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Abstract

Informative genes from microarray data can be used to construct prediction model and investigate biological mechanisms.
Differentially expressed genes, the main targets of most gene selection methods, can be classified as single- and multiple-
class specific signature genes. Here, we present a novel gene selection algorithm based on a Group Marker Index (GMI),
which is intuitive, of low-computational complexity, and efficient in identification of both types of genes. Most gene
selection methods identify only single-class specific signature genes and cannot identify multiple-class specific signature
genes easily. Our algorithm can detect de novo certain conditions of multiple-class specificity of a gene and makes use of a
novel non-parametric indicator to assess the discrimination ability between classes. Our method is effective even when the
sample size is small as well as when the class sizes are significantly different. To compare the effectiveness and robustness
we formulate an intuitive template-based method and use four well-known datasets. We demonstrate that our algorithm
outperforms the template-based method in difficult cases with unbalanced distribution. Moreover, the multiple-class
specific genes are good biomarkers and play important roles in biological pathways. Our literature survey supports that the
proposed method identifies unique multiple-class specific marker genes (not reported earlier to be related to cancer) in the
Central Nervous System data. It also discovers unique biomarkers indicating the intrinsic difference between subtypes of
lung cancer. We also associate the pathway information with the multiple-class specific signature genes and cross-reference
to published studies. We find that the identified genes participate in the pathways directly involved in cancer development
in leukemia data. Our method gives a promising way to find genes that can involve in pathways of multiple diseases and
hence opens up the possibility of using an existing drug on other diseases as well as designing a single drug for multiple
diseases.
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Introduction

Gene selection/biomarker identification methods can be

classified as linear and nonlinear methods [1]. A linear method

assumes that good biomarkers for a class will be highly expressed

(or unexpressed) for that class and unexpressed (or highly

expressed) for the rest of the classes [2,3]. Nonlinear methods

identify biomarkers exploiting both linear and nonlinear interac-

tions between classes and genes [4,5]. Most methods are linear in

nature and there are a few non-linear approaches. Nonlinear

approaches can discover a small set of discriminatory genes that

are good enough for diagnosis of a set of diseases. But the

relationship of biomarkers identified by nonlinear methods with

different classes may not be easily visualized. Saeys et al. [6]

reviewed various methods of biomarker identification and

suggested three categories for the existing methodologies. The

first one is the filter method category, which ranks genes

independently of the classifier that is used. Many linear methods,

either univariate or multivariate, e.g., ‘‘SAM’’ [7], ‘‘shrinkage t’’

[8], ‘‘correlation-adjusted t’’ [9] belong to this category. Most of

these methods are essentially based on Student’s t-test or its

modified/adapted forms. In some cases, in conjunction with the t-

test, authors have used additional procedures to account for the

high-dimensional characteristic of microarray data. In addition to

t-test, SAM also uses Wilcoxon’s Rank Sum test. In this category,

other parametric and non-parametric tests have also been used

[10,11]. The second one is the wrapper method category, which

selects genes according to the predictive performance of the

associated classifier [12-14]. The final category of embedded

methods assigns weights to the importance of genes by making

use of the internal parameters of the classification model – this is

an integrated approach where the feature weighting/selection and

classifier design are done simultaneously. The well-known SVM-

RFE [4], other SVM-based methods, e.g., MMC-RFE [15],

MSVM-RFE [16], SVM-RCE [17], and SVM-RNE [18] all

belong to this category. Also, some neural network-based methods,

e.g., online FSMLP [5], belong to the same category. The

advantages of these wrapper and embedded methods are that they can
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capture non-linear interactions between genes as well as

interaction between genes and the diseases. As a result, such

marker genes usually provide a better predictive performance.

Most existing gene selection methods (particularly linear

methods) can identify only single-class specific signature genes

(i.e., genes that are expressed for one class and unexpressed for the

rest of the classes). However, there could be genes which are

expressed for a subset of classes (say, for a subgroup of cancers).

Such genes are biologically informative genes. Unfortunately, we

have failed to locate any study dealing with this important issue.

