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Abstract

Background: Chaos and random fractal theories are among the most important for fully characterizing nonlinear dynamics
of complicated multiscale biosignals. Chaos analysis requires that signals be relatively noise-free and stationary, while fractal
analysis demands signals to be non-rhythmic and scale-free.

Methodology/Principal Findings: To facilitate joint chaos and fractal analysis of biosignals, we present an adaptive
algorithm, which: (1) can readily remove nonstationarities from the signal, (2) can more effectively reduce noise in the
signals than linear filters, wavelet denoising, and chaos-based noise reduction techniques; (3) can readily decompose a
multiscale biosignal into a series of intrinsically bandlimited functions; and (4) offers a new formulation of fractal and
multifractal analysis that is better than existing methods when a biosignal contains a strong oscillatory component.

Conclusions: The presented approach is a valuable, versatile tool for the analysis of various types of biological signals. Its
effectiveness is demonstrated by offering new important insights into brainwave dynamics and the very high accuracy in
automatically detecting epileptic seizures from EEG signals.
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Introduction

Biological signals often exhibit both ordered and disordered

behavior. Two of the most important theories for biosignal analysis

are chaos theory and random fractal theory [1,2]. Chaos theory is

mainly concerned about apparently irregular behaviors in a

complex system that are generated by nonlinear deterministic

interactions with only a few degrees of freedom, where noise or

intrinsic randomness does not play an important role. For it to be

applicable, signals under study have to come from a predominately

deterministic system, be relatively noise free, and be stationary

(i.e., the statistics of the signals remain fairly constant over time).

For a better understanding of the concepts of stationarity,

contamination with noise, and determinism, we refer to [3–5]

for some simple and very illustrative examples. On the other hand,

random fractal theory assumes that the dynamics of the system are

inherently random and requires the signals be scale-free.

Therefore, the foundations of chaos theory and random fractal

theory are fundamentally different.

Experimental biological signals are often noisy and nonstation-

ary. These factors complicate tremendously analysis of biosignals

using chaos theory. On the other hand, fractal analysis may be

hindered by rhythmic activity, which is a signature of biology but

is incompatible with the notion of scale-free. These problems can

at best partially be mitigated by frequency-domain filtering or

wavelet analysis. Rapid accumulation of complex data in life

sciences has made it increasingly important to develop new

methods to better cope with these difficulties. Here, we present an

adaptive algorithm, which has a number of interesting properties:

(1) it can readily remove nonstationarities from the signal,

including baseline drifts and signal components due to nonphy-

siological body movements; (2) it can more effectively reduce noise

in the signals than linear filters, wavelet denoising, and chaos-

based noise reduction schemes; (3) it can readily decompose a

multiscale biosignal into a series of intrinsically bandlimited

functions; (4) it offers a new formulation of fractal and multifractal

analysis, and is better than existing methods when a biosignal

contains a strong oscillatory component.

Methods

1. Nonlinear adaptive multiscale decomposition
The proposed adaptive algorithm first partitions a time series

into segments (or windows) of length w~2nz1 points, where

neighboring segments overlap by nz1 points, and thus introduc-

ing a time scale of
wz1

2
t~(nz1)t, where t is the sampling time.

For each segment, we fit a best polynomial of order M. Note that

M~0 and 1 correspond to piece-wise constant and linear fitting,

respectively. Denote the fitted polynomial for the i-th and (iz1)-th
segments by y(i)(l1), y(iz1)(l2), l1,l2~1, � � � ,2nz1, respectively.

Note the length of the last segment may be smaller than 2nz1. We

define the fitting for the overlapped region as
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y(c)(l)~w1y(i)(lzn)zw2y(iz1)(l), l~1,2, � � � , nz1 ð1Þ

where w1~(1{
l{1

n
),w2~

l{1

n
can be written as (1{dj=n),

j~1,2, where dj denotes the distances between the point and the

centers of y(i) and y(iz1), respectively. This means the weights

decrease linearly with the distance between the point and the center

of the segment. Such a weighting ensures symmetry and effectively

eliminates any jumps or discontinuities around the boundaries of

neighboring segments. In fact, the scheme ensures that the fitting is

continuous everywhere, is smooth at the non-boundary points, and

has the right- and left-derivatives at the boundary.

