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Abstract

Influenza virus is a major cause of morbidity and mortality worldwide, yet little quantitative understanding of transmission is
available to guide evidence-based public health practice. Recent studies of influenza non-contact transmission between
ferrets and guinea pigs have provided insights into the relative transmission efficiencies of pandemic and seasonal strains,
but the infecting dose and subsequent contagion has not been quantified for most strains. In order to measure the aerosol
infectious dose for 50% (aID50) of seronegative ferrets, seasonal influenza virus was nebulized into an exposure chamber
with controlled airflow limiting inhalation to airborne particles less than 5 mm diameter. Airborne virus was collected by
liquid impinger and Teflon filters during nebulization of varying doses of aerosolized virus. Since culturable virus was
accurately captured on filters only up to 20 minutes, airborne viral RNA collected during 1-hour exposures was quantified by
two assays, a high-throughput RT-PCR/mass spectrometry assay detecting 6 genome segments (Ibis T5000TM Biosensor
system) and a standard real time RT-qPCR assay. Using the more sensitive T5000 assay, the aID50 for A/New Caledonia/20/99
(H1N1) was approximately 4 infectious virus particles under the exposure conditions used. Although seroconversion and
sustained levels of viral RNA in upper airway secretions suggested established mucosal infection, viral cultures were almost
always negative. Thus after inhalation, this seasonal H1N1 virus may replicate less efficiently than H3N2 virus after mucosal
deposition and exhibit less contagion after aerosol exposure.
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Introduction

Influenza is a highly contagious respiratory infection annually

causing over 1.6 million infections [1] and 36,000 deaths [2] in the

United States and causing periodic pandemics with increased

mortality worldwide [3]. In spite of its major morbidity and

mortality our knowledge of influenza transmission is poor [4], with

little quantitative data available on exhaled virus from contagious

hosts [5] or level of inhaled virus needed to initiate infection. Only

one study in 1966 has measured the amount of inhaled seasonal

influenza causing symptomatic infection in the susceptible human

host [6]. Recent publications have quantified the aerosol virus

dose of H3N2 and H5N1 strains causing infection in the ferret

model [7,8].

Quantitative information may help resolve the ongoing debate

on the relative importance of the different modes of infection.

Influenza transmission occurs by three modes that are difficult to

separate in epidemiological analysis. Contact with a contagious

individual or surfaces contaminated by virus and inhalation of

airborne droplets from a cough or sneeze (droplet transmission)

are thought to be common modes of transmission [9,10]. Droplets

greater than 5 mm in diameter briefly remain airborne and are

arrested in the upper airways after inhalation, while particles less

than 5 mm in diameter (droplet nuclei) are exhaled during normal

breathing and talking as well as coughing and sneezing [11], are

airborne for minutes to hours depending on size and density, and

can reach deeper lung tissues [12] (aerosol transmission).

Epidemiological evidence for aerosol transmission is accumulating

[13,14] but further support will derive from animal models.

Influenza models in the guinea pig and ferret approximate both

the susceptibility and transmissibility of influenza. Transmission

between guinea pigs has been used effectively to study relative

transmission efficiency between strains and dependence on

humidity and temperature [15,16], but the guinea pig does not

develop inflammatory disease with symptoms [17]. The ferret

approximates human infection with respect to susceptibility,

pathogenesis and transmission [7,18]. In the ferret transmission

of seasonal and pandemic 2009 H1N1 flu strains (but not HPAI
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H5N1 strains) can occur via non-contact modes [19,20,21]. A

recent seminal study of seasonal H3N2 infection in the ferret has

quantified exhaled virus and measured the minimal aerosol

infectious dose [7].

We calculated in the present study the aerosol infectious dose

for 50% of ferrets (aID50) for a seasonal human H1N1 influenza

virus. We designed a two-chamber apparatus to nebulize virus into

a controlled airflow environment permitting the measurement of

airborne virus and directly estimate the dose of virus inhaled by

the susceptible ferret. To approximate the typical duration of

human exposure in classroom or workplace, we limited exposures

of ferrets to 1 hour. To optimize the detection of very low levels of

airborne virus, particles were collected on filters and in liquid

impingers and analyzed by culture and two RT-PCR-based assays.

Although evidence was found for viral replication in upper airway

mucosa, viral cultures were negative suggesting that aerosol

transmission resulting in contagious infection is not a characteristic

of this particular H1N1 seasonal virus.