None of the methods discussed earlier can be used easily to identify

‘‘multiple-class specific’’ marker genes. In principle, it may be

possible to use methods in the filter category, but it will involve

extensive computation. For example, due to the two-class

discriminant nature of statistics, such as t-statistic (that is frequently

used), further strategies, e.g., one-versus-one (OVO), one-versus-all

(OVA), are required to apply these methods in identification of

multiple-class specific marker genes. Consequently, to find useful

biomarkers, a time-consuming procedure considering all possible

combinations of classes has to be performed. Pavlidis and Nobel

have proposed an ANOVA and template matching based

approach [19] to identify such multiple-class specific biomarkers.

But as explained above, to find genes with multiple-class specific

signatures, we need to try all possible combinations of classes,

which would demand considerable computation. Also, another

interesting but time consuming procedure has been proposed in

[20] to assign significance to statistically defined expression

patterns.

On the other hand, for methods in the embedded and wrapper

categories, although we can get better predictive performance,

the interactions between the biomarkers and the diseases may not

be easy to interpret/understand due to the non-linear nature of

interactions. Moreover, to get multiple-class specific biomarkers,

we shall still require some post-processing, which may not be

easy. Finally, there may be some biomarkers for some specific

groups of diseases, but such a method may not recognize/identify

those because such methods are driven by minimization of

classification error. Hence, there is a need for developing

methods/algorithms that can find genes with multiple-class

specific signatures.

Here we propose a novel gene selection index, Group Marker

Index (GMI), which can identify de novo in a single process both

single- and multiple-class specific signature genes (both are called

group specific genes). It is computationally efficient in the sense

that it does not require computation of the index for all possible

subsets of classes. For a K-class data set, GMI is evaluated K-1

times rather than for 2K-2 combinations. GMI is a distribution-free

method, which shares the advantage of non-parametric methods

and is not influenced by the lack of knowledge about the

distribution of data. Furthermore, we use GMI with a repeated

random sampling procedure to select candidate marker genes in a

more reliable manner. Here a permutation procedure is used to

assess the significance of selected marker genes. We have used four

multiple-class microarray data sets, which are Small Round Blue

Cell Tumors (SRBCT) [21], Leukemia [22], Central Nervous

System (CNS) [23], and Lung Cancer [24], to demonstrate the

effectiveness of the proposed method. We demonstrate that genes

identified by the proposed scheme participate in several important

biological processes. Scatter-plots of the identified group specific

genes for these data sets also exhibit good discriminating power

among classes. Although we could not find any method in the

literature addressing this problem, just for the sake of comparison,

we have proposed and used an algorithm using a template-based

gene selection scheme.

Results

Significance of genes selected by using GMI
In this study, we develop a gene evaluation index named

‘‘Group Marker Index (GMI)’’, to select biologically significant

genes for both two- and multiple-class cancer discrimination

problems. Given expression profiles on K different types of cancers

(diseases), our GMI-based algorithm tries to discover subsets of the

cancers/diseases, if present, that can be discriminated from the

remaining ones using gene expressions, as well as, the discrimi-

natory genes. If a gene is highly expressed for a subset containing n

classes (n = 1, 2, …, K-1) compared to the remaining (K-n) classes,

then we call that gene a level-n discriminatory gene. This set of

cancer classes with higher expression values is called the ‘‘upper

group’’. On the other hand, the set of remaining classes with lower

expression values is called the ‘‘lower group’’. The GMI algorithm

finds, all level-n (n = 1, 2, …, K-1) genes, if exist. The detailed

description of the algorithm is provided in the Materials and Methods

section.

The quality of genes selected by using GMI is demonstrated

here in two significant ways. First, for each of the four data sets, we

present visual assessments of the quality of the top most level-n

gene for every level-n selected by GMI. We use a scatter-plot to

show the distribution of gene expression values for the top most

level-n gene. For the scatter-plot the y-axis expresses the observed

gene expression values (normalized in [0,1]) and the x-axis

indicates the number and identification of samples in a data set.

The samples in different classes are represented by different

symbols and colors, which help illustrate the discriminating power

of (each) individual GMI-selected gene. For example, each sub-

panel in Fig. 1 and Figs. S1, S2, S3 displays a top most level-n gene

for different level n in the different data sets. As expected, each

such gene appears with high gene expression values in the samples

from n classes (i.e., the upper group, infra at Computation of GMI),

but with low gene expression values in the samples of the

remaining classes/subgroups (i.e., the lower group). Also, every top

most level-n gene demonstrates good separation and low overlap

between samples belonging to upper and lower groups.

