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Abstract

Background: During a normal cell cycle, the transition from G2 phase to mitotic phase is triggered by the activation of the
cyclin B1-dependent Cdc2 kinase. Here we report our finding that treatment of MCF-7 human breast cancer cells with
nocodazole, a prototypic microtubule inhibitor, results in strong up-regulation of cyclin B1 and Cdc2 levels, and their
increases are required for the development of mitotic prometaphase arrest and characteristic phenotypes.

Methodology/Principal Findings: It was observed that there was a time-dependent early increase in cyclin B1 and Cdc2
protein levels (peaking between 12 and 24 h post treatment), and their levels started to decline after the initial increase. This
early up-regulation of cyclin B1 and Cdc2 closely matched in timing the nocodazole-induced mitotic prometaphase arrest.
Selective knockdown of cyclin B1or Cdc2 each abrogated nocodazole-induced accumulation of prometaphase cells. The
nocodazole-induced prometaphase arrest was also abrogated by pre-treatment of cells with roscovitine, an inhibitor of
cyclin-dependent kinases, or with cycloheximide, a protein synthesis inhibitor that was found to suppress cyclin B1 and
Cdc2 up-regulation. In addition, we found that MAD2 knockdown abrogated nocodazole-induced accumulation of cyclin B1
and Cdc2 proteins, which was accompanied by an attenuation of nocodazole-induced prometaphase arrest.

Conclusions/Significance: These observations demonstrate that the strong early up-regulation of cyclin B1 and Cdc2
contributes critically to the rapid and selective accumulation of prometaphase-arrested cells, a phenomenon associated
with exposure to microtubule inhibitors.
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Introduction

Nocodazole, a prototypic microtubule inhibitor [1,2], has

anticancer activity and is also widely used in cell biology research

as a tool for synchronization of the cell division cycle [3–6].

Mechanistically, this chemical can bind to tubulins and microtu-

bules, thereby suppressing microtubule dynamics [7]. Disruption

of microtubule formation and function in cells treated with

nocodazole [8,9] or other microtubule inhibitors (e.g., vinblastine,

colchicine, and paclitaxel) [9,10–12] results in suppression of cell

cycle progression, with cells usually arrested in the G2/M phase

(based on flow cytometric analysis of cellular DNA content).

During a normal cell cycle, the progression of cells in the G2

phase to M phase is triggered by the activation of the cyclin B1-

dependent Cdc2 kinase [13–15], which is regulated by a series of

phosphorylation-dephosphorylation events and protein-protein

interactions [16–19]. In general, a cell with a suppressed cyclin

B1/Cdc2 activity would tend to be arrested in the G2 phase,

whereas a cell with an elevated cyclin B1/Cdc2 activity would be

favored to enter mitosis [20]. This general principle is supported

by a large body of experimental observations. For instance, earlier

studies showed that treatment of cells with roscovitine, an inhibitor

of the cyclin-dependent kinases (CDKs), or selective knockdown of

cyclin B and Cdc2 expression with siRNAs, each produced cell

cycle arrest predominantly in the G2 phase, with a simultaneous

reduction of cells in the M phase [21]. However, during the

induction of the G2/M phase cell cycle arrest (based on analysis of

cellular DNA content) following treatment of cells with microtu-

bule inhibitors such as nocodazole and paclitaxel, it has been

observed in some earlier studies that there was a marked increase

in cyclin B1 and Cdc2 protein levels [22–24]. When the

morphology of the cells treated with microtubule inhibitors was

analyzed, it was found that most of the G2/M cell population were

actually arrested in mitotic prometaphase, but not in the G2 phase

[25]. The functional role of this puzzling strong increase in cyclin

B1 and Cdc2 protein levels in the development of mitotic

prometaphase arrest in cells treated with microtubule inhibitors

is not understood at present, which was the focus of our present

investigation. Using nocodazole, a prototypic microtubule inhib-

itor, as a tool drug, here we performed a series of experiments

demonstrating that the strong early up-regulation of cyclin B1/

Cdc2 contributes critically to the rapid accumulation of cells
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selectively arrested in the mitotic prometaphase. In addition, we

found that the mitotic arrest deficient 2 (MAD2) protein, an

important spindle checkpoint protein, is involved in mediating

nocodazole-induced up-regulation of cyclin B1 and Cdc2.

Results

Characterization of nocodazole-induced mitotic arrest
Exposure of MCF-7 human breast cancer cells to nocodazole

reduced cell viability (MTT assay) in a concentration- and time-

dependent manner (Figure 1A). Flow cytometry analysis showed

that nocodazole (250 nM) induced characteristic G2/M-pattern

cell cycle arrest, starting as early as at 3 h after drug treatment and

reached plateau at 14 h (79% compared to 27.3% in control cells)

(Figure 1B). Analyses of the nuclear morphology showed that

nocodazole-treated cells exhibited chromosomal condensation and

segregation (Figure 1C), which are characteristic morphological

changes seen in cells blocked in mitotic prometaphase [26]. Based

on counting the number of prometaphase cells (i.e., the mitotic

index), the time-dependent change in nocodazole-induced mitotic

prometaphase arrest (Figure 1D) matched closely the change in

the combined G2/M cell population (Figure 1B). Together, these

data suggest that nocodazole predominantly induces mitotic

prometaphase arrest in MCF-7 human breast cancer cells in a

time- and concentration-dependent manner.

As shown in Figure S1A and S1B, the induction of

prometaphase arrest was also observed in another human breast

cancer cell line (namely, the ER-negative MDA-MB-435s cells)

following in vitro treatment with nocodazole for 12 or 24 h.

Similarly, the induction of prometaphase arrest by nocodazole was

also observed in MCF-10A cells (a non-tumorigenic human

mammary epithelial cell line) (Figure S2B and S2C). It appears

that MCF-10A cells are more sensitive to the induction of cell

death by nocodazole (data not shown), likely due to the faster

proliferation rate of MCF-10A cells compared to MCF-7 cells

(Figure S2A).

In all three human cell lines tested in this study, we found that

the mitotic arrest induced by nocodazole was associated with a

marked up-regulation of cyclin B1 and Cdc2 protein levels

(Figure 1E, Figure S1C, Figure S2D). This finding confirms

earlier observations with other antitubulin agents [20,27]. Using

MCF-7 cells as a representative model, we further conducted

detailed time-course analysis of the levels of these two cell cycle

proteins. Their levels started to increase at 3 h after nocodazole

treatment and reached a peak between 14 and 24 h, but after the

initial 24 h, their levels were markedly decreased in a time-

dependent manner (Figure 1E). It is of note that the time-

dependent increase in cyclin B1 and Cdc2 levels following

nocodazole treatment closely mirrored the time-dependent

induction of prometaphase arrest (compare Figure 1D and
1E). Moreover, the magnitude of the increase in cyclin B1 and

Cdc2 protein levels and the severity of prometaphase arrest

depended on the concentrations of nocodazole used; in general, a

stronger up-regulation of these two proteins and a greater severity

of prometaphase arrest were seen when higher concentrations of

nocodazole were present (data not shown).