Materials and Methods

Influenza virus
A/New Caledonia/20/99 (H1N1) (NC99), a seasonal influenza

strain included in the seasonal influenza vaccine for 7 years, was

obtained from the Centers for Disease Control. The stock virus

was passaged twice in 10-day old embryonated chicken eggs, once

in Madin-Darby Canine Kidney (MDCK) cells and a final passage

in eggs. Stock viruses had titers of 9.06105 focus-forming units

(FFU) per mL on MDCK cells. Stocks were frozen at 280C until

use, and were re-titered after each experiment to confirm the

actual titer inoculated into the nebulizer.

Exposure Apparatus
A small two-chamber Lexan exposure apparatus permitting

quantitative monitoring of virus in aerosols artificially generated

by nebulizer or exhaled by infected animals was designed and

fabricated at Lovelace Respiratory Research Institute (LRRI)

(Figure 1). The apparatus consisted of an ‘origin’ chamber 30 cm

in length for each of the three dimensions, connected directly to a

6-jet Collison small particle generator (AGI, Inc.). The ‘origin’

chamber was connected through a 10610 cm square metal tube

17.5 cm in length to the 30 cm3 ‘‘recipient’’ chamber with a small

fan on the roof of the chamber to increase air circulation. The air

was drawn by line vacuum through HEPA filters in the wall of the

origin chamber at a rate of 12 L/min and exited the recipient

chamber through HEPA filters. Nebulization into the origin

chamber and through the metal tunnel permitted only particles

less than 5 mm diameter to reach the recipient chamber

(Figure 1b). Wire mesh screens at both ends of the tunnel

prevented the ferret from contacting surface-contaminating virus

on the walls of the tunnel and donor chamber. The entire

apparatus was de-contaminated with bleach and alcohol after

every exposure.

Ferret Infection
All procedures were conducted under protocols approved by the

Institutional Animal Care and Use Committee (IACUC) at LRRI,

all facilities were accredited by the Association for Assessment and

Accreditation of Laboratory Animal Care International (AAA-

LAC), and guidelines for ferret housing, environment and comfort

described in the Guide For The Care and Use of Laboratory

Animals, Seventh Edition, National Research Council, were

strictly adhered to. Ferrets weighing 800 to 1200 g were purchased

from Triple F Farms (Sayre, PA) and housed in BSL2 conditions

for observation for at least 10 days and for serological confirmation

by the hemagglutination inhibition assay for the absence of serum

antibody to circulating influenza A and B strains. Ferrets were

exposed to aerosolized virus for 1 h with air-flow rate of 5.7–

6.0 L/min in the recipient chamber of the exposure apparatus.

The ferrets were unanesthetized and spent variable amounts of

time exploring the chamber and sleeping on the wire floor of the

chamber. After exposure each ferret was housed in a separate cage

in a ventilated rack (Allentown Cage Inc, Allentown, NJ) to

prevent any direct or airborne contact with other ferrets. The

upper respiratory tract was sampled by daily nasal wash and throat

swab for 5 consecutive days beginning 24 hours after exposure.

Nasal wash solution (1 mL of 0.1% bovine serum albumin fraction

5, 1% Antibiotic/Antimycotic (100 units penicillin G, 100 mg

streptomycin sulfate, 0.25 mg amphotericin B, Invitrogen), in PBS)

was flushed through each nare, retrieved in a collection cup and

divided equally into RNABee for later RNA extraction and rapidly

frozen for later viral culture. The throat was swabbed vigorously

with a foam-tipped applicator moistened with nasal wash solution,

vortexed for 20 sec in 1 mL nasal wash solution, divided as above,

and frozen at 280uC until analysis. The criterion for ferret

‘infection’, i.e., evidence for continuing viral replication in upper

airway mucosa, was all of the five daily samples positive by culture

or RT-qPCR.

Aerosol analysis
Viral aerosols were collected from the metal tube by a glass

impinger (AGI, Inc) at a flow rate of 2–6 L/min. Either 1 sterilized

gelatin filter (25 mm, SKC Inc., Eighty Four, PA), or 1–3 25 mm

Polytetrafluoroethylene (PTFE) Teflon filters (2.0 mm pore size,

SKC Inc.) were used each drawing an air flow rate of 2 L/min.

