 200
samples under the Fy metric model were presented in Table 12 for
the main-effect QTL and Table 13 for the epistatic QTL. Results
from Table 12 showed that all the augmented main effects were
unbiasedly estimated with satisfactory powers; and most pure
additive and dominance effects were also unbiasedly estimated
with the exception of pure dominance effects for QTLs; and
QTLg. The results from Table 13 demonstrated that with Z; and
Z, the augmented epistatic effects (l and 7) were well estimated
when they consisted of two epistatic effects with same sign (QTL,
and QTL;, QTLg and QTL,0) and were poorly detected when
they consisted of two epistatic effects of equal strength in opposite
directions (l sg and isg for QTLs and QTLg); with Z3 all the pure
epistatic effects (iuq, i4s and igq) were well estimated, and no matter
what signs they were; and all pure epistatic effects (iyy, lua, idq and
igq) estimated in the second stage were unbiased except for i,, for
QTLs; and QTLg (igsq)- The failure of detecting isg resulted in
biased estimate for i,,4, which further caused bad estimate for ds
and dg. These results were similar to those in simulation
experiments I and II. The time cost was ~4.70h per sample on
our person computer (CPU: Intel® CoreTM 2 DUO 3.0G,
Memory: 2.0G).

Experiment IV

This simulation experiment was to consider the situation that
QTL stands on the position in the marker interval. The three
simulated QTL were placed at 45.0 (the middle of marker
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interval), 52.5 (the right of the sixth marker) and 47.5 cM (the left
of the sixth marker), respectively. The number of individuals (m)
for each TTC family was set at 5 and 10. The other settings were
the same as those in the Experiment I. The results were shown in
Table 14, Table 15, Table 16. The accuracies for the effects and
the positions of QTL, as well as the empirical power, were satisfied
but lower than those presented in Table 3, Table 4, Table 5; and
the QTL effects were slightly underestimated because of the
recombination between QTL and its adjacent marker.

Discussion

Compared to previous studies on the methodologies for the
TTC, the method described here offers advantages over the
previous approaches. First, with Z; or Z; all augmented main and
epistatic effects (a, di, 4 and ;kl) were included simultaneously in
one genetic model and estimated together by the E-Bayes
approach. Our simulation studies showed that these augmented
effects could be estimated with very high power and precision
when the component epistatic effects (iy,q, and ig.q, Or Isq, and
id.a) of g7 and ;kl have the same direction (Tables 3, 4 and 13).
Even though these epistatic effects have different signs, the new
approach works well for augmented main-effect QT parameters
(Tables 9, 10 and 12).

Second, with Z3 three pure epistatic effects (iy,q;, i4,q, and ig,q,)
were estimated simultaneously in this study by two-dimensional
genome scans. Although we attempted to use a full genetic model
that included all the digenic epistatic effects for the estimation of
all the epistatic effects under the framework of E-Bayes, it failed.
The reasons are unclear. To date, there have been several
approaches to detect the epistasis in the RIL-based TTC and
NCIII designs, little is currently reported about the estimation of
more than two epistatic effects in the TTC. Frascaroli et al. [16]
and Li et al. [17] adopted the mixed linear model approach of
Wang et al. [20] to detect iy, 4, in the analyses of Z; and iy, 4, in the
analyses of Z»; and Kusterer et al. [22] and Melchinger et al. [21]
used two-way ANOVA on L3 and Z3 for the detection of i,,,, and
ig.q), respectively. However, the two studies involved only one
digenic epistatic effect. Although multiple interval mapping has
been used to detect the augmented epistatic effects (i and Z) by
Garcia et al. [34], the genetic design is NCIII and the estimate is a
compound effect, not a pure epistatic effect. In addition, Reif et al.
[24] proposed a two-step procedure to detect iy, 4 with particular
two-segment NILs.

Finally, many main and epistatic effects can be estimated in an
unambiguous and unbiased manner by our two-step approach. In
the first step, the augmented main and epistatic effects (a,d;, ik
and 7)) and three pure epistatic effects (iy,d,, ig.q, and iz.q) may be
estimated in the separate analyses of Zj, Z; and Z3. In the next
step, all four pure epistatic effects (iy,a, lapdys ldpay and i4,4,) may be
estimated by using the equation iy =iy +iqq and
;k/:(iakd/ +ig4,4,) and pure additive and dominant effects may be
further estimated by using the equations of a; and djf. The
simulation results show that the two-step approach works well
(Tables 6, 12 and 13). However, the pure epistatic effects (igq,,
igq, and igq) could not be detected with satisfactory statistical
power when the sample size () and family replication number (1)
were low (Tables 5 and 11). Therefore, a large n and m are needed
for the detection of epistasis. To accommodate larger n, suitable
field experimental designs, such as split-plot design [13,16] and
block in replication [35], are desired to control for environmental
error.