Role of cyclin B1 and Cdc2 in the development of mitotic
prometaphase arrest

Accumulation of cyclin B1 and Cdc2 in the nucleus of a cell is

known to trigger the development of chromosomal condensation

and segregation, which are characteristic morphological changes

seen in cells blocked in prometaphase [25]. To probe whether the

early up-regulation of cyclin B1 and Cdc2 protein levels

contributed to the observed nuclear morphological changes in

nocodazole-treated cells, we first examined the subcellular

localization of these two proteins in control and nocodazole-

treated cells using the immunofluorescence staining approach. As

shown in Figure 1F, while the levels of these two proteins were

very low in both cytosol and nuclei of untreated control cells, their

levels were drastically and selectively increased in the nuclear

compartment of nocodazole-treated cells. This observation

suggests that during the induction of mitotic prometaphase arrest

by nocodazole, there is a marked nuclear accumulation of these

two cell cycle-regulatory proteins.

To provide definitive experimental evidence for the involve-

ment of cyclin B1 and Cdc2 up-regulation in nocodazole-induced

prometaphase arrest, we employed the siRNA approach to

selectively knock down the expression of cyclin B1, Cdc2, or

both. As shown in Figure 2A, 2B, twenty-four h after transfection

with cyclin B1-specific siRNA (si-cyclin B1), cells were treated with

nocodazole and then harvested for Western blot analysis of cyclin

B1 and Cdc2 levels. Knockdown of cyclin B1 abrogated

nocodazole-induced increase in both cyclin B1 and Cdc2 proteins

compared with control siRNA-transfected cells. Moreover,

immunofluorescence staining using anti-cyclin B1 antibodies

showed that transfection with si-cyclin B1 diminished nocoda-

zole-induced nuclear accumulation of cyclin B1 protein

(Figure 2C). These changes were accompanied by a reduction

in the degree of chromosomal condensation and segregation, as

well as a decrease in the population of prometaphase cells (from

58.0% to 23.7%, P,0.05) (Figure 2D). Notably, in cells with

cyclin B1 knockdown, treatment with nocodazole caused a smaller

increase in the combined G2/M cell population (assessed by flow

cytometric analysis) (Figure 2E). These data indicate that cyclin

B1 knockdown predominantly decreases the population of

prometaphase cells while it only slightly reduces the combined

G2/M cell population.

Similarly, knockdown of Cdc2 abrogated the nocodazole-

induced accumulation of Cdc2, but the cyclin B1 level was only

modestly reduced in comparison with the control siRNA-

transfected cells (Figure 3A, 3B). Immunofluorescence staining

using anti-Cdc2 antibodies showed that transfection with Cdc2

siRNAs significantly reduced nocodazole-induced nuclear accu-

mulation of Cdc2 protein (Figure 3C). Similar to the observations

with cyclin B1, knockdown of Cdc2 was associated with a

reduction in prometaphase cells (from 58.0% to 24.0%)

(Figure 3D). Collectively, these results suggest that the marked

increase in cyclin B1 and Cdc2 protein levels contributes to the

accumulation of prometaphase-blocked cells following nocodazole

treatment. Following Cdc2 knockdown, the population of G2/M-

arrested cells as assessed by flow cytometry analysis was only

mildly reduced after nocodazole treatment (data not shown).

These data indicate that knockdown of Cdc2, similar to what was

observed with cyclin B1 knockdown, predominantly decreases the

population of prometaphase cells while it affects the combined G2/

M cell population to a much lesser degree.

Role of MAD2 protein in mediating cyclin B1 and Cdc2
up-regulation and prometaphase arrest in nocodazole-
treated cells

MAD2, an important spindle checkpoint protein, can block the

progression through the metaphase-to-anaphase transition by

binding to unattached kinetochores [28]. In addition, during the

development of prometaphase arrest, this protein can also inhibit

the activity of the anaphase promoting complex (APC) by

sequestering Cdc20 until all chromosomes are attached by

microtubules and properly aligned at the metaphase plate. To

Nocodazole-Induced Prometaphase Arrest
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Figure 1. Induction of cell cycle arrest and cyclin B1/Cdc2 activation in MCF-7 cells by nocodazole (Noco). A. Changes in cell viability
(MTT assay) after treatment of cells with 250 nM nocodazole for different lengths of time. Each data point is the mean 6 S.D. from four replicate
measurements from one representative experiment. B. Time-dependent induction of G2/M cell cycle arrest following treatment with nocodazole.
Cells were seeded at 56104 cells/mL and then treated with 250 nM nocodazole for 3, 6, 14, 24, 48 and 72 h. Cells were harvested and analyzed using
flow cytometry. C. Cells were treatment with 250 nM nocodazole for 12 or 24 h, stained with Hoechst-33342, and examined in a phase contrast (PC)
microscope (upper panel) or a fluorescence microscopy (lower panel) (at 6200 magnification). As shown, many cells are arrested in mitosis
(prometaphase) after 250 nM treatment. D. Cells were treated with 250 nM nocodazole for 3, 6, 14, 24, 48 and 72 h. The morphology of cells arrested
in prometaphase (based on 200 or more nuclei in each sample) was scored by fluorescence microscopy. Each bar is the mean 6 S.D. value from three
separate experiments. * P,0.05, ** P,0.01 versus vehicle-treated control. E (upper part). Time-dependent changes in cyclin B1 and Cdc2 protein
levels following nocodazole treatment. Cells were treated with nocodazole (250 nM) for the length of time as indicated, and whole cell lysates were
prepared. An equal amount of protein lysates was electrophoretically separated on the 10% SDS-polyacrylamide gel, and transferred to nitrocellulose
membrane. Western blots were detected using specific antibodies against cyclin B1, Cdc2 (CDK1), MAD2, and Cdc20 on an enhanced
chemiluminescence (ECL) apparatus. Membrane was stripped for determining the levels of GAPDH as a loading control. E (lower part). The relative
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understand the role of MAD2 protein in mediating cyclin B1/

Cdc2 up-regulation in nocodazole-treated cells, we first examined

the time-dependent changes of MAD2 protein as well as a

representative target protein, Cdc20, during nocodazole-induced

cell cycle arrest. We found that the MAD2 protein level was only

slightly increased between 6–14 h after nocodazole treatment,

whereas Cdc20 protein level remained unchanged during the first

14 h and was markedly decreased at 24 and 48 h (Figure 1E).