Gelatin filters dried and shrunk during 1 h of nebulization, thus all

filter data presented are from PTFE filters. Particle counting and

sizing was performed with a 31-channel real time aerosol

spectrometer (Model 1.109, GRIMM Technologies, Inc, Ger-

many). The flow rate of the GRIMM optical counter was 1.2 L/

min. In each exposure the Collison nebulizer and AGI contained

20 mL media consisting of MEM, 0.2% NaHCO3, 20 mM

HEPES, 1% Antibiotic/Antimycotic, 20 mM L-Glutamine,

0.001% BSA, and 100 mL of Antifoam A (Sigma). Collison and

impinger fluid samples were collected before and after nebuliza-

tion and aliquoted into RNABee (1:1 dilution) or frozen at 280uC
and stored for viral culture. PTFE filters collected aerosolized virus

at 2 L/min air flow for 1 h. After exposure the filters were

vortexed for 20 seconds in 1 mL impinger fluid, the filter

removed, and sample aliquoted equally into RNABee or frozen

at 280uC for viral culture.

Viral culture
Virus was titered by a microplaque focus-forming unit (FFU)

assay. After the sample containing virus was incubated on MDCK

monolayers with 1.25 mg/mL TPCK-trypsin at 35uC for 1 h,

1.2% Avicel was overlaid and incubated for 18 h at 35uC. After

overlay removal and fixation with 4% paraformaldehyde for

30 min at 4uC, the wells were washed twice with 0.05% Tween-20

in PBS, incubated 20 min with 0.5% Triton-X-100 and 20 mM

glycine in PBS, and washed twice. Plaques containing influenza

antigen were identified by incubation with anti-influenza M1

antibody (MAB8251, Millipore) diluted 1:1500 in 10% normal

horse serum and 0.05% Tween-20 in PBS followed by secondary

antibody diluted 1:150 in 10% horse serum, stained with 0.4 mg/

mL AEC in 0.05 M sodium acetate and 0.03% H2O2, and

counted under 206magnification.

Transmission of Aerosolized Influenza Virus
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RNA Analysis
RNA in throat swab and nasal wash samples was extracted by

vortexing 10 sec in 200 mL of BCP (1-Bromo-3-chloropropane),

centrifugation at 13,000 rpm and 4uC for 10 min removal of the

aqueous layer and extracted in the Kingfisher processor (Thermo

Scientific) by the ‘‘Magmax Clear’’ protocol according to the

manufacture’s instructions. Large volume samples from nebulizer

and liquid impingers were extracted using the Qiagen RNeasy

Maxi kit adapted to contain 10 mL/mL of carrier RNA in the

initial lysis buffer followed the manufacture’s ‘‘RNA Clean-up’’

protocol and concentration by ethanol precipitation into a 60 mL

volume. PTFE filter samples were extracted by Qiagen QIAamp

Viral RNA kit with carrier RNA.

For analysis of RNA by the Ibis T5000TM Biosensor system,

pan-influenza virus PCR primer sets were developed that are

capable of amplifying all three influenza virus species (A, B, and C)

and subtypes (HxNy) from different animal hosts (human, avian,

swine, etc.) [22,23,24]. A panel of eight primers was selected

comprising one pan-influenza primer pair, five influenza A-specific

primer pairs, and two influenza B-specific primer pairs, thus

targeting 6 of the 8 genomic RNA segments. Following initial RT-

PCR, mass spectroscopy (ESI-MS) is used to ‘‘weigh’’ amplicons

with enough accuracy to yield an unambiguous base composition

(Aw, Gx, Cy, Tz) used to identify and/or differentiate a pathogen

by interrogation of a large database of known influenza sequences.

The LOD of the assay is 10 genome equivalents (GEq).

For analysis of RNA by the standard RT-qPCR assay targeting

one genomic RNA segment, samples were amplified in triplicate

using either the ABI TaqMan One-Step RT-qPCR Master Mix

Reagents Kit (33.3 nM primer and 13.3 nM probe) or the Qiagen

Quantitect Virus Kit (333 nM primer and 80 nM probe). A

standard curve for each plate contained nine log10 dilutions of

influenza M1 gene RNA prepared by Invitrogen plasmid blunt-

TOPO and Ambion Mega-short-Script kit. The M1 gene forward

primer: TTC ACA GCA TCG GTC TCA CAG ACA, reverse:

TCC AGC CAT CTG TTC CAT AGC CTT and probe: /56-

FAM/AAC AGA ATG GTG CTG GCT AGC ACT /3BHQ_2/

(Integrated DNA Technologies, Coralville, IA). RT for 209 at 50uC
was followed by PCR at 95uC for 5 min, 40 cycles of 95uC for

15 sec, 60uC for 45 sec on an ABI 7900HT Fast Real-Time PCR

System with ABI SDS 2.3 software. After manually setting the

threshold for the midpoint for each standard curve, the mean slope

was 23.5 for a mean of 93.07% efficiency, the mean y-intercept was

41.5, and the mean r2 was 0.998 for all plates. A sample was positive

at a Ct of 35 when two out of three filters were positive yielding an

LOD of 30 Genome Equivalents (Geq; genome copies)/sample.