To appreciate how the algorithm copes with an arbitrary trend

without any a-priori knowledge, we have shown in Fig. 1 two scalp

EEG signals that were heavily contaminated by head movements.

The thick red curves were obtained by the adaptive algorithm,

which captured the head movement very well. The thin black

curves were obtained by a popular smoothing method based on

LOESS [6], which is also a polynomial based nonlinear filtering.

Its parameters were chosen to match those of the adaptive filter.

While it is also good, it is not as effective.

Since the adaptive detrending can deal with an arbitrary trend

without a-priori knowledge, we can conclude that it can readily

deal with nonstationarity in a biosignal, including baseline drifts

and motion artifacts such as those shown in Fig. 1.

Note that the trend is not necessarily the undesired signal. When

it is treated as noise, the adaptive filter is high-pass. When it is

considered as signals, the filter is low-pass. When we use two

window sizes and take the difference between the trend signals, the

filter is band-pass. More generally, if we introduce a series of

window sizes, w1~2n1z1vw2~2n2z1vw3~2n3z1v � � �,
then we get a sequence of trend signals. The difference between

two trend signals of window sizes wi~2niz1 and wj~2njz1 is a

band limited signal, with cutoff frequencies 1=(nit) and 1=(njt),
where t is the sampling time. For convenience, those signals may

be called intrinsically band limited functions (IBFs) and the procedure

multiscale decomposition. This procedure will be made more

concrete when we consider fractal structure of sunspot numbers

and discuss epileptic seizure detection from EEG in Section Results.

In [7,8], we have shown that the adaptive filter is more effective

in reducing noise from time series data than linear filters, wavelet

shrinkage, and chaos-based noise reduction schemes. To appre-

ciate this property, we have shown in Fig. 2 a comparison of this

algorithm with wavelet denoising and chaos-based projective

filtering for reducing noise in the chaotic Lorenz data. Indeed, we

observe that the adaptive denoising is the most effective. This can

be further corroborated by the smallness of the remaining noise,

the root mean square error (RMSE), shown in Fig. 3.

2. Fractal and multifractal analysis based on adaptive
multiscale decomposition

1=f a noise, a form of temporal or spatial fluctuation

characterized by a power-law decaying power spectral density,

has been observed in numerous natural and man-made systems

[9–22]. Of particular interest is to understand the correlation

structure of such processes, which is characterized by the Hurst

parameter H, which is equal to (a{1)=2 or (az1)=2 depending

on whether the process is a random walk process or a noise (i.e.,

increment) process – the process is said to have anti-persistent,

short-range, or persistent long-range correlations when

0vHv1=2, H~1=2, and 1=2vHv1, respectively [1,23].

To better understand the meaning of H , it is useful to

mathematically be more precise. Let {x1,x2, � � � ,xn} be a

stationary stochastic process with mean x and autocorrelation

function of the type,

r(k)*k2H{2, as k??, ð2Þ

This is often called an increment (or noise) process. Its power

spectral density (PSD) is 1=f 2H{1. Its integration,

u(i)~
Xi

k~1

(xk{x), i~1,2, � � � , n, ð3Þ

is called a random walk process having PSD 1=f 2Hz1. Simple

non-overlapping smoothing of {x1,x2, � � � ,xn} yields a new time

series,

X
(m)
t ~(xtm{mz1z � � �zxtm)=m, t§1, ð4Þ

with variance

var(X (m))~s2m2H{2 ð5Þ

where s2 is the variance of original stochastic process

{x1,x2, � � � ,xn}. Eq. (5) offers an excellent means of understanding

H . For example, if H~0:50, m~100, then var(X (m))~s2=100.

Figure 1. EEG signals with trends removed by the adaptive (thick red) and smoothing-based (thin black) methods.
doi:10.1371/journal.pone.0024331.g001
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When H~0:75, in order to have var(X (m))~s2=100, then we

need m~104, which is much larger than m~100 for the case of

H~0:50. On the other hand, when H~0:25, if we still want

var(X (m))~s2=100, then m&21:5, much smaller than m~100,

the case of H~0:50. An interesting lesson from such a simple

discussion is that if a time series is short while its H is close to 1,

then smoothing is not a viable option for reducing the variations

there.