Next, we selectively knocked down MAD2 expression and then

studied its effect on nocodazole-induced changes in cyclin B1/

Cdc2 levels as well as prometaphase arrest. As shown in Figure 4A
and 4B, 24 h after transfection with the MAD2 siRNA (si-

MAD2), cells were treated with nocodazole and then harvested for

Western blotting of cyclin B1, Cdc2, MAD2, and Cdc20 protein

levels. si-MAD2-transfected cells had a markedly reduced MAD2

protein level, suggesting that the knockdown was effective.

Surprisingly, MAD2 knockdown completely abrogated the

nocodazole-induced up-regulation of cyclin B1 and Cdc2

compared with control siRNA-transfected cells (Figure 4A, 4B).

However, the level of Cdc20 was not appreciably altered in

MAD2-knockdown cells treated with nocodazole (Figure 4A,
4B).

Immunofluorescence staining showed that cells with MAD2

knockdown had markedly reduced nuclear accumulation of cyclin

B1 and MAD2 proteins following nocodazole treatment compared

to cells transfected with control siRNA, which had highly elevated

levels of nuclear cyclin B1 and MAD2 (Figure 4C). These

changes were accompanied by a reduction in the degree of

chromosomal condensation and segregation as well as a drastic

decrease in the population of mitotic prometaphase cells from 44%

to 4.2% (P,0.01) at 12 h and 38% to 4.8% (P,0.01) at 24 h

(Figure 4D). Similar to what was observed with cyclin B1 or Cdc2

knockdown, knockdown of MAD2 only weakly affected the total

cellular DNA content (i.e., the combined G2/M cell population) in

nocodazole-treated cells (Figure 4E). These results show that up-

regulation of cyclin B1 and Cdc2 protein levels and the

development of mitotic arrest both depend on the presence of

MAD2 protein. Here it is also of note that MAD2 knockdown

produced a stronger suppression of the prometaphase arrest than

knockdown of cyclin B1 and Cdc2. This reason is because MAD2

knockdown will not only reduce the levels of cyclin B1 and Cdc2

(as shown in Figure 4), which reduces prometaphase arrest in the

same way as does cyclin B1/Cdc2 knockdown, but it will also

allow prometaphase cells to proceed through metaphase and then

enter anaphase, which is an inherent function of MAD2.

Pharmacological inhibition of Cdc2 abrogates
nocodazole-induced prometaphase arrest

The series of experiments as described above suggested that up-

regulation of cyclin B1/Cdc2 plays a critical role in the

development of the characteristic prometaphase arrest seen in

cells treated with microtubule inhibitors. This mechanistic

explanation was put to further test by examining the effects on

cell cycle changes when nocodazole was used in combination with

rescorvitine, which is an inhibitor of the cyclin-dependent kinases

(including Cdc2), or with cycloheximide (CHX), which is a protein

sysnthesis inhibitor. The findings are briefly summarized below.

Effect of roscovitine. To study the modulating effect of

roscovitine, MCF-7 cells were treated with 10, 20 and 30 mM

roscovitine alone or in combination with 250 nM nocodazole for

12 h. Roscovitine (at 20 and 30 mM) markedly reduced

nocodazole-induced increase in cyclin B1 levels (Figure 5A),

and a similar reduction was seen with Cdc2 protein levels (data not

shown).

Flow cytometric analysis of the cellular DNA content showed

that treatment of cells with roscovitine alone increased the

combined G2/M-arrested cells in a concentration-dependent

manner, which is consistent with an earlier study [21]. During

the development of roscovitine-induced G2/M arrest, the

population of prometaphase cells is only slightly increased

compared to cells treated with nocodazole (Figure 5C). Our

observations are in agreement with the earlier study showing that

roscovitine blocks MCF-7 cells in the G2 phase [21]. However,

when roscovitine was used in combination with nocodazole, it

strongly suppressed nocodazole-induced accumulation of the G2/

M cell population (flow cytometric analysis, Figure 5B) as well as

prometaphase-arrested cells (Figure 5C, 5D). The dose-depen-

dent effect of roscovitine in suppressing nocodazole-induced

accumulation of both G2/M and prometaphase cell populations

is closely correlated with its ability to suppress cyclin B1 up-

regulation in nocodazole-treated cells (Figure 5). Together, these

data show that roscovitine, when used in combination with

nocodazole, can inhibit cells from entering prometaphase by

keeping them staying at the end of G2 phase. Mechanistically,

roscovitine exerts this effect through inhibiting Cdc2 activity plus

suppressing nocodazole-induced cyclin B1 up-regulation.

Effect of cycloheximide (CHX). To investigate the

modulating effect of CHX (a protein synthesis inhibitor) on

nocodazole-induced cyclin B1/Cdc2 accumulation and mitotic

arrest, MCF-7 cells were treated nocodazole alone or in

combination with CHX (1 mg/mL) for 12 h. Following the

treatment, cells were divided into 3 groups for Western blotting

analysis of cell cycle regulatory proteins, for flow cytometric

analysis of cell cycle change, and for Hoechst staining of the

nuclear morphological change. As shown in Figure 6A, co-

treatment with CHX strongly suppressed nocodazole-induced

early increase in cyclin B1 and Cdc2 levels. The suppression of

nocodazole-induced early increase in cyclin B1 and Cdc2 protein

levels by CHX was accompanied by a strong reduction in the

population of G2/M-arrested cells (from 79.6 to 20.2%, flow

cytometry analysis) (Figure 6B, upper panel) and abrogation of

the development of prometaphase arrest (Figure 6B, lower
panel; Figure 6C). Notably, treatment of cells with CHX alone

did not appreciably alter the G1 phase cell population (Figure 6B).

These observations further support the conclusion that increased

de novo synthesis of cyclin B1 and Cdc2 contributes importantly to

the development of prometaphase arrest in cells treated with

nocodazole.