Calculation of Inhaled Virus
The viral RNA collected from the aerosol by the T5000 PCR-

based assay was used to calculate virus inhaled according to the

formula:

Infectious virus inhaled~ Geq vRNA in 1 h aerosolð Þ�

FFU=Geq ratioð Þ � MV=filter flow rateð Þ

The FFU/Geq ratio was derived from filter collections of high

levels of aerosolized virus with positive culture and viral RNA data

Figure 1. Schematic of the exposure chamber. The exposure apparatus is a pair of boxes with controlled airflow drawn through the HEPA filters
in the origin (left) chamber wall to the vacuum line filters outside of the recipient chamber (right). The apparatus is housed in a Biosafety Cabinet
class 2B for safety during ferret insertion and removal.
doi:10.1371/journal.pone.0024448.g001

Transmission of Aerosolized Influenza Virus
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(see Table 1). The fraction of available virus inhaled was

determined by the minute ventilation divided by the airflow/min

through the filter (2 L/min). Minute ventilation (MV) was

estimated from unpublished data and literature reports, adjusted

for ferret weight and sedation status. For anesthetized ferrets

weighing 280 g and 560 g, tidal volumes (TV) have been reported

as 4.0 and 6.0 mL, respectively [25,26]. TV for our ferrets

weighing between 0.8 and 1.2 kg was calculated as 9.0 mL

according to the L-power relationship between body weight and

lung volume. The breathing rate (RR) was observed to be a mean

of 35/min (range 28–43), and the lack of sedation was adjusted by

multiplying the TV by 1.5 (J Mauderly, personal communication),

yielding a calculated MV (TV*RR*1.5) of 472 mL/min. The ID50

was estimated using Proc Probit in SAS 9.1 (Cary, NC).

Results

Aerosol Characteristics
In initial experiments the viral aerosol generated by the Collison

nebulizer located outside the left chamber resulted in a visible

cloud of particles in both chambers (Figure 2a). Relative

humidity (RH) at the onset of nebulization was 40–45% and

increased to 75–80% at the end of the hour. A diffusion dryer (In-

Tox Products, Moriarty, NM) was then placed between the

Collison and the chamber, resulting in no increase in RH, start

RH mean (range) of 43% (41–48) compared to end RH mean

41% (31–53). The particle size showed a bi-modal distribution

with a majority of particles in the sub-micrometer size (0.25 to

1 mm, median diameter 0.44 mm) and less than 5% between 1 and

5 mm (median diameter 1.70 mm) (Figure 2b). Particle concen-

tration during aerosolization ranged from 1.4–2.06107 particles/

mL (Figure 2c). The mean rate of fluid aerosolized by the

Collison generator was 170 ml/min but the volume of each run

varied from 5–14 mL at 60 min, so the amount of virus

aerosolized was calculated according to the volume nebulized in

each experiment. Thus exposures in our apparatus were

exclusively due to virus airborne in particle nuclei applicable to

aerosol transmission.

Detection of Aerosolized Virus
We compared the relative sensitivity of two PCR-based

methods, the Ibis T5000 assay that detects 6 genomic RNA

segments for Influenza A, and a standard RT-qPCR assay that

detects a single segment (M gene) in samples expected to contain

high levels of virus (throat swab and nasal wash) and low levels of

virus (airborne virus captured in liquid impinger and on PTFE

filters (Figure 3). For all (N = 419) samples analyzed by both

assays, 212 (50.6%) were positive by either one or both assays, and

85 samples (20.3%) were positive only by the T5000 assay. The

single target RT-qPCR assay was never positive if the T5000 assay

was negative, so the T5000 system was significantly more sensitive

than the RT-qPCR assay (P = ,0.0001, Fisher Exact Test).

