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Abstract

The significance of inflammation in KSHV biology and tumorigenesis prompted us to examine the role of COX-2 in primary
effusion lymphoma (PEL), an aggressive AIDS-linked KSHV-associated non-Hodgkin’s lymphoma (NHL) using nimesulide, a
well-known COX-2 specific NSAID. We demonstrate that (1) nimesulide is efficacious in inducing proliferation arrest in PEL
(KSHV+/EBV-; BCBL-1 and BC-3, KSHV+/EBV+; JSC-1), EBV-infected (KSHV-/EBV+; Raji) and non-infected (KSHV-/EBV-; Akata,
Loukes, Ramos, BJAB) high malignancy human Burkitt’s lymphoma (BL) as well as KSHV-/EBV+ lymphoblastoid (LCL) cell
lines; (2) nimesulide is selectively toxic to KSHV infected endothelial cells (TIVE-LTC) compared to TIVE and primary
endothelial cells (HMVEC-d); (3) nimesulide reduced KSHV latent gene expression, disrupted p53-LANA-1 protein complexes,
and activated the p53/p21 tumor-suppressor pathway; (4) COX-2 inhibition down-regulated cell survival kinases (p-Akt and
p-GSK-3f), an angiogenic factor (VEGF-C), PEL defining genes (syndecan-1, aquaporin-3, and vitamin-D3 receptor) and cell
cycle proteins such as cyclins E/A and cdc25C; (5) nimesulide induced sustained cell death and G1 arrest in BCBL-1 cells; (6)
nimesulide substantially reduced the colony forming capacity of BCBL-1 cells. Overall, our studies provide a comprehensive
molecular framework linking COX-2 with PEL pathogenesis and identify the chemotherapeutic potential of nimesulide in
treating PEL.
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Introduction

KSHYV is etiologically associated with PEL, an aggressive form
of non-Hodgkin B-cell lymphoma (NHL) that accounts for 4% of
all AIDS-associated NHLs (AIDS-NHL) with a poor prognosis
and median survival of approximately six months [1], [2]. PEL, a
transformed B cell of plasma cell lineage, is characterized by the
expression of KSHV latency genes, unique clinical presentation
and pathogenesis [1], [2]. Conventional chemotherapeutic
regimens for similar aggressive NHLs provide no specific cure
for PEL, although several lines of work are currently underway to
develop anti-PEL therapies such as pro-apoptotic agents bortezo-
mib and azidothymidine, anti-proliferative antibiotic rapamycin,
pd3 activator nutlin-3a, anti-viral compounds cidofovir and
mterferon-o, and KSHYV latency gene blocking agents glycyrrhizic
acid (GA) and small RNA transcripts [1], [3]-[12].

Non-steroidal anti-inflammatory drugs (NSAIDS) form one of
the largest and most well studied groups of drugs with both anti-
inflammatory and anti-cancer effects [13]—[21]. Although NSAIDs
are traditionally used as anti-inflammatory and analgesic drugs,
their anti-cancer potential is due to the direct correlation between
elevated COX-2 and the pathogenesis of several cancers including
colorectal, prostate, lung and breast cancers, as well as several
hematological malignancies such as chronic lymphocytic leukemia,
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Hodgkin’s and non-Hodgkin’s lymphomas, and multiple myeloma
[13]-[15], [22]-[24]. The oncogenic capacity of COX-2 is
attributed to its ability to nurture diverse aspects of tumorigenesis
such as proliferation, angiogenesis, blocking apoptosis, and
metastasis, which have been well delineated at the molecular level
in several models [13], [24]. However, the molecular mechanisms
underlying COX-2 in AIDS related lymphomas such as PEL
remains unresolved and the host mechanisms utilized by KSHV in
PEL pathogenesis is an active area of investigation. Since the
current treatment regimens for PEL are not effective and have
severe life threatening side effects, we rationalize that a valuable
strategy with improved outcomes in Immunocompromised
patients would be the one that selectively targets viral oncogenes,
induces apoptosis of infected cells and eradicates the latent virus
load. Coupled with the immense anti-cancer properties of NSAIDs
and COX-2’s known role in oncogenesis, we predicted that
understanding the role of COX-2 in PEL, if any, might pave the
way for identifying a unique arena of drug targets for treating PEL
that can act as anti-viral and anti-cancer drugs [13], [24]-[29].
In the present study, we demonstrate the relevance of COX-2 in
PEL latency and the chemotherapeutic potential of the COX-2
inhibitor nimesulide in treating PEL. Nimesulide (4-nitro-2-
phenoxymethanesulphonanilide) is an orally active COX-2 selective
inhibitor. Nimesulide produces potent analgesic, anti-inflammatory
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and antipyretic activities i vivo. It has been reported to produce
fewer gastrointestinal side effects than standard NSAIDs such as
diclofenac, naproxen and ketoprofen [19], [30]—[31]. To examine
the effect of nimesulide treatment, we employed the largest possible
set of patient-derived NHL cell lines published to date. These cell
lines included PEL (BCBL-1, BC-3, JSC-1), EBV-infected (Raji) and
non-infected (Akata, Loukes, Ramos, BJAB) human Burkitt’s
lymphoma (BL), EBV harboring lymphoblastoid (LCL), KSHV
infected (TIVE-LTC), TIVE, and primary endothelial (HMVEC-d)
cells. Our studies uncovered the potent responsiveness of KSHV
infected PEL cell lines towards COX-2 inhibition via nimesulide
treatment compared to lines with EBV co-infection or highly
aggressive KSHV-/EBV- BL cell lines. Nimesulide treatment
blocked KSHYV latency genes LANA-1 and vFLIP, LANA-1/p53
interaction, induced apoptosis, G1 cell cycle arrest and down-
regulated survival kinases as well as the angiogenic factor VEGF-C.
Nimesulide reduced the transforming properties of BCBL-1 cells as
observed by a decreased number of colonies formed on soft agar.
The drug also down-regulated the expression of genes uniquely
overexpressed in PEL cells such as vitamin-D3 receptor (VDR),
aquaporin-3 and syndecan-1 (CD138). Effective inhibition of PEL
pathogenesis and survival related events strongly suggest that COX-
2 blockade by the well-characterized clinically approved COX-2
inhibitor nimesulide has immense potential as a chemotherapeutic
agent against PEL and warrants further investigation in a PEL-
SCID xenograft murine model.

Materials and Methods

Cell cultures

PEL (KSHV+/EBV-; BCBL-1 and BC-3, KSHV+/EBV+;
JSC-1), EBV-infected (KSHV-/EBV+; Raji) and non-infected
(KSHV-/EBV-; Akata, Loukes, Ramos, BJAB) human Burkitt
lymphoma (BL) and KSHV-/EBV+ lymphoblastoid (LCL -
primary B cells transformed by B95-8 EBV) cell lines were
cultured in RPMI 1640 (Gibco BRL, Grand Island, New York)
medium with 10% heat-inactivated fetal bovine serum (FBS;
HyClone, Logan, Utah), 2 mM L-glutamine (Gibco BRL), and
penicillin/streptomycin (Gibco BRL). BC-3, JSC-1 and BJAB cells
were purchased from ATCC, Manassas, VA. Akata, LCL, Loukes,
and Raji cell lines were a kind gift from Dr. Lindsey Hutt-Fletcher
(Louisiana State University Health Sciences Center, Shreveport).
BCBL-1 cell line was a kind gift from Dr. McGrath (The
University of California, San Francisco). KSHV-BJAB (KSHV+/
EBV-) was cultured in the same media with 0.2 mg/ml
hygromycin B purchased from Sigma, St. Louis, Mo [32]. TIVE
and TIVE-LTC (long term infected telomerase immortalized
umbilical vein endothelial cells) were a gift from Dr. Rolf Renne
(University of Florida). TIVE, TIVE-LTC and HMVEC-d
(human dermal microvascular endothelial cells) cells were cultured
in EBM-2 (Lonza Walkersville) with growth factors [28].