Discussion

In a normal cell cycle, the transition from G2 phase to mitotic

phase is triggered by the activation of the cyclin B1/Cdc2

complex. Cells with a suppressed cyclin B1/Cdc2 activity would

be arrested in the G2 phase, whereas cells with an elevated cyclin

protein levels for cyclin B1, Cdc2, MAD2, and Cdc20 were calculated according to their densitometry readings, which were normalized according to
the corresponding readings for the GAPDH protein bands. Each value is mean 6 S.D. from three replicate determinations. * P,0.05, ** P,0.01 versus
vehicle-treated control. F. Cells were treatment with 250 nM nocodazole for 12 h and analyzed using immunofluorescence staining for cyclin B1 and
Cdc2. Representative photographs were taken under a fluorescence microscope (original magnification, 6200).
doi:10.1371/journal.pone.0024312.g001
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Figure 2. Effect of cyclin B1 knockdown on the development of nocodazole (Noco)-induced prometaphase arrest in MCF-7 cells.
A. Cells were transfected with cyclin B1 siRNA (si-cyclin B1) and the negative control siRNAs (si-Con), 24 h later, cells were exposed to 250 nM
nocodazole for additional 12 h. Then the whole cell lysates were analyzed for the levels of cyclin B1 and Cdc2by Western immunoblotting. B. Relative
protein levels of cyclin B1 and Cdc2 are calculated according to densitometry readings, which are then normalized according to the corresponding
readings for the GAPDH protein bands. Each value is mean 6 S.D. from three replicate determinations. * P,0.05, ** P,0.01 versus vehicle-treated
control; # P,0.05, ## P,0.01 versus nocodazole treatment. C. Cells were transfected with si-cyclin B1 or siRNA negative control and then further
treated with nocodazole (250 nM) for 12 h. Cells with cyclin B1 knockdown were analyzed using immunofluorescent staining for cyclin B1.
Representative photographs were taken using a fluorescence microscope (original magnification, 6200) or a phase contrast (PC) microscope (6200).
D. Quantitative data on prometaphase-arrested cells. Each bar is a mean 6 S.D. value from three separate experiments. * P,0.05, ** P,0.01 versus
the vehicle-treated control; # P,0.05 versus nocodazole treatment. E. The DNA content of cells was analyzed using flow cytometry as described in
the Material and Methods section.
doi:10.1371/journal.pone.0024312.g002

Nocodazole-Induced Prometaphase Arrest

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e24312



Figure 3. Effect of Cdc2 knockdown on the development of nocodazole (Noco)-induced prometaphase arrest in MCF-7 cells. A. Cells
were transfected with siRNA Cdc2 (si-Cdc2) and the negative control siRNAs (si-Con), and 24 h later, cells were exposed to 250 nM nocodazole for
additional 12 h. Then the whole cell lysates were analyzed for Cdc2 and cyclin B1 levels using Western immunoblotting. B. The relative protein levels
of Cdc2 and cyclin B1 are calculated according to their densitometry readings, which are normalized according to the corresponding readings for the
GAPDH protein bands. Each value is mean 6 S.D. from three replicate measurements. * P,0.05 versus vehicle-treated control; # P,0.05 versus
nocodazole treatment. C. Cells were transfected with si-cyclin B1 or siRNA negative control and then further treated with nocodazole (250 nM) for
12 h. Cells with Cdc2 knockdown were analyzed using immunofluorescent staining. Representative photographs were taken using a fluorescence
microscopy (original magnification, 6200) or a phase contrast microscope (6200). D. Quantitative data on prometaphase-arrested cells. Each bar is a
mean 6 S.D. value from three separate experiments. ** P,0.01 versus the vehicle-treated control; ## P,0.01 versus nocodazole treatment.
doi:10.1371/journal.pone.0024312.g003
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B1/Cdc2 activity would tend to be favored to enter and proceed

through mitosis [15]. The results of our present study confirm the

earlier interesting observation showing that treatment of cancer

cells with microtubule inhibitors such as vinblastine, colchicine

and paclitaxel, causes a strong up-regulation of cyclin B1 and

Cdc2 protein levels [9–12], while the level of Cdc2 phosphory-

Figure 4. Effect of MAD2 knockdown on the development of nocodazole (Noco)-induced prometaphase arrest in MCF-7 cells.
A. Cells were transfected with siRNA MAD2 (si-MAD2) and the negative control siRNAs (si-Con), and 24 h later, cells were exposed to 250 nM
nocodazole for additional 12 h. Then the whole cell lysates were analyzed for Cdc2, cyclin B1, MAD2, and Cdc20 levels using Western
immunoblotting. B. The relative protein levels of Cdc2, cyclin B1, MAD2, and Cdc20 are calculated according to their densitometry readings, which
are normalized according to the corresponding readings for the GAPDH protein bands. Each value is mean 6 S.D. from three replicate measurements.
* P,0.05 versus vehicle-treated control; # P,0.05 versus nocodazole treatment. C. Cells were transfected with si-MAD2 or siRNA negative control and
then further treated with nocodazole (250 nM) for 12 h. Cells with Cdc2 knockdown were analyzed using immunofluorescent staining.
Representative photographs were taken using a fluorescence microscopy (original magnification, 6200). D. Quantitative data on prometaphase-
arrested cells. Each bar is a mean 6 S.D. value from three separate experiments. ** P,0.01 versus the vehicle-treated control; # P,0.05 versus
nocodazole treatment. E. The DNA content of cells was analyzed using flow cytometry as described in the Material and Methods section.
doi:10.1371/journal.pone.0024312.g004

Nocodazole-Induced Prometaphase Arrest

PLoS ONE | www.plosone.org 7 August 2011 | Volume 6 | Issue 8 | e24312



lation at Tyr15 (an inactive form of Cdc2) was not significantly

changed [23]. The observed up-regulation of cyclin B1 and Cdc2

is expected to result in increased functionality of the cyclin B1/

Cdc2 complex. However, under these conditions, a higher

percentage of cells are actually found to be selectively arrested in

mitotic prometaphase; by contrast, control cells that are not

treated with nocodazole and have much lower cyclin B1/Cdc2

levels actually have far fewer cells arrested in prometaphase.

Apparently, these seemingly paradoxical changes are caused by

the presence of nocodazole, which would create a false signal in

Figure 5. Effect of rescorvitine (Rosc) on nocodazole (Noco)-induced prometaphase arrest in MCF-7 cells. A (upper panel). Cells were
pre-treated for 2 h with roscovitine (10, 20, and 30 mM) and then stimulated for additional 12 h with 250 nM nocodazole. Total cell lysates were
analyzed by Western immunoblotting for cyclin B1. A (lower panel). The relative protein levels cyclin B1 are calculated according to their
densitometry readings, which are normalized according to the corresponding readings for the GAPDH protein bands. Each value is mean 6 S.D. from
three replicate measurements. ** P,0.01 versus vehicle-treated control; # P,0.05, ## P,0.01 versus nocodazole treatment. B. Cells were pre-treated
for 2 h with roscovitine (10, 20, and 30 mM) and then stimulated for additional 12 h with 250 nM nocodazole. The DNA content of cells was analyzed
using flow cytometry as described in the Material and Methods section. C. Nuclei were stained with Hoechst-33342, and examined using a
fluorescence microscope for prometaphase cells (original magnification, 6200). D. Quantitative data on prometaphase-arrested cells. Each bar is a
mean 6 S.D. value from three separate experiments. ** P,0.01 versus the vehicle-treated control; ## P,0.01 versus nocodazole treatment.
doi:10.1371/journal.pone.0024312.g005
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prometaphase cells that they do not have adequate levels of cyclin

B1/Cdc2 activity to proceed through mitosis. Consequently, cells

arrested in prometaphase would increase their cyclin B1 and Cdc2

levels, as a cellular compensatory response to nocodazole

treatment. As discussed below, the results of this study provide a

series of experimental evidence in support of the notion that the

strong, early up-regulation of cyclin B1 and Cdc2 following

nocodazole treatment contributes critically to the development of

prometaphase arrest as well as some of its unique features.