Among sample sources expected with high viral RNA content,

there was no difference in sensitivity of the two assays, whereas for

samples with low RNA levels (PTFE Filters and liquid impingers)

the T5000 was significantly more sensitive (P = ,0.001, Fisher

Exact Test). There was a linear correlation between the calculated

virus aerosolized and the viral genomes collected on the PTFE

filters measured by the T5000 assay after one hour of collection

(Linear Regression Test, Slope = 0.74, r2 = 0.22, F value = 9.93;

data not shown). Examining only those experiments in which the

recipient ferrets were infected, the linear relationship was more

robust both for virus measured by T5000 assay (Linear Regression

Test, slope = 0.775, r2 = 0.861, F = 37.3) and the RT-qPCR assay

(slope = 1.57, r2 = 0.833, F = 20.0). Since the T5000 assay was

more sensitive at low concentrations than the RT-qPCR assay,

subsequent analysis used the T5000 data.

Comparison of impinger and PTFE filter efficiencies
Different efficiencies of collection have been reported for

impingers and filters, suggesting that each experimental set-up

should be calibrated for relative efficiency. In our two-chamber

exposure apparatus filters and impingers were compared during

aerosolization of high levels of virus, with the RH controlled at

approximately 40–45% with the diffusion dryer. Collections at 10,

20, and 30 min of viable virus were highly variable in the impinger

(Table 1) and the collected virus did not appear to be additive

with increasing time of collection. Collections of viable virus on the

filters increased proportionately from 10 to 20 min, decreased at

30 min (Table 1) and were negative at 60 min (data not shown).

Loss of culturable virus by 60 min may be due to inactivation by

dessication, as the viral RNA on the filters increased proportion-

ately with time. Viral RNA in the impinger liquid was consistently

two log10 below that collected on parallel filters at each time

interval (data not shown), possibly reflecting damage to RNA

during bubble cavitation in the impinger. Although all methods

were subject to considerable variance, the most consistent measure

of aerosolized virus in the viral aerosol was viral RNA collected on

PTFE filters.

Since initial ferret exposures to aerosolized NC99 virus resulted

in very mild infection (see below Table 2), and since filters were

uniformly negative for culturable virus after 60 min collection, we

Table 1. Comparison of impinger and PTFE filter efficiencies for culturable virus and viral RNA.

Sample Source: impinger Filter Filter Ratiod

Aerosol timea FFU/collectionb FFU/collectionc GEq RNA/collection FFU:RNA

10 min 4.9 (0–19.6) E+03 4.9 (0.2–12.5) E+03 2.0 (0.9–3.9) E+06 1:411

20 min 16.2 (0–28.5) E+03 12.2 (5.0–25.0) E+03 4.2 (2.3–7.6) E+06 1:344

30 min 35.7 (19.5–49.3) E+03 4.0 (3.0–5.5) E+03 6.8 (4.1–9.1) E+06 1:1705

aVirus NC99 was nebulized in 6 experiments with impinger alone and 9 experiments with impinger and PTFE filter collections in parallel. The mean (range) total dose
nebulized was 1.8 (1.1–2.2)6107 FFU, calculated by virus concentration in Collison at beginning of aerosol generation times fluid volume nebulized for each run.

bImpinger collection measured for 5.4 (range 5.3–5.5) L/min, reported as total FFU collected during interval of nebulization. N = 5 at each time point as one outlier value
was removed from each group.

cPTFE filter collection combines two filters in parallel for total flow of 4.0 L/min, reported as total FFU and total genome equivalents (GEq) of RNA measured by T5000
assay.

dRatio of group means of FFU and GEq RNA collected respectively.
doi:10.1371/journal.pone.0024448.t001
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Figure 2. Characteristics of the aerosol exposure system. a. Photograph of exposure apparatus during nebulization with Collison generator
inside the origin chamber shows the visible cloud of airborne particles in both the left (origin) and right (recipient) chambers. Placement of the
Collison generator outside of the origin chamber, connected with 20 cm tubing, resulted in no visible suspended airborne particles in the chambers,
and all subsequent experiments reported here had this configuration. The Grimm particle spectrometer is placed on top of the left chamber and the
sampling port is located on top of the tunnel. b. The number particle size distribution with GRIMM optical counter. The fitted bimodal distribution
has the median diameters of 0.44 and 1.70 mm, and geometric standard deviation of 1.25 and 1.46, for the two size modes, respectively. c. Particle
number concentrations detected by Grimm laser-based particle counter sampled during four 30–60 sec intervals of the continuous one-hour
nebulization.
doi:10.1371/journal.pone.0024448.g002