Reagents

Nimesulide, indomethacin, and diclofenac were from Sigma.
NS-398 was from Calbiochem, La Jolla, CA. DAPI and rabbit-
cleaved-caspase 3 antibody were from Invitrogen, Carlsbad, CA.
Propidium iodide (PI) was from BD Biosciences, San Jose, CA.

Antibodies

COX-1 and COX-2 antibodies were from Cayman Chemicals,
Ann Arbor, MI. Rabbit LANA-1 antibody has been described
before [28]. p-GSK-3B, GSK-3B, p-cdc2, cdc2, and cdc25C
antibodies were from Cell Signaling Technology, Inc., Beverly,
MA. Cyclin D1, cdk6, cyclin E, cyclin A, p21 (cipl/waf-1), p33,
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aquaporin-3, VDR, CD138/syndecan-1, and P-actin antibodies
were from Santa Cruz Biotechnology, Inc., Santa Cruz, CA.
Alexa-488 or 594-coupled anti-mouse antibodies were from
Molecular Probes, Eugene, OR. Conjugates of anti-mouse/
rabbit-alkaline phosphatase and anti-mouse/rabbit-horseradish
peroxidase were from Kirkegaard and Perry Laboratories, Inc.,
Gaithersburg, MD.

Measurement of PGE2, Western blotting, and
immunofluorescence

Secreted amounts of PGE2 were measured using a PGE2
ELISA kit as per the manufacturer’s guidelines (R & D systems,
Minneapolis, MN). Total cell lysates prepared from cells after their
respective treatments were used for Western blotting and
quantified as described before [29]. Immunofluorescence was
conducted as described before and the images presented are high-
resolution deconvoluted images [28] with no nearest neighbors.

Immunoprecipitation assay

5x%10” BCBL-1 cells were used to isolate nuclear lysates at
indicated time points and treatments using the Nuclear complex
Co-IP kit supplied by Active Motif (Carlsbad, CA). Nuclear lysates
were then used for immunoprecipitation (low stringency) to
examine LANA-1-p53 complexes as described by Chen et al.,
2010 [33].

Fluorescent activated cell sorting (FACS)

Samples for FACS analysis were prepared as per manufacturer’s
guidelines (BD Biosciences). The data were collected using a flow
cytometry analysis using a LSRII (Becton Dickinson, Bedford,
MA) and analyzed with FlowJo software at the RFUMS flow
cytometry core facility.

Cell cycle analysis by FACS

BCBL-1 and BJAB cells were fixed in 70% ethanol overnight and
DNA was stained with propidium iodide at a final concentration of
50 pg/ml with RNaseA (100 U/ml) prior to analysis by FACS and
ModFit Lt V3 software (Verity Software House).

Real-time reverse transcription PCR (RT-PCR)

LANA-1, COX-2, and COX-1 transcripts were detected by real-
time RT-PCR as described before [28]. The primer sequences for
various genes are as follows: a) vFLIP (forward, 5'-AGGT-
TAACGTTTCCCCTGTTAGC-3'; reverse, 5'-AGCAGGTCG-
CGCAAGAG-3"), ORF50 (forward, 5'-CGCAATGCGTTA-
CGTTGTTG-3'; reverse, 5'-GCCCGGACTGTTGAATCG-3),
AQP-3 (forward, 5'-GGAATAGTTTTTGGGCTGTA-3'; re-
verse, 5'-GGCTGTGCCTATGAACTGGT-3'), autotaxin (forward,
5'-ACAACGAGGAGAGCTGCAAT; reverse, 5'-AGAAGTCCA-
GGCTGGTGAGA-3"), CD138/syndecan-1 (forward, 5-GGAG-
CAGGACTTCACCTTTG-3'; reverse, 5'-CTCCCAGCACCTC-
TTTCCT-3'), VDR (forward, 5'-CTTCAGGCGAAGCATGAA-
GC-3'; reverse, 5'-CCTTCATCATGCCGATGTCC-3'), VEGF-A
(forward, 5'-CTTGCCTTGCTGCTCACC-3'; reverse, 5'-CACA-
CAGGATGGCTTGAAG-3"), VEGF-C (forward, 5-AGATGC-
CTGGCTCAGGAAGA-3'; reverse, 5-TGTCATGGAATCC-
ATCTGTTGA-3"), IL-10 (forward, 5'-GCCGTGGAGCAGGT-
GAAG-3'; reverse, 5'-GAAGATGTCAAACTCACTCATGGCT-
3"), actin (forward, 5'-TCACCCACACTGTGCCATCTACGA-3';
reverse, 5'-CAGCGGAACCGCTCATTGCCAATGG-3'), GAPDH
(forward, 5'-GAAGGTGAAGGTCGGAGTC-3'; reverse, 5'-GAA-
GATGGTGATGGGATTTC-3'). Normalization was done with
respect to 18 s mRNA levels [26].
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Cell proliferation, cytotoxicity, apoptosis, and viability
assays

1-5x10° of the indicated cells were seeded with respective drugs
at the indicated concentrations and the number of viable cells were
examined by measuring their metabolically active mitochondria
(an index of cell proliferation) based on a colorimetric assay
(ATCC, Manassas, VA) as per the manufacturer’s instructions at
the indicated time points. Number of live BCBL-1 cells was
determined by manually counting after respective treatments using
traditional trypan blue staining (evaluation of cell membrane
integrity) in quadruplicate counts. Supernatants of TIVE,
HMVEC-d and TIVE-LTC cells treated with 50 uM and
100 pM nimesulide were collected at the indicated time points
to assess cellular toxicity using a cytotoxic assay kit (Promega,
Madison, WI) as previously described [28]. Levels of cleaved-
caspase-3 levels were measured after indicated treatments using
Apoalert caspase colorimetric assay (Clontech, Mountain View,

CA) and by FACS analysis.

Colony formation assay

5x10° BCBL-1 cells were used to evaluate the effect of 100 uM
nimesulide on the colony forming capacity of BCBL-1 cells and to
measure their proliferative capacity within the colonies as per the
manufacturer’s guidelines using an MTT based CytoSelect cell
transformation assay (Cell Biolabs, Inc., San Diego, CA).

Measurement of GSK-3 and Akt

5%10° of BCBL-1 cells treated with 100 uM nimesulide were
used to measure the levels of p-GSK3f, t-GSK3p, p-Akt, and t-
Akt as per the manufacturer’s instructions at the indicated time
points by Fast Activated Cell-based ELISA (FACE) kits for AKT
and GSK-3p.

Statistical analysis

For multiple comparisons, one-way ANOVA with Tukey’s
posthoc comparisons were used to assess the statistical significance
of differences between means (p<<0.05). For all other data analysis,
a student’s t-test was employed.

Results

KSHV+ NHL cell lines demonstrate greater proliferative
vulnerability compared to KSHV- cell lines

We first screened the effects of different NSAIDs on NHL cell
lines BCBL-1 (KSHV+/EBV-) and BJAB (KSHV-/EBV-) using
COX-2 inhibitors NS-398 and nimesulide as well as COX-1/
COX-2 inhibitors indomethacin and diclofenac by MTT assay.
Statistical analysis showed that at 2d, 3d, 4d, and 5d post-treatment,
50 uM was the lowest concentration required to induce a significant
reduction in the proliferation rate of both BCBL-1 and BJAB cells
for all of the drugs tested (Fig. 1 and Fig. 2). However, at 1d post-
treatment 100 uM NS-398 had a significant reduction in BCBL-1
cell growth (Fig. la), and in contrast, had no effect on BJAB
proliferation even at 500 pM (Fig. 1b). Similarly, nimesulide (Fig. 1e)
and diclofenac (Fig. 2e) at 50 pM and indomethacin (Fig. 2a) at
100 uM had a significant reduction in BCBL-1 cell growth but not
in BJAB cells 1d post-treatment. However, BJAB cell proliferation
was significantly reduced 1d post-treatment at higher concentra-
tions of nimesulide (250 uM; Fig. 1f), indomethacin (500 pM;
Fig. 2b), and diclofenac (500 uM; Fig. 2f). We also compared the
proliferative rate of both cell types on the same plot with 50 pM and
100 pM treatments of various NSAIDs (Fig. 1c, 1d, 1g, 1h, 2¢, 2d,
2¢g, and 2h). A visible difference was not observed at 1d and 2d with
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both 50 uM and 100 uM treatments indicating that BJAB and
BCBL-1 are both sensitive to 100 uM of NS-398, nimesulide,
indomethacin, and diclofenac at 3d, 4d, and 5d (Fig. 1c, 1d, 1g, 1h,
2c, 2d, 2g, and 2h).