The Fy-based TTC design is superior to the Iy design for the
detection of main-effect and epistatic QTL when there is a small
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Mapping Epistatic QTL in the TTC Design

Table 11. Results of mapping QTL of Z; under F, metric model while augmented epistatic effects consisted of two epistatic effects
of equal strength in opposite directions (200 replications).
n m o2 MSe tz, QTL,xQTLs
layds Power ldyas Power ldyds Power Position, Positions
Parameter values 0.50 1.50 -1.00 -1.50 50.00 50.00
200 5 4.00 9.868 0.489 2397 0.205 -2.342 0.040 -3.292 0.060 50.200 49.550
(0.969) (0.201) (0.281) (0.353) (0.286) (6.571) (6.597)
1.00 6.303 0.484 2.055 0.330 -1.933 0.085 -2.811 0.105 50.550 49.500
(0.622) (0.191) (0.296) (0.200) (0.424) (5.863) (5.559)
10 4.00 4.946 0.484 1.879 0.540 -1.681 0.140 -2.429 0.185 49.600 49.950
(0.502) (0.147) (0.288) (0.161) (0.272) (5.657) (4.860)
1.00 3.224 0.506 1.656 0.700 -1.412 0.240 -2.079 0.335 50.000 50.300
(0.350) (0.138) (0.280) (0.173) (0.282) (4.702) (4.243)
400 5 4.00 9.953 0.490 1.866 0.535 -1.705 0.095 -2.422 0.205 50.650 49.800
(0.775) (0.155) (0.302) (0.201) (0.283) (5.589) (5.395)
1.00 6.312 0.511 1.638 0.780 -1.404 0.275 -2.050 0.390 49.950 50.200
(0.496) (0.126) (0.274) (0.143) (0.259) (4.860) (4.005)
10 4.00 4.923 0.501 1.591 0.910 -1.314 0.405 -1.856 0.490 49.950 49.850
(0.350) (0.121) (0.284) (0.219) (0.264) (4.312) (3.680)
1.00 3.200 0.493 1.499 0.995 -1.106 0.725 -1.595 0.825 49.900 49.950
(0.237) (0.089) (0.266) (0.157) (0.267) (3.006) (2.351)
* n denotes sample size; m is family replication number; and o2 is residual variance for the phenotypic trait value Vi
Uz, =T23ig,0, =0.50 x 1.00=0.50, see Model (7) for details.
doi:10.1371/journal.pone.0024575.t011

Table 12. Simulated and estimated main-effect QTL position and effects for large genome data under the F, metric model (200

replications).

Main

effect

QTL True parameter Estimate at the first stage Estimate at the second stage

Pure
Posi. main Augmented
(cM) effects main effects Z; Z, a Power d Power Posi.
a d a d a Posi. Power d' Posi. Power

QTL, 30.00 -1.00 050 -1.00 0.50 -0.992 30.000 1.000 0.510 28.453 0.695 -0.992 1.000 0.510 0.695 29.463
(0.094)  (0.709) (0.092) (6.726) (0.094) (0.092) (2.878)

QTL, 75.00 1.00 -1.00 1.00 -1.00 0.987 74.949 0.980 -0.937 75.003 1.000 0.987 0.980 -0.937 1.000 74.997
(0.098) (1.131) (0.155)  (1.642) (0.098) (0.155) (1.119)

QTL; 150.00 0.70 0.00 0.70 0.00 0.677 150.102  0.980 3 5 5 0.677 0.980 150.102
(0.096) (3.078) (0] () (0.096) (3.078)

QTL, 23500 150 -1.00 1.00 -1.50  0.993 235.029  0.995 -1.468 234975 1.000 1.482 1.000 -1.006 1.000 235.002
(0.099) (0.797) (0.107)  (0.354) (0.155) (0.263) (0.436)

QTLs 46500 1.20 0.60 1.50 0.90 1.488 465.000 1.000 0.882 465.189  0.985 1.207 1.000 0.207 1.000 465.093
(0.110)  (0.000) (0.099) (1.426) (0.171) (0.367) (0.708)