Earlier studies have shown that a rapid, excessive activation of

the cyclin B1-dependent Cdc2 in G2 phase cells can result in

aberrant entry into mitotic phase [29,30]. Moreover, premature

nuclear accumulation of the cyclin B1/Cdc2 complex will trigger

chromosomal condensation and segregation [29,30]. The results of

our present study show that the marked early increase in cyclin B1

and Cdc2 levels is accompanied by rapid nuclear accumulation of

these two proteins, in conjunction with the development of

characteristic nuclear chromosomal condensation and segregation.

In addition, we found that selective knockdown of cyclin B1 and

Cdc2 strongly reduced the severity of nuclear chromosomal

condensation and segregation as well as prometaphase arrest.

Similar reductions in nuclear chromosomal condensation and

segregation as well as prometaphase arrest were observed in

nocodazole-treated cells when these cells were co-treated with

roscovitine (an inhibitor of the cyclin-dependent kinases) or CHX

(a protein synthesis inhibitor that reduces the levels of both cyclin

B and Cdc2 in nocodazole-treated cells). Based on these

experimental observations, it is reasonable to suggest that a

stronger initial compensatory up-regulation of the cyclin B1/Cdc2

level following nocodazole treatment would result in severer

prometaphase arrest because higher cyclin B/Cdc2 levels likely

would bring about a severer degree of nuclear condensation and

Figure 6. Effect of cycloheximide (CHX) on nocodazole-induced prometaphase arrest in MCF-7 cells. A (left panel). Cells were pre-
treated for 2 h with cycloheximide (5 mg/mL) and then stimulated for additional 12 h with 250 nM nocodazole. Total cell lysates were analyzed by
Western immunoblotting for cyclin B1 and Cdc2. A (right panel). The relative protein levels of cyclin B1 and Cdc2 are calculated according to their
densitometry readings, which are normalized according to the corresponding readings for the GAPDH protein bands. Each value is mean 6 S.D. from
triplicate measurements. * P,0.05 versus vehicle-treated control; # P,0.05 versus nocodazole treatment. B (upper panel). Cells were pre-treated for
2 h with cycloheximiden (5 mg/mL) and then stimulated for additional 12 h with 250 nM nocodazole. The DNA content of cells was analyzed using
flow cytometry as described in the Material and Methods section. B (lower panel). Nuclei were stained with Hoechst-33342, and examined using a
fluorescence microscope for prometaphase cells (original magnification, 6200). C. Quantitative data on prometaphase-arrested cells. Each bar is a
mean 6 S.D. value from three separate experiments. ** P,0.01 versus the vehicle-treated control; ## P,0.01 versus nocodazole treatment.
doi:10.1371/journal.pone.0024312.g006
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chromatin segregation. This suggestion is also supported by our

observation that higher levels of cyclin B1 and Cdc2 were induced

when higher concentrations of nocodazole were present, which

causes a higher degree of microtubule inhibition and severer

prometaphase arrest.

In this study, we found that knockdown of MAD2 almost

completely abrogated nocodazole-induced up-regulation of cyclin

B1 and Cdc2, suggesting that their up-regulation requires the

presence of MAD2. At present, the mechanism by which

nocodazole causes cyclin B1 and Cdc2 up-regulation is not

understood. It is known that MAD2, acting through direct physical

interaction with Cdc20 [31,32], can inhibit the activity APC, a

ubiquitin-protein ligase that tags proteins (including cyclin B1/

Cdc2) for degradation [33]. We found that when the cells with

MAD2 knockdown are treated with nocodazole, their Cdc20

protein level is essentially not altered while their cyclin B1 and

Cdc2 up-regulation is completely abrogated (Figure 4). These

observations suggest that a reduction in Cdc20-APC function

likely is not the main reason for the observed strong up-regulation

of cyclin B1 and Cdc2 in nocodazole-treated cells. In support of

this suggestion, we also found that treatment of these cells with

CHX almost completely suppresses the up-regulation of cyclin B1

and Cdc2 in nocodazole-treated cells, which clearly suggests that

increased de novo protein synthesis is involved their up-regulation.

Roscovitine is a well-known inhibitor of the cyclin-dependent

kinases. Interestingly, we found that treatment of cells with

roscovitine also strongly suppresses nocodazole-induced up-

regulation of cyclin B1 protein, although the mechanism of this

suppression is not clear. Flow cytometric analysis of the cellular

DNA content showed that the combined G2/M cell population is

increased following treatment with roscovitine alone, but the

population of prometaphase cells is only slightly increased. Our

observations are in agreement with the earlier observation that

roscovitine blocks MCF-7 cells in the G2 phase [21]. However,

when roscovitine was used in combination with nocodazole, it

strongly suppressed nocodazole-induced accumulation of the G2/

M cell population as well as prometaphase cells. The dose-

dependent effect of roscovitine in suppressing nocodazole-induced

accumulation of both G2/M and prometaphase cell populations is

closely correlated with its ability to suppress cyclin B1 up-

regulation in nocodazole-treated cells. These data show that

roscovitine, by inhibiting Cdc2 activity plus suppressing nocoda-

zole-induced cyclin B1 up-regulation, inhibits cells from entering

prometaphase by keeping them in the G2 phase when it is used

together with nocodazole.

Co-treatment of cancer cells with CHX and nocodazole was

also found to completely suppress the development of mitotic

arrest. Since treatment of cells with CHX does appreciably affect

the population of G1 phase cells (Figure 6B), the modulating

effect of CHX on nocodazole-induced prometaphase arrest can be

fully explained on the basis of its strong suppression of nocodazole-

induced up-regulation of cyclin B1 and Cdc2 proteins. It is of note

that the combination treatment of cells with CHX and nocodazole

does not cause a stronger cell death; instead, it appears that these

two agents can antagonize the cytotoxic effect of each other. This

observation offers a mechanistic basis that these two classes of

agents should not be used in combination in anticancer

chemotherapy.

Interestingly, although flow cytometric analysis (based on

measurement of cellular DNA content) shows that cells treated

with nocodazole or roscovitine exhibit a similar G2/M cell cycle

arrest pattern, the true nature of their cell cycle arrest is actually

very different, based on the comparisons made in this study. While

roscovitine predominantly induces G2 phase arrest (with minimal

accumulation of prometaphase cells), nocodazole predominantly

induces prometaphase arrest, along with a reduction in the G2

phase cell population. Similar to what we have observed with

roscovitine, a selective knockdown of cyclin B1 and Cdc2 also

results in a significant decrease in prometaphase cells, while it does

not markedly affect the population of G2 phase cells. Based on the

mechanistic explanations developed in this study, these results are

reasonable because chemical inhibition or down-regulation of

cyclin B1/Cdc2 will only block cells that have already completed

DNA replication in the G2 phase from entering mitosis but they

will not produce significant prometaphase arrest. Our observations

are in agreement with this mechanistic explanation.