Among the different NSAIDs tested, the drug with known
specificity for COX-2 and that had the most potent effect on
BCBL-1 was nimesulide. Therefore, we next examined whether
the anti-proliferative effects of nimesulide on BCBL-1 (Fig. le) is
replicable on other PEL cell lines. Our data demonstrate that
50 uM-500 uM nimesulide was able to induce significant
proliferative arrest on KSHV+/EBV- PEL cells BC-3 (Fig. 3a)
and KSHV-BJAB (Fig. 3b). Our data also demonstrates that
similar to BCBL-1, BC-3, and KSHV-BJAB, 50 uM, 100 pM,
250 pM, and 500 pM of nimesulide was able to induce significant
proliferation arrest in the KSHV+/EBV+ cell line JSC-1,
KSHV-/EBV+ cell lines Raji and LCL, and KSHV-/EBV- cell
lines Ramos, Loukes, and Akata/EBV- as well (Fig. 3c-h).

To examine whether there is a statistically significant difference
on the potency of the anti-proliferative effects of nimesulide on the
different cell lines tested, we conducted Tukey’s posthoc comparison
analysis between the proliferative indexes of the different cell lines
used 1 day post-treatment with 50 pM nimesulide (Table 1). The
analysis was done on cell lines (BCBL-1, BC-3, KSHV-BJAB, JSC-
1, LCL, Ramos, BJAB, and Akata/EBV-) with no statistically
significant difference on the basal proliferation index before drug
treatment at 0 h (data not shown). Our data indicates that
compared to KSHV-/EBV- cell lines (Ramos, Akata/EBV-), the
proliferative index of KSHV+/EBV- cell lines (BCBL-1, BC-3,
KSHV-BJAB), and the KSHV+/EBV+ cell line JSC-1 but not the
KSHV-/EBV+ cell line LCL was significantly more decreased by
nimesulide treatment at 1d with 50 uM nimesulide (Table 1) but not
at 2d, 3d, and 5d (data not shown). Similarly, the proliferation index
of BCBL-1, BC-3, KSHV-BJAB, and JSC-1 was significantly more
decreased compared to KSHV-/EBV+ LCL cells (Table 1). Table 1
also indicates that the proliferation index of similarly infected cell
lines BCBL-1, BC-3, KSHV-BJAB and BJAB, Ramos, and Akata/
EBV- were not significantly different. Our analysis did not show any
significant difference between the proliferation indexes at 1d, 2d, 3d,
and 5d post-treatment with 100 pM, 250 uM, and 500 uM
nimesulide treatments between any of the cell lines (data not shown).

Opverall, our data strongly suggests that KSHV infected NHLs
were more vulnerable to nimesulide mediated COX-2 blockade.
To examine the COX-2 mediated mechanisms utilized by KSHV
in PEL pathogenesis, we used BCBL-1 as a representative cell line
for the remainder of the study and nimesulide as the NSAID of
choice. Nimesulide was introduced in 1985 and since then, it is a
well-studied drug that is already prescribed to approximately 500
million people in 50 different countries [14], [19], [30]. The
reported i vitro IC50 of nimesulide for most cancer cell lines has
been reported to be more than 150 pM-175 uM [31], [34].
Tukey’s posthoc comparison analysis of the mean proliferative
indexes at day 1 between the different concentrations of
nimesulide demonstrated that 100 uM had a more significant
decrease in the proliferative capacity of BCBL-1 cells compared to
50 uM (data not shown). Therefore, based on Tukey’s posthoc
comparison analysis, we chose 100 uM as the drug concentration
for treatment throughout our study. We did not supplement the
drug in our treatment regimen.

Nimesulide down-regulates proliferation of TIVE-LTC but
not TIVE and HMVEC-d cells

To delineate whether the anti-proliferative effects of nimesulide
on various KSHV+ NHL cell lines is due to the presence of KSHV
infection coupled with the known anti-growth effects of nimesulide
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Figure 1. Sensitivity of KSHV + PEL cells to COX-2 specific inhibitors. (a-h) 5x10° BCBL-1 or BJAB cells were seeded with the indicated
concentrations of COX-2 inhibitors NS-398 (a-d), nimesulide (e-h), DMSO (a-h) or left untreated (a-h). Cell proliferation was measured by MTT assay
at 0 h, 12 h, day 1 (1d), day 2 (2d), day 3 (3d), day 4 (4d), and day 5 (5d). The cells were neither replenished with fresh media nor supplemented with
the drugs. (¢, d, g, h) Plots comparing the proliferation rate of BCBL-1 and BJAB cells treated with 50 uM and 100 uM of NS-398 and nimesulide 0 h,
1d, 2d, 3d, 4d, and 5d post-treatment. The fold absorbance was calculated with respect to the untreated (UN) control before treatment. (a-h) One-
way ANOVA with Tukey's posthoc comparison analysis (p<<0.05) was used to determine whether the drug treatment induced a statistically significant
difference in the proliferative indexes at 1d, 2d, 3d, 4d and 5d compared to untreated cells of the respective cell lines. Indicated on the graphs are the
concentrations of each drug that had a significant effect at 1d ([drug],4). Each reaction was done in quadruplicate, and each point represents the

average * S.D. from four independent experiments.
doi:10.1371/journal.pone.0024379.g001
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Figure 2. Sensitivity of KSHV + PEL cells to COX-1/COX-2 inhibitors. (a-h) 5x10° BCBL-1 or BJAB cells were seeded with the indicated
concentrations of COX-1/COX-2 inhibitors indomethacin (a-d) and diclofenac (e-h), DMSO (a-h) or left untreated (a-h). Cell proliferation was
measured by MTT assay at 0 h, 1d, 2d, 3d, 4d, and 5d. The cells were neither replenished with fresh media nor supplemented with the drugs. (¢, d, g,
h) Plots comparing the proliferation rate of BCBL-1 and BJAB cells treated with 50 uM and 100 uM of indomethacin and diclofenac at 1d, 2d, 3d, 4d,
and 5d. The fold absorbance was calculated with respect to the untreated (UN) control before treatment. (a-h) One-way ANOVA with Tukey's
posthoc comparison analysis (p<<0.05) was used to determine whether the drug treatment induced a statistically significant difference in the
proliferative indexes at 1d, 2d, 3d, 4d, and 5d compared to untreated cells of the respective cell lines. Indicated on the graphs are the concentrations
of each drug that had a significant effect at 1d ([drug],q). Each reaction was done in quadruplicate, and each point represents the average = S.D.
from four independent experiments.

doi:10.1371/journal.pone.0024379.g002

or due to a non-specific cytotoxic effect of the drug, we next
compared the effect of nimesulide on the proliferation of TIVE-
LTC (KSHV+), TIVE (KSHV-), and primary endothelial
(HMVEC-d) cells. Nimesulide significantly down-regulated the
proliferation capacity of TIVE-LTC cells (Figure S1b) with no
significant effect on the proliferation of TIVE (Figure Sla) and
HMVEC-d (Figure Slc).