Transmission of Aerosolized Influenza Virus
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established an indirect approach to measuring inhaled virus by

calculating a ratio between viable virus and viral RNA. The ratio

of virus:viral RNA ratio of 1:344 (Table 1) after 20 min of

collection on filters was used in subsequent analyses. In other

sources of virus-containing samples highly variable ratios are

calculated. The ratios in impinger collections varied from 1:7 to

1:0.16, reflecting both the variable virus collections as well as viral

RNA levels two orders of magnitude lower than comparable

filters. Ratios in the virus stock solutions in this study were 1:44,

and after 1 h of nebulization ratios of liquid remaining in the

Collison were 1:1050, probably due to loss of viability during

bubble cavitation. Thus losses of viable virus in the Collison jets,

on the walls of the first chamber and tunnel (confirmed by post-

nebulization sampling), and loss of viability due to higher humidity

resulted in less than 1% of the nebulized virus reaching the ferret

chamber.

Detection of ferret infection after exposure
Ferrets were exposed to varying levels of nebulized virus to

identify the aerosol ID50. No ferret exposed to nebulized virus

expressed any symptoms of infection. In the first six ferrets

exposed to high levels of aerosolized virus, humidity was not

controlled during nebulization and evidence for infection was

weak, with 5/8 (62%) seroconverting but only one ferret had

culturable virus in the nasal wash (Table 2). For the last two

ferrets in group 2 the humidity was reduced by insertion of the

diffusion dryer downstream from the Collison. Exposure did not

result in positive upper airway cultures, but levels of viral RNA

were high (.104 GEq/collection) for all nasal wash and throat

swab samples for days 1 through 5 post exposure. This

observation suggested that viral replication was established and

continuing in upper respiratory tract mucosa but viable virus was

not detectable in the nasal wash. Subsequent exposures to lower

levels of aerosolized virus utilized the arbitrary definition of

‘‘infection’’ to be the presence of high levels of viral RNA (.7

log10 GEq/collection) for all 5 days post-exposure (Table 3).

Lack of upper airway culturable virus could be due to a greater

portion of virus inhaled into the lung resulting in seroconversion,

but ferrets humanely euthanized 3 days post exposure had

negative cultures and RNA assays in lung tissue. To support the

notion that viral RNA present in washings for 5 days after

exposure represented viral replication in the mucosa, even though

cultures of nasal washes were negative, aliquots of 26107 FFU

NC99 were exposed to ultraviolet light for 10 min rendering the

preparation culture-negative on MDCK cells yet the RNA titer

remained at approximately 109 GEq/inoculation sample. Three

ferrets were inoculated with 109 GEq of viral RNA and nasal

washes collected 1, 2, and 3 days later. Post-inoculation nasal

washes were negative for detectable viral RNA, while the RNA

inoculation aliquot stored at room temperature for 48 h in nasal

wash solution remained detectable, suggesting that viral RNA is

cleared from the respiratory mucosa within 24 h.

Figure 3. Comparison of sensitivity of the T5000 and RT-PCR
Assays. Comparison of sensitivity of the assays for samples expected
to contain relatively higher concentrations (3.0 to 7.0 log10 Geq) of viral
RNA (throat swab and nasal wash) and relatively lower concentrations
(1.0 to 4.0 log10 Geq) of viral RNA. The Ibis T5000 Influenza assay was
not significantly more sensitive for detecting viral RNA in the airway
specimens under the conditions of this experimental infection, but was
significantly more sensitive in detection viral RNA in filter and impinger
aerosol collection devices (Chi-Squared test, p,0.01).
doi:10.1371/journal.pone.0024448.g003

Table 2. Evidence of Infection among Ferrets exposed to high levels of nebulized NC99.

Exp.-Ferret
Log10 virus
nebulized Change In RHa

Aerosol vRNA
GEq

Calculatedb Inhaled virus
FFU/hour

Nasal wash
cFFU RNA HAI titer Day 12 pe

1 – A 7.00 45–80% nd - 0 nd ,20

-B 7.31 45–80% nd - 200 nd 320

-C 7.05 45–80% nd - 0 nd 320

-D 7.05 45–80% nd - 0 nd ,20

2 – A 7.08 42–75% 6.06 382 0 8.19 ,20

-B 7.08 42–75% 6.27 2688 0 6.77 320

-C 5.06 41–53% 5.01 145 0 8.08 320

-D 7.11 41–53% 5.67 407 0 7.28 320

aFor exposures to ferrets 2-C and 2-D, the diffusion dryer was inserted into the line exiting the Collison generator, reducing the humidity at the end of the hour
nebulization.