Many excellent methods have been proposed for estimating H.

The most popular is perhaps the detrended fluctuation analysis

(DFA) [24]. Indeed, it is among the most reliable [23]. The

adaptive decomposition algorithm proposed here can be used to

formulate a new fractal and multifractal analysis approach, and is

even better than DFA when a signal contains a strong trend. For

convenience, we call it AFA.

AFA works as follows. If we start from an increment process,

x(1),x(2), � � �, similar to DFA, we first construct a random walk

process using Eq. (3). If the original data can be considered as a

random walk-like process, which is true for EEG [1,25,26] and sea

clutter radar returns [23,27,28], then this step is not necessary.

However, for ideal fractal processes, there is no penalty if this is

done, even though the process is already a random walk process.

Figure 3. Root Mean Square Error (RMSE) vs. Signal-to-Noise
Ratio (SNR) curves for three types of filters (adapted from [7]).
doi:10.1371/journal.pone.0024331.g003

Figure 2. A comparison of proposed adaptive algorithm with wavelet denoising and chaos-based projective filtering for reducing
noise in the chaotic Lorenz data. Phase diagrams (i.e., x(tzL) vs. x(t)) for (a) the clean (red) and noisy (green) Lorenz signal, (b) the signal
processed by chaos-based projective filtering, (c) the signal filtered by the proposed adaptive algorithm, and (d) the signal filtered by wavelet
denoising.
doi:10.1371/journal.pone.0024331.g002

Nonlinear Adaptive Filtering of Biosignals
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Next, for a window size w, we determine, for the random walk

process u(i) (or the original process if it is already a random walk

process), a global trend v(i),i~1,2, � � � ,N. Here N is the length of

the random walk process. The residual, u(i){v(i), characterizes

fluctuations around the global trend, and its variance yields the

Hurst parameter H,

F (2)(w)~½ 1
N

XN

i~1

(u(i){v(i))2�1=2*wH ð6Þ

To prove Eq. (6), we start from an increment process with H. The

PSD for the corresponding random walk process, is 1=f 2Hz1.

Using Parseval’s theorem [1], The variance of the residual data

corresponding to a window size w may be equated to the total

power in the frequency range (fw,fcutoff ),

Total power*
ðfcutoff

fw

1

f 2Hz1
df*

1

2H
(w2H{f {2H

cutoff ) ð7Þ

where fw~1=w, and fcutoff is the highest frequency of the data.

When fw%fcutoff , we immediately see that Eq. (6) has to be valid.

In fact, the above proof makes it clear that even if we start from a

random walk process with H , integration will make the process to

have a spectrum of 1=f 2Hz1z2~1=f 2(Hz1)z1, and therefore, the

final ‘‘Hurst’’ parameter will be simply Hz1. This indicates that

there is no penalty if one uses Eq. (3) when the data are already a

random walk process.

To extend Eg. (6) to a multifractal formulation, we can simply

write

F (q)(w)~½ 1
N

XN

i~1

ju(i){v(i)jq�1=q*wH(q) ð8Þ

where q is a real number: depending on whether q is positive or

negative, large or small values of deviations are emphasized,

respectively. In many applications, the case of q~2 may be most

concerned, since H(2)~H. For notational convenience, F (2)(w)
may be simply denoted as F(w).

Eq. (6) can also be extended to high-dimensional case, such as

an image or a high-dimensional trajectory. In the case of 2-D, this

can be achieved by first applying the algorithm to the x-

component of the data, then applying it to the y-component. In

fact, the order of whether x-component first or y-component first

Figure 5. Adaptive fractal analysis of sunspot numbers with
polynomial order 1 and 2.
doi:10.1371/journal.pone.0024331.g005

Figure 4. Sunspot data and its trend. (a) original sunspot data (black curve) and the trend data (thick red curve) obtained by adaptive detrending
algorithm with a window size of 61 month and a polynomial order of 2; (b) the corresponding residual data; (c) 2-D phase diagram, x(nzL) vs. x(n)
with L = 30, for the trend data (with mean removed).
doi:10.1371/journal.pone.0024331.g004
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does not matter. This is best seen by considering polynomial order

to be 1 and functions f (x,y) having the property
d

dx

d

dy
f (x,y)

~
d

dy

d

dx
f (x,y). The approach will work in more general

situations, including non-differentiable random surfaces.