@ PLoS ONE | www.plosone.org

Nimesulide inhibits the colony forming capacity of
BCBL-1 cells

KSHV has been shown to have transforming and oncogenic
potential [35]. BCBL-1 is a fully transformed NHL cell line and its
oncogenic capacity to form colonies i vitro on soft agar has been
studied. In the next part of our study, we examined the effect of
nimesulide on the colony forming capacity of BCBL-1 cells.
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Figure 3. Effect of nimesulide on various NHL cell lines. (a-h) 5x10° BC-3, KSHV-BJAB, JSC-1, LCL, Raji, Akata/EBV-, Loukes and Ramos cells
were seeded with the indicated concentrations of nimesulide (a-h), DMSO (a-h), left untreated (a-h). The cell proliferation index was measured by
MTT assay at 0 h, day 1 (1d), day 2 (2d), day (3d), and day 5 (5d). The cells were neither replenished with fresh media nor supplemented with the
drugs. (a-h) One-way ANOVA with Tukey’s posthoc comparison analysis (p<<0.05) was used to determine whether the drug treatment induced a
statistically significant difference in the proliferative indexes at 1d, 2d, 3d, and 5d compared to untreated cells of the respective cell lines. Each
reaction was done in quadruplicate, and each point represents the average * S.D. from three independent experiments.

doi:10.1371/journal.pone.0024379.g003

Compared to untreated and DMSO treated cells, nimesulide
treatment decreased the number of the characterstic adherent
colony forming units 4d (data not shown) and 6d post-treatment
on soft agar (Fig. 4a; top and middle panel). Quantification of the
proliferation rate of BCBL-1 cells within colonies by MTT
strongly indicates that nimesulide significantly decreased the
colony forming capacity of BCBL-1 cells at 4d and 6d post-
treatment (Fig. 4b). Qualitatively, this is further demonstrated by
the decreased MTT uptake by nimesulide treated cells (Fig. 4a;
bottom panel).

@ PLoS ONE | www.plosone.org

Nimesulide down-regulates KSHV latency genes

We next examined the effect of blocking COX-2 on viral latent
and lytic gene expression. At 24 h post-treatment, nimesulide
significantly down-regulated latent LANA-1 (Fig. 5a) and vFLIP
(Fig. 5b) gene expression by 51% and 33%, respectively, with no
effect on ORF50 (Fig. 5c¢), actin and GAPDH expression (data not
shown). Next we determined the effect of 24 h and 48 h
nimesulide treatment (100 uM) on LANA-1 protein levels by
immunofluorescence in BCBL-1 cells. The DMSO treated BCBL-
1 cells showed nuclear staining for LANA-1 with its characteristic
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treatment with 50 uM Nimesulide.
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Table 1. Tukey posthoc analysis of the differences in the means of the proliferative capacity of different cell lines at 1 day post-

Statistical significance (+) Significant (p<0.01)

Cell lines compared (Cell line 1 vs cell line 2) p-Value (—) Not significant (p=0.01)
KSHV+/EBV- BC-3 vs BJAB 2.12E-08 +
vs
KSHV-/EBV-
BC-3 vs Akata/EBV- 1.78E-08 +
BC-3 vs Ramos 5.92E-05 +
BCBL-1 vs BJAB 3.03E-08 +
BCBL-1 vs Akata/EBV- 2.25E-08 +
BCBL-1 vs Ramos 6.40E-04 +
KSHV-BJAB vs BJAB 3.03E-08 +
KSHV-BJAB vs Akata/EBV- 2.25E-08 +
KSHV-BJAB vs Ramos 6.40E-04 +
KSHV+/EBV+ JSC-1 vs BJAB 2.74E-08 +
Vs
KSHV-/EBV-
JSC-1 vs Akata/EBV- 2.14E-08 +
JSC-1 vs Ramos 4.18E-04 +
KSHV+/EBV- BCBL-1 vs LCL 6.49E-07 +
vs
KSHV-/EBV+
BC-3 vs LCL 6.57E-08 +
KSHVBJAB vs LCL 9.31E-08 +
KSHV+/EBV+ vs KSHV-/EBV+ JSC-1 vs LCL 4.01E-07 +
KSHV+/EBV+ JSC-1 vs BC-3 0.99998 =
Vs
KSHV+/EBV-
JSC-1 vs BCBL-1 1 -
JSC-1 vs KSHVBJAB 1 =
KSHV-/EBV+ LCL vs BJAB 0.99209 -
vs
KSHV-/EBV-
LCL vs Akata/EBV- 0.91085 =
LCL vs Ramos 0.83948 -
KSHV+/EBV- BCBL-1 vs BC-3 0.99987 =
vs
KSHV+/EBV-
KSHVBJAB vs BC-3 1 -
KSHVBJAB vs BCBL-1 0.99998 =
KSHV-/EBV- Akata/EBV- vs BJAB 0.99999 -
Vs
KSHV-/EBV-
Ramos vs BJAB 0.22771 -
Ramos vs Akata/EBV- 0.08016 -

doi:10.1371/journal.pone.0024379.t001

‘punctuate nuclear dot pattern’ in 98% and 94% of the cells at
24 h and 48 h post-treatment, respectively (Fig. 5d—e). In contrast,
nimesulide treatment significantly decreased the LANA-1 positive
cells to 66% and 49% at 24 h and 48 h post-treatment,
respectively (Fig. 5d—e). When we quantified LANA-1 protein
expression on a per BCBL-1 cell basis by counting the number of
‘LANA-1 dots’ on cells positive for LANA-1, nimesulide treatment
significantly decreased the LANA-1 dots/cell to 29 and 30 dots/
cell from 62 and 94 dots/cell in DMSO treated cells at 24 h and
48 h post-treatment, respectively (Fig. 5f). In summary, these

@ PLoS ONE | www.plosone.org

results demonstrated that the COX-2 inhibitor nimesulide down-
regulated the expression of KSHV latency genes (LANA-1 and
vFLIP) and LANA-1 protein without affecting the expression of
the master lytic cycle regulator ORF50.

Nimesulide altered cell cycle regulatory proteins in BCBL-

1 cells

BCBL-1 cells were seeded with either DMSO or 100 uM
nimesulide and total lysates were collected at 2 h, 8 h, and 24 h to
measure the levels of p53 and p21, G1 proteins cyclin D1 and
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Figure 4. Effect of nimesulide on the transforming properties of BCBL-1 cells. (a-b) 5x10° BCBL-1 cells seeded with 100 pM nimesulide
and colony formation was evaluated by a cell transformation assay. The cells were neither replenished with fresh media nor supplemented with the
drugs. 6d (day 6) post-treatment with nimesulide, 10 x and 40 x bright field images were taken with (a; bottom panel) and without (a; top and middle
panel) MTT and the proliferative capacity of cells within the colonies were measured using MTT at 4d (day 4) and 6d post treatment (b). Each
experiment was done in triplicate, and each point represents the average = S.D. from three independent experiments. (*) p<<0.05, (**) p<<0.01.

doi:10.1371/journal.pone.0024379.9g004

cdk6, G1/S proteins cyclin E and cyclin A, and G2 proteins p-
cdc2 and c¢dc25C. Compared to DMSO treatment, nimesulide
had no effect on p53 but induced p21 at 2 h, 8 h, and 24 h by
about 1.6, 2.0, and 2.6-fold, respectively (Fig. 6a). Next, we
examined the G1 proteins cyclin D1 and cdk6 as well as the G1/S
proteins cyclin E and cyclin A, which are required for progression
through G1 and for the transition to S phase, respectively. We did
not observe any changes in cyclin D1 and c¢dk6 between DMSO
and nimesulide treatments (Fig. 6b). However, at 24 h post-
treatment compared to DMSO, nimesulide down-regulated cyclin
E and cyclin A by about 50% and 80%, respectively, (Fig. 6c).
When we analyzed the effect of nimesulide on the G2 protein p-
cdc2, which is de-phosphorylated by the phosphatase cdc25C, for
progression of the cell cycle from G2 to the mitotic phase, at 24 h
post-treatment, cdc25C was down-regulated by about 50% with a
corresponding increase in p-cdc2 by 2.1-fold (Fig. 6d).