QTLg 555.00 -0.50 1.00 -0.50 1.00 -0.500 555.211 0.910 0.976 555.048 0.995 -0.500 0.910 0.976 0.995 555.133
(0.086)  (5.339) (0.108)  (1.329) (0.086) (0.108) (2.636)

QTL, 675.00 -1.00 150 -1.75 1.00 -1.744 675.000 1.000 0.993 675.162 0.995 -0.997 1.000 1.450 1.000 675.080
(0.096)  (0.000) (0.112)  (1.301) (0.138) (0.272) (0.649)

QTLg 740.00 -0.70 130 -1.30 1.60 -1.295 739.975 1.000 1.584 740.000 1.000 -0.697 1.000 0.922 1.000 739.988
(0.097) (0.354) (0.105)  (0.000) (0.210) (0.361) (0.177)

QTLy 830.00 0.00 0.00 0.50 0.50 0.534 829.632 0.815 0.524 829.588 0910 0.083 0.900 0.021 0.985 829.477
(0.106)  (5.402) (0.098) (6.104) (0.327) (0.516) (4.845)

QTLqo 870.00 0.00 0.00 0.50 0.50 0.535 869.859  0.885 0.512 870.322  0.855 0.112 0.955 -0.018  0.990 869.987
(0.099) (4.750) (0.096) (6.115) (0.349) (0.547) (4.063)

doi:10.1371/journal.pone.0024575.t012

@ PLoS ONE | www.plosone.org 14 September 2011 | Volume 6 | Issue 9 | 24575



Table 13. Simulated and estimated epistatic QTL positions and effects for large genome data under the F, metric model (200 replications).

Power
1.000
0.930

Posi. B
675.550
(4.854)
740.591
(6.100)
875.612

Posi. A
236.025
(6.405)
464.516
(8.886)
823.921

1.577
(0.485)
1.424
(0.575)
-1.270
(0.554)

idd

1.022
(0.348)
-0.632
(0.352)
-1.187

ida

1.528
(0.342)
1.257
(0.299)
-1.223
(0.478)

Z3
tad

Posi. B Power

674.930 0.980
739.324 0.185
(18.603)

(1.872)

Posi. A
234922
(2.102)

466.486
(17.633)
830.300

2.450
(0.312)
1.078
(0.173)
-1.935

z2
i

Power
1.000
0.005

Posi.
675.025
(1.543)
740.000

Estimate at the first stage
Posi. A
234.995
(2.309)
475.000

Z1

i
2.501
(0.287)
1.092

250
0.60

Augmented
epistatic
effects

2.50

0.60

1.50
1.20

idd

1.00

ida

-0.60

1.50
1.20

fad

Pure epistatic effects

1.00
-0.60

laa

Posi. B
(cM)
675.00
740.00

True parameter

Posi. A
(cM)
235.00
465.00

Epistatic
QTL

QTL4 xQTL7
QTL5xQTL8

0.695

870.287 0.985
(4.207)

0.830

870.361

829.578
(3.499)

-1.971
(0.275)

-1.00 -1.00 -1.00 -2.00 -2.00

-1.00

870.00

830.00

QTL9 xQTL10

(10.098)

(10.713)

(0.532)

(2.664)

(0.337)

(3.836)

Estimate at the second stage

Posi. A Posi. B

Power

Power

ida

Power

lad

Power

laa

1.577 1.000 235.298 675.186
(2.453)

(0.485)
1.424

1.000 1.494 1.000 0.987 1.000

0.924

150 1.00 150

1.00

675.00

235.00

QTL4 xQTL7

(1.780)
740.556

(0.272)
-0.604

(0.300)

1.285

(0.470)
-1.424

464.656

0.930 0.930 0.930

0.930

120 -060 1.20

-0.60

740.00

465.00

QTL5 xQTL8

(0.290) (0.344) (0.575) (9.316) (7.221)
-1.037 -1.270

-1.055

(0.575)
-1.025

871.732
(4.528)

828.471

0.695 0.695 0.570

0.890

-1.00 -1.00 -1.00

-1.00

870.00

830.00

QTL9xQTL10

(3.777)

(0.554)

(0.523)

(0.509)

(0.572)

doi:10.1371/journal.pone.0024575.t013
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sample size and a large residual variance (Tables 3, 4, 5 and 7),
and is more powerful for estimating di, iy q, (0T i4,4,) and especially
ig.q, than the Fy.5 design (Tables 4, 5 and 8). The new method may
be extended to the TTC design derived from other base
populations, such as RIL, BC and DH. This is because the
genetic models for Z;, Z> and Z3 in these new TTC designs can
be described in the same manner. In Tables S7, S8 and
Supporting Information S3 we only presented the expected
genetic values and genetic variance for Z1, Z, and Z3 under both
the Iy and the F. metric models in the RIL-based TTC design.