The fractal analysis approach formulated here has two

important features that are better than DFA: (1) the trend for

each window size w obtained here is smooth, while that obtained

by DFA changes abruptly at the boundary of neighboring

segments; (2) it can more readily estimate H from a signal with

a strong oscillatory trend. The latter property will be made clearer

when we analyze the sunspot numbers in Section Results.

Results

1. Analysis of sunspot numbers
To appreciate the effectiveness of AFA, we examine how it

estimates the fractal scaling exponent from sunspot numbers

Figure 6. Examples of different groups of EEG signals and corresponding phase diagrams. EEG signals for (a1) H (healthy); (b1) E
(epileptic subjects during a seizure-free interval) and (c1) S (epileptic subjects during seizure); (a2,b2,c2) are their corresponding phase diagrams.
doi:10.1371/journal.pone.0024331.g006

Figure 7. A typical ln F(w) vs. ln w curve for an EEG signal.
doi:10.1371/journal.pone.0024331.g007

Nonlinear Adaptive Filtering of Biosignals
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(which can be downloaded at http://sidc.oma.be/sunspot-data/).

The best known property of sunspot numbers is the approximate

11 year cycle, which can be clearly seen from the data shown in

Fig. 4(a). Because of this cyclic trend, DFA cannot readily detect

the fractal structure in the sunspot variations [29].

Sunspot numbers up to year 2006 have been examined by

Movahed et al. [30] using Fourier filtering based DFA, by Zhou

and Leung [31] using empirical mode decomposition (EMD)

based DFA, and by Hu et. al. [29] by first using the adaptive

detrending algorithm described here then applying DFA. The

results based on EMD is consistent with that of Hu et. al. [29]. The

latter is much simpler. Referring to Fig. 4, the latter approach is to

first get the trend data, shown as the solid black curve in Fig. 4(a)

(whose phase diagram is shown in Fig. 4(c), which suggests chaos-

like dynamics), then obtains the residual signal shown in Fig. 4(b),

and finally applies DFA to the residual signal. The H parameter

for the shorter data analyzed in Hu et. al. [29] is about 0.74. When

the same approach is applied to the longer data analyzed here, H

is 0.78. Therefore, the variation of the sunspot numbers around its

11-year cycle is a fractal process with long-range correlations.

When we apply AFA to the sunspot numbers, we obtain the

results shown in Fig. 5. H estimated with polynomial order 1 is

0.80, with a short scaling range, while that estimated with

polynomial order 2 is 0.83, with a fairly long fractal scaling range

up to about 60 months, or half of the 11-year cycle. Therefore, H

value estimated is consistent with that by other more complicated

methods, including EMD based DFA and adaptive detrending

based DFA.

Figure 8. Intrinsically bandlimited functions (IBFs) and phase diagrams for different groups of EEG signals. (a1,b1,c1) are IBFs of EEG
signals shown in Fig. 6; (a2,b2,c2) are their corresponding phase diagrams.
doi:10.1371/journal.pone.0024331.g008
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2. Epileptic seizure detection from EEG
We now demonstrate how AFA can shed new lights on the

dynamics of brainwaves and help detect epileptic seizures from

EEG.

Following earlier studies, we treat EEG as a random walk

process instead of increment process, therefore, the first step,

forming a random walk process, is not necessary here. For ease of

comparison with the result of [32], we shall work on the same data

sets analyzed there, which consist of three groups, H (healthy), E

(epileptic subjects during a seizure-free interval), and S (epileptic

subjects during seizure), each group contains 100 data segments,

whose length is 4097 data points with a sampling frequency of

173.61 Hz. The data can be downloaded at http://www.meb.uni-

bonn.de/epileptologie/science/physik/eegdata.html. Examples of

the EEG signals for the three groups, H, E, and S, are shown in

Figs. 6(a1,b1,c1), together with their phase diagrams in Figs. 6

(a2,b2,c2). For the details of the data, we refer to [33].