Nocodazole has been commonly used as a tool agent in cell

biology to induce synchronization of the cell cycle at the G2/M

phase. Based on the results of our present study, since this agent

would predominantly produce prometaphase arrest (accompanied

by aberrant chromosomal condensation and segregation resulting

from extensive nuclear accumulation of cyclin B1 and Cdc2), this

method of cell cycle synchronization may not be ideal for the

purpose of studying normal cell cycles. In comparison, the use of a

selective inhibitor of cyclin B1 or Cdc2 or the combined use of

both inhibitors would seem to be a better approach given that

these inhibitors will only accumulate G2 phase cells by slowing

down the entry of G2 phase cells into M phase but will not cause

severe prometaphase arrest and subsequent mitotic catastrophe as

seen in cells treated with microtubule inhibitors.

In summary, largely based on the findings made in the present

study, the mechanistic explanation for the critical role of the cyclin

B1 and Cdc2 up-regulation in nocodazole-treated cells in the

development of characteristic prometaphase arrest is schematically

depicted in Figure 7. The presence of nocodazole will cause

disruption of microtubule formation in prometaphase cells, which

subsequently results in failure of the microtubules to attach to

kinetochores on the chromosomes. The unattached kinetochores

Figure 7. Schematic explanation of the contribution of an early
cyclin B1/Cdc2 up-regulation to the development of prometa-
phase arrest in cells treated with nocodazole. Treatment of cancer
cells with nocodazole causes microtubule disruption and thereby
prevents microtubules from attaching to kinetochores in prometaphase
cells. The unattached kinetochores will be bound by MAD2, which
prevents the progression from prometaphase to metaphase and
anaphase. It is speculated that the kinetochore-bound MAD2 protein
plays an important role in mediating the up-regulation of cyclin B1 and
Cdc2 proteins in prometaphase-arrested cells. The rapid increase of these
two cell cycle proteins in prometaphase cells and particularly their
accumulation in the nuclei are expected to be largely responsible for the
development of characteristic nuclear phenotypes. Following a pro-
longed prometaphase arrest, the nocodazole-treated cells are expected
to undergo cell death via intrinsic apoptosis pathways.
doi:10.1371/journal.pone.0024312.g007
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are then bound by the spindle checkpoint protein MAD2. The

binding of MAD2 at the kinetochores prevents the progression

from prometaphase to metaphase and further to anaphase. It is

speculated that the prometaphase arrest then creates a feedback

up-regulation of cyclin B1 and Cdc2 protein levels, likely mediated

through the kinetochore-bound MAD2 protein. The rapid rise of

these two cell cycle proteins in prometaphase cells and particularly

their accumulation in the nuclei are expected to be largely

responsible for the development of characteristic nuclear pheno-

types. Following a prolonged prometaphase arrest, the nocoda-

zole-treated cells are expected to undergo cell death via intrinsic

apoptosis pathways.

Materials and Methods

Reagents
Nocodazole, roscovitine, cycloheximide, and Eagle’s minimum

essential medium (EMEM) were obtained from Sigma, and fetal

bovine serum (FBS) from HyClone (South Logan, UT). The

antibiotics solution (containing 10,000 U/mL penicillin and

10 mg/mL streptomycin) was obtained from Invitrogen, and the

trypsin-versene mixture (containing 0.25% trypsin and 0.02%

EDTA) from Lonza Walkersville (Walkersville, MD). Anti-Cdc2

(Cdk1), anti-cyclin B1, and GAPDH antibodies were purchased

from Cell Signaling Technology (Beverly, MA). Nocodazole was

dissolved in 200-proof ethanol and stored at 220uC.

Cell culture and MTT assay
MCF-7 and MDA-MB-435s human breast cancer cells and

MCF-10A human mammary epithelial cells were obtained from

the American Type Culture Collection (ATCC, Manassas,

Virginia). The culture medium for MCF-7 cells was EMEM

supplemented with 10% FBS, 2 mg/mL insulin, 0.5 mM sodium

pyruvate, 10 mM nonessential amino acids, 2 mM L-glutamine,

and antibiotics (100 units/mL penicillin and 100 mg/mL strepto-

mycin). The medium for MDA-MB-435s cells was the Iscove’s

modified MEM containing 10% FBS and 3.024 g/L NaHCO3,

and antibiotics. For culturing MCF-10A cells, a special mammary

epithelium basal medium (MEBM, obtained from Lonza, Walk-

ersville, MD) was used. This medium did not contain serum but

was supplemented with an unspecified amount of epidermal

growth factor, insulin, bovine pituitary extract, and hydrocorti-

sone. These human cells were cultured at 37uC under 5% CO2,

and were sub-cultured every 3 to 4 days. For determining cell

viability, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (MTT) assay was used. MTT (10 mL, at 5 mg/mL) was

added to each well at a final concentration of 500 mg/mL, and the

mixture was further incubated for 1 h at 37uC, and the liquid in

the wells was removed thereafter. DMSO (100 mL) was then

added to each well, and the absorbance was read with a UV Max

microplate reader (Molecular Devices, Palo Alto, CA, USA) at

560 nm. Unless indicated otherwise, the relative cell density

usually was expressed as a percentage of the control group that was

not treated with nocodazole.

Crystal violet staining for estimation of cell number
To estimate the cell number, crystal violet staining was used as

described earlier [34]. MCF-7 and MCF-10A cells were seeded in

96-well plates at a density of 5000 cells/well in cell culture media.

At the end of the culture, the medium was discarded, and cells

were fixed with 100 mL 1% glutaraldehyde at room temperature

for 20 min. Glutaraldehyde was then discarded, and the cells were

stained using 50 mL 0.5% crystal violet at room temperature for

15 min. After the crystal violet solution was discarded and rinsed

three times with water, cells were solubilized in 100 mL 0.5%

Triton X-100, followed by addition of 100 mL 200-proof ethanol.

The UV absorbance at 560 nM was read on a UV max

microplate reader (Molecular Device, Palo Alto, CA), and the

value was used to reflect the relative cell number.

Western blotting
For Western blotting, cells were washed first with phosphate-

buffered saline (PBS) and then suspended in 100 mL lysis buffer

(containing 20 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1%

Triton X-100, 10 mL/mL protease inhibitor cocktail, pH 7.5).

The amount of proteins was determined using the BioRad protein

assay (BioRad, Hercules, CA). An equal amount of proteins was

loaded in each lane, separated by 10% SDS-polyacrylamide gel

electrophoresis (SDS-PAGE), and then electrically transferred to a

polyvinylidene difluoride membrane (BioRad). After blocking the

membrane using 5% skim milk, target proteins were immunode-

tected using specific antibodies. Thereafter, the horseradish

peroxidase (HRP)-conjugated anti-rabbit IgG was applied as the

secondary antibody, and the positive bands were detected using

Amersham ECL Plus Western blotting detection reagents (GE

Healthcare, Piscataway, NJ).