bCalculation of inhaled virus based on measured viral RNA in aerosol inhaled during 60 min of aerosol exposure.
cNasal wash was collected on day 2 post exposure (pe) in Exp 1, and daily in Exp 2; culture results are reported for the entire collection as FFU/mL; viral RNA is the peak
titer on day 3 pe and is reported as GEq/collection.

doi:10.1371/journal.pone.0024448.t002
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Calculation of minimal ‘infectious’ dose (aerosol ID50)
All ferrets inhaling more than 10 virus particles had sustained

viral RNA in upper airways but no positive cultures while 5/12

(42%) ferrets exposed to very low levels of viral aerosol had similar

levels of sustained viral RNA (Table 3). The aID50 was estimated

using Proc Probit in SAS to be 4 FFU with a 95% confidence

interval between 1.8 and 186. Thus higher aerosol exposures to

this seasonal H1N1 virus initiated seroconversion and mucosal

replication, and lower exposures initiated at least mucosal

replication but did not likely result in contagious infection.

Discussion

Few studies have quantified the aID50 by nebulized influenza

virus either in humans or in animal models. In a study performed

over 40 years ago human volunteers were exposed to nebulized

seasonal H3N2 influenza virus and the mean infectious aerosol

dose was calculated to be 0.3 to 6 TCID50 [6]. The minimum

infectious dose by intranasal drops was determined in susceptible

volunteers to be substantially higher than the calculated aerosol

ID50 [27–30]. Ferrets exposed to aerosolized H3N2 virus were

readily infected by inhaled doses of approximately 1 TCID50 [7].

This low dose is comparable to the minimal infecting dose of 5

virus particles for an H3N2 strain in guinea pigs [15]. We report

here that for an aerosolized seasonal H1N1 virus strain 4 FFU may

initiate viral replication in the nasal mucosa, and exposure to more

than 100 FFU resulted in seroconverson, neither higher nor low

doses led to contagious infection. These results must be interpreted

with respect to experimental design, limitations in aerosolized virus

detection, and the characteristics of the influenza strain studied.

Exposure apparatus designs will likely affect measured trans-

mission efficiencies. Our design restricted inhalation to droplet

nuclei particles less than 5 mm in aerodynamic diameter by

passage through a settling chamber and a tunnel. This design

could have prevented inhalation of virus in larger droplets and

subsequent culture-positive contagious infection. Air sampling was

placed as close to the ferret as possible in a small chamber to

increase the fraction of inhaled-to-delivered aerosol, but this

approach is less exact than a nose-only exposure. Whole-body

exposure for 1 h by unrestrained, unanaethetized ferrets was

chosen to mimic the conditions of transmission experienced by

humans in their daily activities. The advantages of this design

include natural respiration patterns, expected dilution of airborne

virus by deposition on the inanimate environment, and longer

exposures to low concentrations of virus in the aerosol. The

disadvantages include inability to exclude exposure by the non-

inhalation routes, loss of variable amounts of aerosolized virus on

chamber surfaces, and the need for surface decontamination

between exposures. These disadvantages are advantages of the

nose-only exposure systems [7,8,31], but the reduced minute

ventilation of the ferret sleeping in the conical restraint may alter

the amount or mucosal distribution of inhaled virus.

Detection of influenza virus in exhaled aerosols or nebulized

aerosols presents multiple challenges. Humans exhale droplets of

widely varying size and quantity [11]. Influenza RNA was

detected in aerosols exhaled from 3 of 5 individuals infected with

influenza A [5], and the exhaled virus was quantified as 20 RNA

particles per minute in one subject. In a study capturing 3 cough

specimens from ambulatory subjects with acute influenza A, 81%

had viral RNA detected by M segment RT-qPCR in the cough

droplets but only 2 of 21 had culturable virus [32]. We observed

the same discrepancy between viable virus and viral RNA

collection, with several possible explanations. Airborne virus has

a very low death rate constant if the humidity is low [33] and this

constant increases only modestly with increasing RH [34].

Exposures in this study were conducted at RH between 30–

50%, and significant inactivation by humidity was not likely. Viral

particles secreted into tissue culture media consists primarily of

non-infectious particles with only 1% as infectious particles [35–

37] and wide variation depending on cell source and culture

conditions. Thus high levels of non-infectious viral particles

nebulized from the stock solutions grown in tissue culture, and

additional viral particle disruption due to high velocity passage

through the Collison nebulizer jets, may dominate the collection at

low levels of viral aerosol.