@ PLoS ONE | www.plosone.org

Nimesulide releases p53 from LANA-1 mediated
sequestration in BCBL-1 cells

Our results showing the down-regulation of LANA-1 protein
(Fig. 5d—f), the activation of the major p53 response gene p2l
(Fig. 6a), and the absence of any change in total p53 protein levels
(Fig. 6a) led us to investigate whether nimesulide is functionally
activating pd3 by blocking the LANA-1-p53 interaction. BCBL-1
cells seeded with 100 uM nimesulide were collected at 24 h to
examine the LANA-1-p53 interaction by immunofluorescence.
DMSO treated cells demonstrated the characteristic ‘punctate
nuclear dots’ phenotype for p53 colocalizing with LANA-1 (Fig. 6e,
top panels). However, nimesulide treatment completely abolished
this effect with the dispersal of p53 staining within the nucleus and
in the cytoplasm (Fig. 6e, bottom panels). We also observed
dispersed p53 staining in cells with the characteristic ‘punctate
LANA-1 dots’ without any colocalization with LANA-1 indicating
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Figure 5. Effect of nimesulide on KSHV gene expression. (a-e) 5x10° BCBL-1 cells were seeded with 100 UM nimesulide, DMSO or left
untreated (UN) without replenishment with fresh media. RNA was isolated at 24 h post-treatment with the drug to examine the gene expression
levels of LANA-1 (a), v-FLIP (b), and ORF50 (c) by real-time RT-PCR. The cells were neither replenished with fresh media nor supplemented with the
drugs. The percent inhibition and statistics (t-test) were calculated with respect to untreated for each treatment (*) p<<0.05. (d-e) In parallel
experiments, LANA-1 protein was examined by immunofluorescence using anti-LANA-1 antibody (d) and used to calculate the percentage of cells
positive for LANA-1 (e) at 24 h and 48 h post-treatment from 500 randomly selected cells. (f) Levels of LANA-1 protein per cell were measured by
examining the number of LANA-1 dots/BCBL-1 cell by manually counting the number of ‘punctate nuclear LANA-1 dots’ in 20 BCBL-1 cells positive for
LANA-1 from each treatment. (e-f) The indicated means are the averages calculated from cells selected from different fields by two observers. The
corresponding statistics (t-test) were calculated with respect to DMSO treatment for each time point. (a-c, e, f) Each experiment was done in
tripicate, and each point represents the average * S.D. from three independent experiments (¥) p<<0.05, (****) p<<5*107'°,
doi:10.1371/journal.pone.0024379.g005
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Figure 6. Effect of nimesulide on cell cycle regulatory proteins and LANA-1/p53 interaction. (a-d) 5x10° BCBL-1 cells were seeded with
100 uM nimesulide or DMSO. Total cell lysates were collected at 2 h, 8 h, and 24 h post-treatment and immunoblotted for p53 (a), p21 (a), cyclin D1
(b), cdké (b), cyclin E (), cyclin A (c), p-cdc2 (d), and T-cdc25C (d) and normalized with respect to the tubulin loading control and T-cdc2 for the p-
cdc2 blot. The cells were neither replenished with fresh media nor supplemented with the drugs. The fold change was calculated with respect to
untreated (UN) cells at 0 h. (a-d) The data is representative of duplicate experiments. (€) 5x10° BCBL-1 cells were seeded with 100 pM nimesulide or
DMSO and collected to examine the interaction between p53 and LANA-1 by immunofluorescence 24 h post-treatment. (f) Nuclear lysates isolated
from BCBL-1 cells seeded with 100 uM nimesulide, DMSO or left untreated (UN) were immunoprecipitated (IP) with either LANA-1 or p53 and Western
blotted (WB) with p53 and LANA-1 or p53, respectively. Level of LANA-1 in pre-IP input was assessed by Western blotting with LANA-1 antibody. f-
actin was used as the loading control. (e-f) The cells were neither replenished with fresh media nor supplemented with the drugs.

doi:10.1371/journal.pone.0024379.9g006
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that nimesulide abolishes the LANA-1-p53 interaction (Fig. 6e,
middle panels).

We further examined the stability of the LANA-1/p53 complex
with nimesulide treatment with a series of immunoprecipitation
(IP) assays. Reduction in LANA-1/p53 complex at 8 h and 24 h
post-treatment with 100 uM nimesulide is strongly demonstrated
by the co-IP and reverse co-IP experiments with LANA-1 and p53
antibodies with no significant changes in the DMSO treatments
compared to untreated (Fig. 6f).

Nimesulide down-regulates cell survival kinases in BCBL-
1 cells

We next examined the effect of blocking COX-2 on major cell
survival proteins such as p-Akt-1/2 and p-GSK-38 [7], [13], [28],
[36]-(1[1[39]. Total cell lysates of BCBL-1 cells seeded with
100 puM nimesulide were collected at 2 h, 8 h, and 24 h and used
to measure p-Akt-1/2 (serine 473; Ser473) and p-GSK-3f
activation levels. Compared to 24 h treatment with DMSO,
nimesulide down-regulated p-GSK-3f by about 60% and p-Akt
1/2 by about 25% (Fig. 7a and 7c). We further confirmed these
findings by FACE assay for t-Akt-1/2, p-Akt-1/2, t-GSK-3p, and
p-GSK-3B. At 8 h and 24 h post-treatment, nimesulide treatment
significantly down-regulated p-Akt-1/2 by 66.9% and 54.1%
(Fig. 7b) and p-GSK-3P by 73% and 60% (Fig. 7d), respectively,
with no statistically significant effect on t-Akt (Fig. 7b) and t-GSK-
3P (Fig. 7d).

Nimesulide down-regulates survival and angiogenesis
factors in BCBL-1 cells

PELs are known to be dependent on autocrine growth factors,
especially B-cell survival factors IL-6 and IL-10 as well as
angiogenesis factors such as VEGF-A and VEGF-C. We examined
the gene expression of B cell proliferation inducing cytokine IL-10,
VEGF-A, and VEGF-C in BCBL-1 cells at 24 h post-treatment
with 100 uM nimesulide. At 24 h post-treatment with the drug,
we observed a significant reduction of about 57% in VEGF-C
(Fig. 7f) gene expression but not in VEGF-A (Fig. 7¢) or IL-10
(Fig. 7g) genes.

Nimesulide induced G1 arrest in BCBL-1 cells

BCBL-1 cells were seeded with 100 uM nimesulide and samples
were collected at 8 h, 24 h, and 48 h post-treatment for
examination by propidium iodide (PI) staining. At 8 h post-
treatment, the population of cells in G1, S, G2 phases and
population of debris were comparable between untreated (G1;
53.7%, S: 39.3%, G2; 6.98%; debris; 2.8%), DMSO (G1; 51.0%,
S; 42.5%, G2; 6.5%; debris; 3.8%), and nimesulide (G1; 52.4%, S;
41.7%; G2; 5.9%; debris; 2.9%) treatments (Fig. 8a). At 24 h,
nimesulide treatment increased the G1 population and debris of
BCBL-1 cells to 67.9% and 16.7%, respectively compared to 8 h
(Fig. 8a). A consequent decrease of the (G2+S) was seen for
nimesulide treated cells (32.1% [23.0%+9.1%]) (Fig. 8a). At 48 h
nimesulide treatment further increased the G1 population and
debris of BCBL-1 cells to 79.2% and 20.1%, respectively with a
consequent decrease of the (G2+S) population was seen for
nimesulide treated cells (20.7% [12.0%+8.7%]) (Fig. 8a). Howev-
er, the population of cells in G1, S, and G2 phases and the
population of debris in DMSO treated and untreated BCBL-1
cells did not vary substantially between 8 h, 24 h, and 48 h. The
population of cells in G1, S, G2 phases and population of debris
were comparable between 8 h, 24 h, and 48 h post-treatment for
untreated (24 h {G1; 54.4%, S: 36.5%, G2; 9.2%; debris; 9.5%}
& 48 h {G1; 52.1%, S: 35.8%, G2; 12.1%; debris; 5.8%}) and
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DMSO (24 h {G1; 59.2%, S: 33.9%, G2; 6.9%; debris; 7.0%} &
48 h {G1; 54.2%, S: 39.4%, G2; 6.4%; debris; 3.6%}) treatment
(Fig. 8a).