Immunofluorescent microscopy
For immunocytochemical analysis, cells were first washed three

times with PBS and fixed in 3% paraformaldehyde solution (3%

paraformaldehyde, 0.1 mM CaCl2 and 0.1 mM MgCl2 in PBS,

pH 7.4) for 10 min. Cells were then washed three times with PBS,

permeabilized in 0.2% TritonH X-100/PBS for 5 min, and

washed again three times with PBS. They were blocked with

10% normal goat serum (Jackson Immuno Research Labs, West

Grove, PA) for 1 h, and washed with PBS. The cyclin B1 protein

was detected using the cyclin B1 polyclonal antibodies (1:100

dilution; Cell Signaling Technology), and Cdc2 protein was

detected using the Cdc2 polyclonal antibodies (1:100 dilution; Cell

Signaling Technology). The first antibodies were incubated for

24 h at 4uC and followed by multiple washes in PBS. The same

procedures were repeated with a fluorescein isothiocyanate

(FITC)-conjugated secondary antibody (1:200, Jackson Immuno

Research Labs). The nuclei were stained with Hoechst-33342, and

the coverslips were mounted on slides with Vectashield Mounting

Medium (Vector Laboratories, Burlingame, CA). Fluorescein

images were captured using a confocal fluorescence microscope

(AXIO, Carl Zeiss Corporation, Germany).

Flow cytometric analysis
After treatment with nocodazole, cells were harvested by

trypsinization and washed once with PBS (pH 7.4). Cells were

resuspended in 1 mL of 0.9% NaCl, and 2.5 mL of ice-cold 90%

ethanol were added. After incubation at room temperature for

30 min, cells were centrifuged and the supernatant was removed.

Cells were resuspended in 1 mL PBS containing 50 mg/mL

propidium iodide (PI) and 100 mg/mL ribonuclease A and

incubated at 37uC for 30 min. After centrifugation, cells were

resuspended in PBS. Flow cytometric analysis was performed on a

flow cytometer (model BD LSR II, BD Bioscience, San Jose, CA).

Small interfering RNA (siRNA) treatment
The role of cyclin B1, Cdc2, and MAD2 in mediating

nocodazole-induced cell cycle arrest was examined using siRNAs

to selectively silence cyclin B1, Cdc2, and MAD2 genes. The

cyclin B1 siRNAs (si-cyclin B1, catalog no. sc-29284, Santa Cruz),

Cdc2 siRNAs (si-Cdc2, catalog no. sc-29252, Santa Cruz), MAD2
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siRNAs (si-MAD2, catalog no. sc-35837, Santa Cruz), and the

siRNA negative control (si-Con, catalog no. sc-37007, Santa Cruz)

were obtained from Santa Cruz Biotechnology (Santa Cruz, CA).

According to the supplier, each of the above siRNA preparations

contains a combination of three target-specific RNA sequences

that were designed to selectively knock down the expression of the

corresponding target gene. MCF-7 cells were seeded the night

before transfection, reaching a density of 30–50% confluence by

the time of transfection. Forty nmol of si-cyclin B1, si-Cdcd2, si-

MAD2, and si-Con were used for transfection using Lipofectamine

2000 (Invitrogen, San Diego, CA, USA) according to the

instructions of the manufacturers. Transfected cells were main-

tained in culture for 2 days before harvesting and/or further

analyses. The efficiency of the siRNA knockdown was determined

by Western blot analysis.

Statistical analysis
At least three separate experiments were performed for each

measurement. All quantitative data were expressed as mean 6

S.D. Comparisons between two groups were analyzed using two-

way ANOVA. Individual differences among groups were analyzed

using the Dunnett’s test (SPSS-11.5 software). P,0.05 or P,0.01

was considered statistically significant or statistically very signifi-

cant, respectively.

Supporting Information

Figure S1 Induction of cell cycle arrest and cyclin B1/
Cdc2 up-regulation in MDA-MB-435s cells by nocodazole
(Noco). A. Time-dependent induction of mitotic arrest following

treatment with nocodazole. MDA-MB-435s cells were seeded in 6-

well plates at 56104 cells/mL and then treated with 250 nM

nocodazole for 12 and 24 h. Cells were harvested and analyzed

using flow cytometry (left panel). Cells were also stained with

Hoechst-33258, and examined under a fluorescence microscopy

(right panel) (at 1006magnification). As shown, many MDA-MB-

435s cells are arrested in mitosis (prometaphase) after treatment

with 250 nM nocodazole. B. Quantitation of the percentage of

cells arrested in prometaphase (based on counting 200 or more

nuclei in each sample) under a fluorescence microscope. Each bar

is the mean 6 S.D. from three measurements. * P,0.05 versus

vehicle-treated controls. C. Time-dependent change in cyclin B1

and Cdc2 protein levels following nocodazole treatment. MDA-

MB-435s cells were treated with nocodazole (250 nM) for 12 h,

and total lysates were prepared. Western blots were detected using

specific antibodies against cyclin B1 and Cdc2. Membrane was

stripped for determining the levels of GAPDH as a loading

control.

(TIF)

Figure S2 Induction of cell cycle arrest and cyclin B1/
Cdc2 activation in MCF-10A cells by nocodazole (Noco).
A. Both MCF-7 and MCF-10A cells were cultured in 96-well

plates at 5,000 cells/well. Cells were incubated for 24 h allow for

attachment. A time-dependent study was conducted with the

intervals of 2, 3, and 4 days, respectively. The relative cell density

was detected by crystal violet staining. B. MCF-10A cells were

seeded in 6-well plates at 56104 cells/mL and then treated with

125 nM nocodazole for 12 and 24 h. Cells were stained with

Hoechst-33258, and examined under fluorescence microscopy (at

2006 magnification). C. Quantitation of the percentage of cells

arrested in prometaphase (based on counting 200 or more nuclei

in each sample) under a fluorescence microscope. Each bar is the

mean 6 S.D. value from three determinations. * P,0.05 versus

vehicle-treated control. D. Cyclin B1 and Cdc2 protein levels

following nocodazole treatment. MCF-10A cells were treated with

nocodazole (125 nM) for the period as indicated, and total lysates

were prepared. Western blots were detected using specific

antibodies against cyclin B1 and Cdc2. Membrane was stripped

for determining the levels of GAPDH as a loading control.

(TIF)

Author Contributions

Conceived and designed the experiments: HJC BTZ. Performed the

experiments: HJC MF BTZ. Analyzed the data: HJC BTZ. Contributed

reagents/materials/analysis tools: BTZ. Wrote the paper: HJC BTZ.

References

1. Jordan MA, Wilson L (1998) Microtubules and actin filaments: dynamic targets
for cancer chemotherapy. Curr Opin Cell Biol 10: 123–130.