The proposed approach in this study differs from the previous
methods of Kearsey et al. [12], Frascaroli et al. [16], Melchinger
et al. [7,21] and Li et al. [17]. First, the former derives the linear
regression models for Z1, Z; and Z3 and the latter makes use of
ANOVA. Thus, the precondition for the former is to derive the
dummy variables for each genetic effects, whereas the precondi-
tion for the latter is to obtain the expectation and expected mean
squares. In the expectation and expected mean squares, if one
effect is confounded by another effect, these confounded effects
may be estimated together. That is the augmented effect in the
above ANOVA. If there are multicollinear relationships among
dummy variables, the corresponding effects cannot be estimated.
However, the effect combination is estimable. That is the
augmented effect in the linear regression analysis. This can
explain why we construct augmented effects. Second, we consider
all the main-effect QTL and all the digenic interactions in one
model of Z, or Zy, all the augmented additive, dominance and
epistatic effects have been rightly defined, and all the pure main
and epistatic effects can be unbiasedly estimated. Although in the
previous studies the augmented additive and dominant effects (aj;
and d}) have been rightly defined and are clearly confounded by
QTL x genetic background epistasis in the RIL-based TTC and
NCII designs [7,21,22], the augmented epistatic effects have been
ignored. This neglect would result in a biased estimation for the
augmented main effects, a larger residual variance and a lower
power of QTL detection (Tables 3 and 4). In addition, with Z3 we
can estimate three types of pure epistatic effects (ad, da and dd)
using two-dimensional genome scans. This differs from Melchin-
ger et al. [21], in which only dd epistasis can be obtained.

The Fy and F. are two main metrics that are adopted for
populations derived from a cross between two inbred lines. The F,
metric is orthogonal for the Iy population when epistatic genes are
under linkage equilibrium, whereas the I, metric is orthogonal for
homozygous lines [28-30]. An orthogonal model implies that
estimates of the genetic effects are consistent in a full and reduced
model and is directly related to the partition of the genetic
variance in the population. Using different models does not
influence the detection of the main and epistatic QTL, but it does
influence the estimation and interpretation of genetic effects [30].
Melchinger et al. [7,21] and Kusterer et al. [13,22] advocated the
Fy metric in the RIL-based NCIII and TTC designs for three
reasons: (1) it has the advantage that each variance component is
proportional to the sum of the squares of the corresponding
genetic effects and does not involve any other type of genetic
effects that could obscure their interpretation; (2) epistatic
interactions by two-way ANOVAs for pairs of marker loci using
Z3; was just igg; and (3) with digenic epistasis, midparent heterosis
MPH =[d]—[iza] involves only i, beside dominance effects,
whereas under the F. metric MPH is additionally influenced by
igq. For Fo-based TTC design, neither Fy nor F., metric models are
orthogonal (Supporting Information §2). With the Z; and Z,
the newly defined parameters (a, dj, i and i) were all rightly
identified and estimated by our full model methods under both
metrics (Tables 3, 4, 12 and 13), and with Z3 the pure epistatic
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effects (iyd, i4a, and igg) could also be detected and well estimated
under both metrics when the sample size and number of family
replications were large in our simulation studies (Tables 5, 11 and
13). The differences under the two metrics may be as follows: (1)
the newly defined main effects and model means are different for
the < and <, under the two models; and (2) the Fy, metric model
seems to behave better than the I, metric model (higher power
and precision) (data not shown).

The proposed approach in this study assumes that all the QTL
stand on the markers. When marker density is high, all the QTL
can be detected with a high power and precision. When marker
density is sparse, the QTL effects are slightly underestimated
because of the recombination between QTL and its adjacent
marker. To solve the issue, some virtual marker (treated as missing
data) may be inserted. At this time marker imputation techniques
may be used.