The BJAB cell cycle profile changed from 8 h to 24 h and 48 h
post-nimesulide treatment from 56.8% to 41.9% and 65.4% for
Gl1, 34.6% to 45.4% and 24.7% for S, and 8.6% to 12.7% and
9.9% for G2, and 10.1% to 6.8% and 8.3% for the population of
debris, respectively (Fig. 8b). Simalarily, the population of cells in
Gl, S, G2 phases and population of debris were comparable
between 8 h, 24 h, and 48 h post-treatments for untreated (8 h
{G1; 53.8%, S: 39.4%, G2; 6.8%; debris; 2.8%}, 24 h {G1;
53.0%, S: 38.1%, G2; 8.9%; debris; 5.6%} & 48 h {G1; 47.9%, S:
46.2%, G2; 5.8%; debris; 1.9%}) and DMSO (8 h {G1; 51.1%, S:
42.7%, G2; 6.2%; debris; 3.4%}, 24 h {G1; 48.6%, S: 44.9%, G2;
6.6%; debris; 2.4%} & 48 h {G1; 48.6%, S: 44.1%, G2; 7.4%;
debris; 6.5%}) treatment (Fig. 8b). Overall, nimesulide treatment
substantially increased the population of G1 and debris on BCBL-
1 with a consequent decrease in the proliferative population of S
and G2 (Fig. 8b).

Nimesulide induces apoptosis in BCBL-1 cells

BCBL-1 and BJAB cells seeded with 100 uM nimesulide
collected at 8 h, 24 h, and 48 h were analyzed by FACS to
measure the levels of cleaved-caspase 3, an apoptotic marker. At
8 h, 14% of untreated, 16.1% of DMSO, and 22.8% of nimesulide
treated BCBL-1 cells were positive for cleaved-caspase 3 (Fig. 9a).
At 24 h, cleaved-caspase-3 levels increased modestly to 32.7% for
nimesulide treated compared to 17.2% and 16.1% for untreated
and DMSO treated cells, respectively (Fig. 9a). In contrast, at
48 h, BCBL-1 cells positive for cleaved-caspase-3 dramatically
increased to 44.3% for nimesulide compared to 19.1% and 21.4%
for untreated and DMSO cells, respectively (Fig. 9a). We further
verified the pro-apoptotic effects of nimesulide on BCBL-1 by
demonstrating the increase in cleaved-caspase-3 levels at 8 h,
12 h, 24 h, 48 h, and 72 h post-treatment with nimesulide using a
colorimetry based assay (Fig. 9b). Immunofluorescence observa-
tions also confirm the induction of apoptosis by nimesulide
supplementation at day 5 (Fig. 9¢). Next, we examined the effect of
nimesulide on the population of viable BCBL-1 cells. BCBL-1 cells
seeded with 100 uM nimesulide were collected at days 1, 2, 5, 7,
and 15 to measure the number of live cells using the traditional
trypan blue exclusion assay (Fig. 9d). Cells were supplemented
with 100 uM nimesulide at days 3 and 4. The drug was removed
at day 7 and the cells were replenished with fresh media.
Compared to the increase in the number of live cells for DMSO
treated and untreated cells, nimesulide substantially decreased the
population of live cells after drug supplementation.

The COX-2/PGE2 pathway is up-regulated in BCBL-1
compared to BJAB cells and nimesulide down-regulates
PEL specific genes

We next compared the status of the COX-2/PGE2 pathway in
BJAB and BCBL-1 cells. Western blot analysis demonstrated that
compared to BJAB cells, COX-2 (Fig. 10a) but not COX-I
(Fig. 10a) was significantly up-regulated in BCBL-1 cells by 3-fold
(Fig. 10b). Immunofluorescence analysis also exhibited a stronger
signal for COX-2 but not COX-1 in BCBL-1 cells relative to
BJAB cells (Fig. 10c). Similarly, a significant quantity of PGE2 was
secreted from BCBL cells (245 pg/ml) compared to BJAB cells
(84 pg/ml) (Fig. 10d).

Previous studies have shown that unlike other NHLs, PEL is
characterized by the overexpression of aquaporin-3, syndecan-1,
autotaxin, and aquaporin-3 [40], [41]. To examine whether the
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Figure 7. Effect of nimesulide on p-Akt, p-GSK-3p, IL-10, VEGF-A, and VEGF-C. (a and c) 5x10° BCBL-1 cells were seeded with 100 uM
nimesulide or DMSO and total lysates were collected at 2 h, 8 h, and 24 h post-treatment and immunoblotted for p-Akt 1/2 (a) and p-GSK-3p (c) and
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doi:10.1371/journal.pone.0024379.g007
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Figure 8. Effect of nimesulide on BCBL-1 cell cycle profile. (a) 5 %x10° BCBL-1 and BJAB cells were seeded with 100 UM nimesulide or DMSO or
left untreated without replenishment with fresh media. Samples were collected at 8 h, 24, and 48 h post-treatment to examine the cell cycle profile
by propidium iodide (PI) staining. The cells were neither replenished with fresh media nor supplemented with the drugs. In each panel plotted, the
horizontal and vertical axis corresponds to the relative DNA content and the number of cells, respectively. The percent of cells in G1, S, and G2 phases
and the population of cellular debris for untreated (UN), DMSO treated, and nimesulide treated cells at the indicated time points was calculated by
Modfit 3.2 software. The data represents three independent experiments.

doi:10.1371/journal.pone.0024379.g008

anti-KSHYV specific properties of nimesulide are due to the effect
of COX-2 blockade on these PEL specific genes, we next analyzed
the gene expression profile of autotaxin (Fig. 10e), syndecan-1
(Fig. 10f), aquaporin-3 (Fig. 10g), and VDR (Fig. 10i) with
nimesulide treatment. At 24 h post-treatment with the drug, we
observed a significant reduction of about 53%, 57%, and 60% in
aquaporin-3 (Fig. 10g), syndecan-1 (Fig. 10f), and VDR (Fig. 101)
respectively but no effect on autotaxin (Fig. 10e). The surface level
staining of aquaporin-3 and syndecan-1 was also confirmed by
immunofluorescence (Fig. 10h). In parallel experiments, we also
demonstrated that nimesulide down-regulated VDR protein levels
by about 70% (Fig. 10j; top panel) and its nuclear translocation
(Fig. 105; bottom panel) at 1-day post-treatment.

Discussion

PEL is a rare NHL commonly arising in the pleural, pericardial,
or peritoneal spaces and displays evidence of KSHV infection.
PEL is an aggressive NHL and even with combination
chemotherapy prognosis remains quite poor with median survival
times of only about 6 months with very few long-term survivors.
However, with better understanding of the unique oncogenesis of
PEL, it is hoped that rational and specific targets for therapy can
become the basis for greater therapeutic success. Therefore, we
embarked on our study with the goal of understanding the role of
pro-inflammatory angiogenic stress response gene COX-2 in PEL
pathogenesis, if any, and finding an NSAID with anti-KSHV,
anti-inflammatory, and anti-cancer effects to treat PEL. We
calibrated our investigation with such specifics because of the
cumulative interdependent vitality of the expression of KSHV
latency genes, the pro-inflammatory environment, and the
manipulation of canonical anti-cancer host defense machinery
such as p53 and p21 in the metamorphosis of PEL neoplasia [1],
[2]. We chose to explore the potential of COX-2 as an ideal
chemotherapeutic target for achieving such a goal due to the well
established tumorigenic potential of COX-2, the availability of
well characterized COX-2 inhibitors with known anti-cancer
effects and the correlation between COX-2 expression and poor
NHL prognosis [24], [26], [28]—[29]. Treatment with 25—-100 uM
celecoxib (COX-2 inhibitor) for 48 h had been reported to inhibit
proliferation of a few NHL cell lines [42] but has never been
studied in KSHV+ PEL cell lines especially with respect to their
effect on viral life cycle/latency. The novelty and importance of
our study is the discovery of the link between the pivotal pro-
inflammatory protein COX-2 and PEL latency and therefore the
identification of COX-2 as a chemotherapeutic target and the
prescription drug nimesulide in treating PEL.