2. Zhang H, Shi X, Zhang QJ, Hampong M, Paddon H, et al. (2002) Nocodazole-
induced p53-dependent c-Jun N-terminal kinase activation reduces apoptosis in

human colon carcinoma HCT116 cells. J Biol Chem 277: 43648–43658.

3. Lanni JS, Jacks T (1998) Characterization of the p53-dependent postmitotic
checkpoint following spindle disruption. Mol Cell Biol 18: 1055–1064.

4. Harper JV (2005) Synchronization of cell populations in G1/S and G2/M phases
of the cell cycle. Methods Mol Biol 296: 157–166.

5. Poxleitner MK, Dawson SC, Cande WZ (2008) Cell cycle synchrony in Giardia

intestinalis cultures achieved by using nocodazole and aphidicolin. Eukaryot Cell
7: 569–574.

6. Wesierska-Gadek J, Borza A, Walzi E, Krystof V, Maurer M, et al. (2009)
Outcome of treatment of human HeLa cervical cancer cells with roscovitine

strongly depends on the dosage and cell cycle status prior to the treatment. J Cell

Biochem 106: 937–955.

7. Mollinedo F, Gajate C (2003) Microtubules, microtubule-interfering agents and

apoptosis. Apoptosis 8: 413–450.

8. Nguyen VQ, Co C, Li JJ (2001) Cyclin-dependent kinases prevent DNA re-

replication through multiple mechanisms. Nature 411: 1068–1073.

9. Harley ME, Allan LA, Sanderson HS, Clarke PR (2010) Phosphorylation of
Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during

mitotic arrest. EMBO J 29: 2407–20.

10. Wendell KL, Wilson L, Jordan MA (1993) Mitotic block in HeLa cells by

vinblastine: ultrastructural changes in kinetochore-microtubule attachment and

in centrosomes. J Cell Sci 104(Pt 2): 261–274.

11. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, et al. (1998) Control of

apoptosis and mitotic spindle checkpoint by survivin. Nature 396: 580–
584.

12. Wang TH, Popp DM, Wang HS, Saitoh M, Mural JG, et al. (1999) Microtubule

dysfunction induced by paclitaxel initiates apoptosis through both c-Jun

N-terminal kinase (JNK)-dependent and -independent pathways in ovarian

cancer cells. J Biol Chem 274: 8208–8216.

13. Morgan DO (1995) Principles of CDK regulation. Nature 374: 131–134.

14. Baldin V, Ducommun B (1995) Subcellular localisation of human wee1 kinase is

regulated during the cell cycle. J Cell Sci 108: 2425–2432.

15. Ohi R, Gould KL (1999) Regulating the onset of mitosis. Curr Opin Cell Biol

11: 267–273.

16. McGowan CH, Russell P (1995) Cell cycle regulation of human WEE1. EMBO J

14: 2166–2175.

17. Mueller PR, Coleman TR, Kumagai A, Dunphy WG (1995) Myt1: a
membrane-associated inhibitory kinase that phosphorylates Cdc2 on both

threonine-14 and tyrosine-15. Science 270: 86–90.

18. Lew DJ, Kornbluth S (1996) Regulatory roles of cyclin dependent kinase

phosphorylation in cell cycle control. Curr Opin Cell Biol 8: 795–804.

19. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, et al. (1997) Mitotic and G2

checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of
Cdc25C on serine-216. Science 277: 1501–1505.

20. Wang TH, Wang HS, Soong YK (2000) Paclitaxel-induced cell death: where the

cell cycle and apoptosis come together. Cancer 88: 2619–2628.

21. Maurer M, Komina O, Wesierska-Gadek J (2009) Roscovitine differentially

affects asynchronously growing and synchronized human MCF-7 breast cancer
cells. Ann N Y Acad Sci 1171: 250–256.

22. Vitrat N, Cohen-Solal K, Pique C, Le Couedic JP, Norol F, et al. (1998)
Endomitosis of human megakaryocytes are due to abortive mitosis. Blood 91:

3711–3723.

23. Ling YH, Consoli U, Tornos C, Andreeff M, Perez-Soler R (1998)

Accumulation of cyclin B1, activation of cyclin B1-dependent kinase and
induction of programmed cell death in human epidermoid carcinoma KB cells

treated with taxol. Int J Cancer 75: 925–932.

24. Ibrado AM, Kim CN, Bhalla K (1998) Temporal relationship of CDK1

activation and mitotic arrest to cytosolic accumulation of cytochrome C and

Nocodazole-Induced Prometaphase Arrest

PLoS ONE | www.plosone.org 12 August 2011 | Volume 6 | Issue 8 | e24312



caspase-3 activity during Taxol-induced apoptosis of human AML HL-60 cells.

Leukemia 12: 1930–1936.

25. Blajeski AL, Phan VA, Kottke TJ, Kaufmann SH (2002) G(1) and G(2) cell-cycle

arrest following microtubule depolymerization in human breast cancer cells.

J Clin Invest 110: 91–99.

26. Michel L, Diaz-Rodriguez E, Narayan G, Hernando E, Murty VV, et al. (2004)

Complete loss of the tumor suppressor MAD2 causes premature cyclin B

degradation and mitotic failure in human somatic cells. Proc Natl Acad Sci U S A

101: 4459–4464.

27. Whang YM, Park KH, Jung HY, Jo UH, Kim YH (2009) Microtubule-

damaging agents enhance RASSF1A-induced cell death in lung cancer cell lines.

Cancer 115: 1253–1266.

28. Li Y, Benezra R (1996) Identification of a human mitotic checkpoint gene:

hsMAD2. Science 274: 246–248.

29. Heald R, McLoughlin M, McKeon F (1993) Human wee1 maintains mitotic

timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase.
Cell 74: 463–474.

30. Fotedar R, Flatt J, Gupta S, Margolis RL, Fitzgerald P, et al. (1995) Activation-

induced T-cell death is cell cycle dependent and regulated by cyclin B. Mol Cell
Biol 15: 932–942.

31. Li Y, Gorbea C, Mahaffey D, Rechsteiner M, Benezra R (1997) MAD2
associates with the cyclosome/anaphase-promoting complex and inhibits its

activity. Proc Natl Acad Sci USA 94: 12431–12436.

32. Wassmann K, Benezra R (1998) MAD2 transiently associates with an APC/
p55Cdc complex during mitosis. Proc Natl Acad Sci USA 95: 11193–11198.

33. Peters JM (2006) The anaphase promoting complex/cyclosome: a machine
designed to destroy. Nat Rev Mol Cell Biol 7: 644–656.

34. Gillies RJ, Didier N, Denton M (1986) Determination of cell number in
monolayer cultures. Anal Biochem 159: 109–113.

Nocodazole-Induced Prometaphase Arrest

PLoS ONE | www.plosone.org 13 August 2011 | Volume 6 | Issue 8 | e24312