The accurate measurement of airborne virus depends on a

number of experimental variables and the methods used to

capture airborne virus. The PTFE filter is more efficient than the

AGI impinger in capturing viral RNA but significantly less

efficient in capturing infectious particles [38]. For brief intervals of

collection we found the PTFE filter efficiently captured viable

virus but after 20 min viability appeared to decrease but we

demonstrated this only at high aerosolized virus levels. Indirect

estimate of viable virus content using the ratio of infectious particle

Table 3. Evidence of viral replication in ferrets exposed to low doses of aerosolized NC99.

Exp.- ferret
Target (a) Dose
Nebulized

Aerosol virus On filter/h
GEq/collection

Calculated (b) inhaled
virus FFU/hour

Peak nasal wash virus RNA
GEq/collection

Upper airway Viral
replication

3 – A 16103 ,2.0 ,2 4.89 2

-B 16103 ,2.0 ,2 3.54 2

-C 16105 3.38 10 9.00 +

-D 16105 3.38 10 7.05 +

4 – A 16104 2.87 3 7.53 +

- B 16104 2.58 2 7.02 +

- C 16104 3.04 5 7.61 +

- D 16104 3.13 6 ,2.0 2

- E 16104 2.86 3 ,2.0 2

5 –ARE 16103 (N = 5) ,2.0 ,2 ,2.0 2

a. Actual dose calculated was within 30% of target dose.
b. Calculations based on viral RNA collected on PTFE filter during 60 min of aerosol exposure.
doi:10.1371/journal.pone.0024448.t003
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to viral RNA ratio was derived from the filter collections at high

viral loads. Although this ratio is subject to variability, use of

impinger collections to estimate the ratio was not valid due to the

large loss of detectable viral RNA in impinger fluid.

For rapid high-throughput assessment of airborne influenza

virus in environmental samples, culture may lack sufficient

sensitivity. In this study the T5000TM Biosensor system demon-

strated markedly higher sensitivity than standard RT-qPCR in

samples expected to contain low levels of virus. The high

specificity and sensitivity of Biosensor system has been published

for diverse respiratory pathogens [22–24]. The breadth of

coverage and resolution offered by this influenza panel was shown

by testing 92 different influenza virus isolates, including 22 avian

isolates (representing twenty different H/N types collected from

nine different species of wild birds), 18 human influenza A isolates

(eight H1N1, 10 H3N2), four swine isolates (including one novel

type), one equine isolate, and six human influenza B isolates.

Despite the diversity of this sample set, the broad-range primers

generated amplicons from all isolates, while the base composition

signatures from amplicons obtained with these primers distin-

guished the isolates [23]. In samples derived from clinical isolates

at Northwestern University Hospital, the Biosensor system

detected infection with approximately 94% sensitivity and 99%

specificity. The detection of 6 genomic RNA segments by this

assay may correlate sufficiently accurately with airborne virus

levels and should be tested in environmental contamination

studies.

The observation of persistent viral RNA in upper airway

samples, seroconversion, yet negative cultures in ferrets may imply

that aerosol transmission is not simply a dose-dependent event.

Aerosol transmission may also depend on the behavior of the

inhaled virus, due to strain-dependent virulence or the widely

dispersed deposition of aerosolized virions. Humans infected with

H3N2 strains are generally more symptomatic than those infected

with seasonal H1N1 strains. Ferrets exposed to a seasonal H3N2

strain aerosol were infected by very low doses, shed infectious virus

in upper airway secretions, and displayed typical symptoms [7],

while ferrets in this study exposed to a range of aerosol doses of a

seasonal H1N1 virus failed to produce airway virus or display

symptoms. In our comparison of replication efficiency in human

bronchial epithelial cells, this seasonal H1N1 strain produced 100-

fold less infectious virus than the H1N1 2009 pandemic strain

[39]. Moreover, in a comparison of ferret-to-ferret aerosol

transmission of these two seasonal and pandemic H1N1 strains,

the seasonal strain was not transmitted under experimental

conditions permitting efficient transmission of the pandemic

strain, despite the fact that the infected ‘donor’ ferrets exhaled

higher levels of seasonal virus than pandemic virus (unpublished

data). Furthermore, high levels of 2009 H1N1 vRNA.107 Geq in

nasal wash collections were accompanied by positive viral cultures

.103 FFU/collection. Thus aerosol transmission may be deter-

mined more by the innate strain-dependent replication efficiency

in the susceptible host rather than the amount of virus exhaled by

the contagious source.
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