Opverall, nimesulide had anti-proliferative effects on all the cell
lines tested. This was not surprising since all the cell lines tested are
NHL cell lines with potential proliferative advantages provided by
COX-2 mediated inflammatory mechanisms. Therefore, an
important question that was examined to confirm the role of
COX-2 in KSHV mediated PEL pathogenesis was whether the
KSHYV specific anti-latency/survival and non-specific anti-survival
effects of nimesulide mediated COX-2 blockade can be delineated,
if any. Our data demonstrating the statistically significant
difference in the proliferation index of KSHV-BJAB and BJAB

@ PLoS ONE | www.plosone.org
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suggests that the presence of KSHV infection made BJAB more
vulnerable to COX-2 blockade mediated anti-proliferative mech-
anisms, since KSHV-BJAB is a cell line created by the
introduction of a recombinant KSHYV virus to BJAB cells, which
was resilient to nimesulide mediated apoptosis even at 100 uM
nimesulide. This observation is further augmented by the
significant difference in the proliferation index of KSHV+/
EBV+ (JSC-1) and KSHV+/EBV- (BCBL-1, BC-3, KSHV-BJAB)
cell lines with KSHV-/EBV-Burkitt’s lymphoma cells (BJAB,
Ramos, Akata/EBV-) 1 day post-treatment with 50 uM nimesu-
lide. Despite encouraging observations, final conclusions have to
be drawn with caution as there are some caveats to interpret data
from the artificial, not “naturally infected” cell line such as
KSHV-BJAB. KSHV-BJAB is a BJAB-derived cell line, which was
created by nucleofection of KSHV-negative BJAB cells with the
KSHYV bacterial artificial chromosome containing a hygromycin
antibiotic resistance marker and the GFP expression cassette.
Since this cell line is maintained by drug selection unlike the
parent cell line BJAB, can make their comparisons questionable.
Ideally, both cell lines should have been cultured under selection
and then treated with nimesulide or solvent control. Although,
statistically significant differences between the proliferation rate of
KSHV+ and KSHV-/EBV- cells were observed, the cells we used
were all from NHL cell lines and are therefore not ideal
complementary control cell lines. Therefore, we further addressed
the question of whether the anti-proliferative effect of nimesulide is
due to the general cytotoxic effect of the drug on transformed cells
or due to a KSHV specific effect by comparing the effect of
nimesulide on the proliferation of TIVE-LTC (KSHV+), telo-
merised TIVE (KSHV-), primary endothelial (HMVEC-d) cells.
Primary endothelial HMVEC-d) and TIVE cells were resistant to
the anti-proliferative effects of nimesulide (50 uM and 100 pM)
compared to KSHV infected endothelial cells (TTVE-LTC). Thus,
our data (Figs. 1, 2, 3, 4a-4d and table 1) suggests that nimesulide
mediated anti-proliferative effects on PEL are due to the additive
effects of blocking KSHV latency and COX-2 mediated cell
survival mechanisms.

90% of PEL cell lines are co-infected with KSHV and EBV and
therefore it was imperative to test whether the anti-proliferative
effects of nimesulide on KSHV+/EBV- cell lines is replicable on
PEL cell lines co-infected with KSHV and EBV. The significant
difference in the proliferation index of JSC-1 and KSHV-/EBV+
(LCL) and KSHV-/EBV- cells, along with the absence of a similar
effect between LCL and KSHV-/EBV- cells, strongly suggests that
the anti-proliferative effects of nimesulide is due to a specific anti-
KSHYV effect but not an anti-EBV effect (Figs. 1, 2, 3, and table 1).
Although, our data does not demonstrate a specific anti-EBV
effect, further work needs to be done with lower concentrations of
nimesulide to determine whether nimesulide also holds specific
anti-EBV properties. Although, previous reports have demon-
strated the anti-cancer effects of other COX-2 inhibitors, such as
etodolac in EBV+ Burkitt’s lymphoma cell lines [43]-[44], ours is
the first work to demonstrate the chemotherapeutic potential of
the prescription COX-2 inhibitor nimesulide in treating KSHV
associated NHLs and in down-regulating the genes of the etiologic
agent.
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Figure 9. Effect of nimesulide on the apoptotic marker cleaved-caspase-3 in BCBL-1 and BJAB cells. (a) 5x10° BJAB and BCBL-1 cells
were seeded with 100 uM nimesulide or DMSO or left untreated,. Samples were collected at 8 h, 24 h, and 48 h to examine the levels of the
apoptotic marker cleaved-caspase 3 by FACS. The cells were neither replenished with fresh media nor supplemented with the nimesulide. Expression
of cleaved caspase-3 is shown as compared to secondary alone control, which is shown in black (dotted) histogram. (b) The effect of nimesulide on
cleaved-caspase-3 levels was measured by a more sensitive colorimetry based apoptosis assay as well at identical conditions as Fig. 9a at 8 h, 12 h,
24 h, and 72 h post-treatment with nimesulide. (c) In parallel experiments, BCBL-1 cells were collected at 24 h and day 5 after drug supplementation
at days 3 and 4 to determine the levels of cleaved-caspase 3 by immunofluorescence for nimesulide and DMSO treatments, and for cells left
untreated. (d) 1x10° BCBL-1 cells were seeded with 100 UM nimesulide and samples were collected at days 1, 2, 5, 7, and 15 to measure the number
of live cells. 100 uM nimesulide was supplemented at days 3 and 4. The drug was removed by washing with PBS at day 7 and cells were replenished
with fresh media. (a-d) The data represents four independent experiments. (¥) p<<0.001, (**) p<<0.00001), (***) p<<0.000001).
doi:10.1371/journal.pone.0024379.9009
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Figure 10. COX-2/PGE2 status in BCBL-1 cells and effect of nimesulide on PEL specific genes. (a-b) Total lysates from 5x10°> BCBL-1 and
BJAB cells were immunoblotted (a) for COX-1 and COX-2. (b) Protein band intensity was measured by densitometry and normalized with respect to
actin to quantitate the relative differences and the fold difference was calculated with respect to BJAB cells. (c-d) In parallel experiments, COX-1/COX-
2 protein levels and secreted PGE2 in the supernatant of BCBL-1 and BJAB cells were examined by immunofluorescence (c) and ELISA (d),
respectively. The fold change and statistics (t-test) were calculated with respect to BJAB cells. (b, d) Each experiment was done in tripicate, and each
point represents the average * S.D. from three independent experiments. (*) p<<0.05. (e, f, h, i) 5x10° BCBL-1 cells were seeded with 100 uM
nimesulide or DMSO or left untreated without replenishment with fresh media. RNA was isolated at 24 h post-treatment with the drug to examine
the gene expression levels of aquaporin-3 (e), syndecan-1 (f), autotoxin (h), and VDR (i) by real-time RT-PCR. The cells were neither replenished with
fresh media nor supplemented with the drugs. The fold change and corresponding statistics (t-test) were calculated with respect to untreated cells
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for each treatment. Each experiment was done in tripicates, and each point represents the average = s.d. from three independent experiments. (*)
p<<0.05, (****) p<<0.00005. (g) The cellular distribution of aquaporin-3 and syndecan-1 in BCBL-1 cells was examined by immunofluorescence. (j)
5x10° BCBL-1 cells were seeded with 100 uM nimesulide or DMSO and total lysates were isolated at 2 h, 8 h, 24 h post-treatment to determine the
protein levels of VDR by Western blotting (top panel). In parallel experiments, the effect of 100 uM nimesulide or DMSO on VDR cellular distribution
was examined by immunofluorescence 24 h post-treatment with the drug (bottom panel).