The drawbacks for our method may lie in two aspects: (1) with
Z) and Z; the augmented epistatic effects (7 and i) were poorly
detected when their corresponding components have an equal
strength in opposite directions (Tables 9, 10 and 13). This would
result in biased estimate for pure aa epistatic effect, such as 7454, in
Table 13, and further cause bad estimate for pure dominance
effect, such as ds and dg in Table 12; and (2) The estimation error
for the pure main and epistatic effects using the two-step approach
seemed to be a little large. This will be studied in the future.

Supporting Information

Supporting Information S1 Statistical genetic models for
mapping QTL in the TTC design under the F, metric model.
(DOC)

@ PLoS ONE | www.plosone.org

18

Table 16. Results of mapping QTL of Z; under F, metric model while the simulated QTL were placed on the position in the marker
intervals (200 replications).
n m  a? MSe Hz, QTL,xQTL;
Taydy Power iday Power idydy Power Position, Positions
Parameter values 0.50 1.50 1.00 1.50 52.50 47.50
200 5 4.00 9.856 0.505 2479 0.185 2335 0.070 3.248 0.055 53.450 45.950
(1.065) (0.232) (0.319) (0.220) (0.256) (10.253) (9.139)
1.00 6.352 0.496 2.017 0.320 1.865 0.105 2.786 0.075 52.600 46.600
(0.637) (0.175) (0.237) (0.199) (0.322) (8.580) (7.598)
10 4.00 4.949 0.496 1.839 0.475 1.716 0.115 2.406 0.150 53.100 47.000
(0.514) (0.162) (0.237) (0.175) (0.291) (8.932) (7.569)
1.00 3.220 0.496 1.610 0.810 1.439 0.255 1.995 0.280 51.950 48.050
(0.325) (0.140) (0.251) (0.193) (0.254) (7.346) (6.073)
400 5 4.00 9.997 0.493 1.850 0.465 1.704 0.120 2.508 0.095 53.650 47.000
(0.689) (0.160) (0.279) (0.189) (0.298) (8.517) (7.298)
1.00 6.416 0.495 1.624 0.730 1.400 0.260 1.964 0.270 52.600 48.300
(0.485) (0.130) (0.270) (0.156) (0.235) (6.963) (5.592)
10 4.00 5.057 0.499 1.542 0.865 1.293 0.405 1.811 0.425 52.350 48.600
(0.352) (0.119) (0.276) (0.188) (0.228) (6.495) (4.488)
1.00 3.276 0.505 1.427 0.985 1.128 0.605 1.609 0.635 51.450 48.500
(0.202) (0.089) (0.224) (0.147) (0.252) (5.342) (4.341)
* n denotes sample size; m is family replication number; and ¢? is residual variance for the phenotypic trait value Viij-
Uz, =F23la,a, =0.5%1.00=0.50, see Model (7) for details.
doi:10.1371/journal.pone.0024575.t016

Supporting Information 82 The expected genetic values of
Z\i, Z3; and Z3; under the Fy and the F.. metric models in the Fo-
based TTC design.

DOC)

Supporting Information 83 The expected genetic values of the
Z\i, Z>; and Z3; values under the F. and the Fy metric models in
the RIL-based TTC design.

(DOC)

Table S1 Genetic constitutions of the Fy-based TTC family
means L;, Ly; and Lg;

(DOC)

Table 82 Expected genetic value of L;; family under the Fy and

the F.. metric models in the Fo-based TTC design.
(DOC)

Table 83 Expected genetic value of Ly; family under the Iy and
the F.. metric models in the Fo-based TTC design.
(DOC)

Table S4 Expected genetic value of Ls; family under the Fy and
the F., metric models in the Fo-based TTC design.
DOC)

Table S5 Expected genetic values of Zyi=Lij+ Ly,
25 :ili_iIZi and Z3,-:i1,-+i2,-—2]:3,- under the FQ metric
model in the Fo-based TTC design.

DOC)

Table 86 Expected genetic values of Zyi=Li+ Ly,
2 :i‘li_iQi and Zgi=i1i+z,2,-—2i3,- under the F., metric
model in the Fo-based TTC design.

DOC)

September 2011 | Volume 6 | Issue 9 | e24575



Table S7 Expected genetic values of Zy;=Ly;+ Ly,
Zsi=Lij—Lojand Zzj=Ly;j+Ly;—2L3; under the F, metric
model in the RIL-based TTC design.

DOC)

Table S8 Expected genetic values of Zyi=Lii+ Ly,
Zri=Lij— Ly and Zsi=Lj;+Lyi—2Ls; under the F.. metric
model in the RIL-based TTC design.

DOC)
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