Figure 7 shows a typical log2 F (w) vs. log2 w curve for an EEG

signal. We observe that there are two short scaling regions, whose

Hurst parameters are denoted as Hs and HL in the plot. The first

scaling determines a time scale of (w1z1)=2~9 samples, which

amounts to 173:61=9~19:3 Hz. The second scaling break

determines a time scale of (w2z1)=2~33 samples, which amounts

to 173:61=33~5:3 Hz. Using these two time scales, we can obtain

two trend signals for each EEG signal. Their difference yields one

IBF for each EEG signal. They are shown in Figs. 8(a1,b1,c1) for the

signals of Figs. 6(a1,b1,c1). The corresponding phase diagrams are

shown in Figs. 8(a2,b2,c2). Fig. 8(c2) is especially interesting, since it

suggests chaos-like dynamics for the seizure EEG signal.

When we use the three parameters, HS,HL, and the saturation

level to classify the three EEG groups, we obtain the results shown in

Fig. 9. We observe that the three groups almost perfectly separate.

This excellent classification result suggests that the two time scales

identified above must be generic. This is indeed so, after we visually

examine a large subset of the data analyzed here. Note that such an

excellent classification accuracy cannot be obtained by using DFA.

It is interesting to note that the seizure detection accuracy

shown in Fig. 9 is comparable to that of Adeli et. al. [32] using a

complicated approach consisting of (1) decomposing the EEG

signals into delta, theta, alpha, beta, and gamma subbands, (2)

calculating features such as standard deviations, largest Lyapunov

exponent, and correlation dimension for each subband, and (3)

using neural networks to classify the three different EEG groups.

In particular, it is noted [32] that correlation dimension is more

useful for the beta (13–30 Hz) and gamma (30–60 Hz) subbands,

while the Lyapunov exponent is more useful for the alpha (8–

12 Hz) band. While qualitatively, this observation is consistent

with our finding [34] that the largest Lyapunov exponent, because

of the particular algorithm of computing it, is more pertinent to

larger scale (i.e., slower or lower-frequency dynamics), while

correlation dimension characterizes smaller scale (i.e., faster or

higher-frequency dynamics). AFA presented here has suggested

that the more precise time scales are not given by the traditional

idea of the 5 EEG subbands, but are given by the fractal scaling

breaks, which are w19:3 Hz and 5:3{19:3 Hz.

Discussion

Motivated by the pressing need of joint chaos and fractal analysis of

complex biological signals, we have proposed a nonlinear adaptive

algorithm, which has a number of interesting properties, including

removing arbitrary nonphysiological trends or baseline drifts from

physiological data, reducing noise, and carrying out fractal analysis.

The latter property is utilized to analyze sunspot numbers and three

different EEG groups for the purpose of detecting epileptic seizures. It

is found that the approach is highly effective. In particular, we have

found that the approach can automatically partition the frequency

into three bands, below 5.3 Hz, above 19.3 Hz, and between 5.3 and

19.3 Hz. This suggests that a more convenient and more intrinsic

way of partitioning EEG signals would be to partition them into these

three bands, instead of the traditional delta, theta, alpha, beta, and

gamma subbands.

The validity of the proposed approach hinges on being able to

locally represent a continuous time function by its Taylor series.

Therefore, it will work better when the signal is sampled more

densely. This is especially true when denoising is concerned. On

the other hand, it may lose power when dealing with signals

generated by discrete maps or sampled from a continuous time

system with very large sampling time. We do not expect this to be

a true difficulty, however, since experimental systems usually are

continuous time systems, and there is no shortage of technology to

adequately sample the dynamics of the system.

While we have used sunspot numbers and EEGs for example

applications, we surmise that the approach proposed here can

readily be used to analyze a broad range of biological and non-

biological signals. Furthermore, some of the IBFs (such as shown in

Fig. 4(c) and Fig. 8(c2)) may better be amenable to chaos analysis.

To maximally realize the potential of the approach, interested

readers are welcome to contact the authors for the codes.
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