doi:10.1371/journal.pone.0024379.9010

The chemotherapeutic potency of any anti-cancer drug relies on
its selective toxicity to cancer cells. The elevated levels of COX-2
in BCBL-1 cells might explain the potency of selective anti-growth
effects of nimesulide on these cells in terms of proliferation,
apoptosis induction and cell viability. In addition, our observation
of elevated COX-2 levels in BCBL-1 cells might correlate with the
overall aggressiveness of PEL, since COX-2 expression has often
been associated with the poor response to chemotherapy, dismal
survival outcomes, and recurrence of NHLs [24]. Our study
further explores the functional consequences of COX-2 up-
regulation in BCBL-1 cells in order to understand the mechanistic
themes underlying the selective toxicity of COX-2 inhibitor
nimesulide to BCBL-1 cells. The induction of proliferation arrest,
alteration in cell cycle profile, and cell death by nimesulide could
be related to the down-regulation of KSHV latency proteins
LANA-1 and vFLIP as well as to the down-regulating effect of
blocking COX-2 on cell survival proteins such as VEGF-C, IL-10,
p-GSK-3B, and p-Akt independently of viral proteins (Figs. 5-7)
[3], (4], [13], [15]-[20], [36], [38], [45]-[48].

The up-regulation of p21, release of p33 interaction with
LANA-1, and consequent changes in cell cycle profile and cell
cycle proteins along with the increase in cleaved-caspase-3 levels
by nimesulide treatment indicates an initiation of GI1 arrest
followed by the induction of apoptosis (Figs. 6 and 8). Thus, the
potency of nimesulide lies in its capacity to provide a fully
transformed B cell such as BCBL-1 with a chance for the inherent
anti-cancer host mechanisms to self-initiate cell cycle arrest and
programmed cell death by blocking the viral and host mechanisms
utilized by the virus to overcome such mechanisms, which is
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strongly suggested by the reduction in the colony forming capacity
of BCBL-1 cells by the drug treatment (Fig. 4e, 4f).

PEL is believed to have a unique NHL gene expression profile
with the overexpression of plasma cell marker syndecan-1, VDR,
and aquaporin-3 [40], [41]. Recent reports have shed light on the
role of the transmembrane proteoglycan syndecan-1 in different
aspects of oncogenesis such as cell migration through Rac-1/
PKCa signaling [49]. VDR is the natural receptor for lo,25-
dihydroxyvitamin D3 and its activation is associated with
chromatin remodeling and is also proposed to increase the risk
of esophageal squamous, prostate, and pancreatic cancers [50].
Aquaporin-3 is a channel protein involved with the transportation
of water and glycerol, ATP generation, and is proposed to be
important in tumorigenesis by promoting cell migration and
energy nourishment for proliferation [51]. Thus, our data (Fig. 10)
demonstrating the down-regulation of syndecan-1, aquaporin-3,
and VDR by nimesulide provides an additional mechanistic
framework to understand the specific anti-PEL specific effects of
nimesulide and also exposes novel pathways such as proteoglycan
mediated signaling, chromatin remodeling, and ATP metabolism
by which COX-2 might be promoting oncogenesis in other cancer
systems.

Like other aggressive cancers, PEL is associated with cell
proliferation, immune evasion, and anti-apoptotic mechanisms
resulting from the deregulation of multiple proteins. However,
unlike many cancers, PEL oncogenesis also depends on KSHV
latency that appears to be maintained by various pro-inflamma-
tory proteins such as COX-2 [25], [27]-[28]. PEL pathogenesis is
hypothesized to be the eventuality of the persistence of mutually
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Figure 11. Schematic model representing the mechanistic effect of the COX-2 inhibitor nimesulide on PEL pathogenesis. COX-2
blockade by nimesulide inhibits latency genes LANA-1 and vFLIP. The pro-survival mechanisms that COX-2 provides PEL cells through viral gene
independent and dependent pathways, such as proliferation, cell cycle regulation, apoptosis blockade, angiogenesis, and metastasis are blocked by
nimesulide through the alteration of cell survival and PEL specific genes as indicated.

doi:10.1371/journal.pone.0024379.g011
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inclusive interdependent interactions between KSHV latency,
inflammation, immune suppression, and various tumorigenic
mechanisms. Thus, the specificity, the potency, and the sustain-
ability of the ‘knock-out’ punch of nimesulide on PEL cells could
be attributed to additive anti-viral effects by the blockade of
KSHYV latency genes LANA-1/vFLIP, anti-inflammatory/anti-
survival properties by the down-regulation of VEGF-C, Aktl/2,
and GSK-3f, anti-PEL specific properties by down-regulating
syndecan-1, VDR, and aquaporin-3 as well as anti-cancer
properties by the activation of G1 arrest and apoptosis (Fig. 11).
While it is true that the dose of nimesulide we used (100 uM)
appears higher than the FDA approved dose for the treatment of
arthritis or familial adenomatous polypopsis, the maximum
tolerated dose for the cancer treatment in humans has not been
established yet. Studies in murine breast cancer treatment models
have established a dose of 20-25 mg/kg of COX-2 inhibitor
(celecoxib) as the maximum tolerated dose which results in blood
levels in the 400-700 uM range, eight to ten times higher than the
in vitro doses used in our study [52]. In addition, the reported
vitro IC50 of nimesulide for most cancer cell lines has been
reported to be more than 150 uM—175 pM. We chose 100 uM
because tukey’s posthoc comparison analysis of the mean
proliferative indexes at day 1 between the different concentrations
of nimesulide demonstrated that 100 uM had a more significant
decrease in the proliferative capacity of BCBL-1 cells compared to
50 uM with no effect on BJAB cells.

Overall, our study is providing a novel framework to understand
PEL pathogenesis using the well-known COX-2 inhibitor
nimesulide and is thus paving the way for a novel arena of
chemotherapeutic drugs to develop a potent treatment for PEL.
However, the anti-proliferative effects of other NSAIDs, such as
indomethacin and diclofenac in addition to nimesulide, indicates
that a combination of NSAIDs at much lower concentrations
might be equally or more selectively potent against PEL cells.
Further work needs to be done using animal models to evaluate
such an idea. Currently, NHLs are the fifth most common cancer
in the US and account for 5% of all cancers with an annual
incidence increasing by 1-2% [5], [53]. Therefore, we also predict
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that our study investigating the role and chemotherapeutic
potential of blocking COX-2 using nimesulide would be an
applicable model for other NHLs similar to PEL, including
Burkitt’s lymphoma and diffuse large B cell lymphoma [1].

Supporting Information

Figure S1 Effect of nimesulide on KSHV infected
endothelial cells. (a-c) TIVE (a), TIVE-LTC (b), and
HMVEC-d (c) cells were serum starved for 48 h and treated with
the indicated concentrations of nimesulide and cell proliferation
was measured by MTT assay at day 1 (1d; a), day 3 (3d; ¢), and
day 4 (4d; d). The cells were neither replenished with fresh media
nor supplemented with the drugs. Each experiment was done in
tripicates, and each point represents the average * s.d. from three
independent experiments. One-way ANOVA with Tukey’s
posthoc comparison analysis (p<<0.05) was used to determine
whether the drug treatment induced a statistically significant
difference in the proliferative indexes at 1d, 3d, and 5d compared
to untreated cells of the respective cell lines.
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