In addition, we have further tabulated (Table 1 and Tables S1,

S2, S3) the following basic information for the top 10 genes, which

are individually selected using GMI from each level of discrim-

ination: probe name, official gene symbol, class-labels in upper

group and lower group, frequency of appearance of the gene in the

list of top 10 genes, averaged GMI value, p-value and q-value

obtained from the permutation test mentioned in the Materials and

Methods section. These tables further provide us with several

interesting conclusions: (a) We find that all GMI-selected genes

have very low p- and q-values (in many cases it is so low that it is

represented as zero) suggesting that these genes carry statistically

significant multiple-class specific signatures. (b) For a given level of

discrimination, the genes with quite high GMI values and

appearing with high frequencies are considered better group-

specific biomarkers. (c) We use the GMI value to represent a

measure of discrimination for a gene between upper and lower

groups. Thus, a gene with a higher GMI value implies its higher

discriminating power between upper and lower groups. This

information can be used for comparison of discriminating power

of genes at different levels in the same data set. As demonstrated

by the GMI values in Table 1 for the SRBCT data set, the

discriminating power of level-2 genes is weaker than that of level-3

genes, and the discriminating power of level-3 genes is weaker than

that of level-1 genes. Also as shown by the GMI values set forth in

Table S3 for the Lung Cancer data set, the discriminating power

of level-3 and level-4 genes is weaker than that of level-1 and level-

Group Biomarker Identification
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2 genes. In addition, such phenomena can also be validated by the

scatter-plot of the top most gene of each level for all data sets (Fig. 1

and Figs. S1, S2, S3). For example, WAS, the top most level-1 gene

in the SRBCT data set, has a GMI value of 2.98 which is higher

than the GMI value, 1.02, of PTPN12, the top most gene of level-2

in the same data set. From Fig. 1, we can observe that the

discriminating ability of the WAS gene is much stronger than that

of the PTPN12 gene because the WAS gene has no overlapped

sample between upper and lower groups, whereas the PTPN12

gene has some overlapped samples. Hence, the visual illustration

of the top most genes is consistent with the corresponding GMI

values. (d) The GMI values can provide an objective assessment of

the discriminating power even between data sets. For example,

VAMP2, the top most level-1 gene in the Lung Cancer data set, has

Figure 1. Scatter-plots of the top most gene of each level in the SRBCT data set. Panels (a), (b) and (c) are the scatter-plots of the top most
gene of level-1, level-2, and level-3, respectively. The top most genes are WAS (236282), PTPN12 (774502) and GSTA4 (504791), respectively. There are
four classes in the SRBCT data set: Ewing sarcomas (EWS), Burkitt lymphomas (BL), neuroblastomas (NB), and rhabdomyosarcomas (RMS).
doi:10.1371/journal.pone.0024259.g001
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a GMI value of 7.19, showing discriminating power which appears

even stronger than WAS, the top most level-1 gene in the SRBCT

data set. Figure 1 and Figure S3 also reveal the stronger

discriminating power of VAMP2 over WAS because VAMP2 also

has no overlapped samples between upper and lower groups, and

gets a bigger numerator for computing GMI (a higher value of the

closest separation between a class in the upper group and a class in

the lower group; i.e., the difference between the mean values of

classes Cn(s) and Cn+1(s), or mSep = mn(s) – mn+1(s) in Eq. (1) mentioned

in the Materials and Methods section). Our results demonstrate that

GMI is very effective in identifying group-specific marker genes

with clear discriminating power and we could obtain a robust list

of candidate genes by conducting the repeated random splitting

procedure.

In addition, the conventional biomarkers for cancers are usually

the level-1 genes with single tissue specific expression patterns. The

protein products of those marker genes are usually receptors or

proteins expressed in the cell surface. GMI can also identify the

known biomarkers. For example, FGFR4, the level-1 gene highly

expressed in rhabdomyosarcomas (RMS) class, is ranked within

the top 10 level-1 genes in the SRBCT data set (Table 1). Multiple

studies have reported that FGFR4 is highly expressed in RMS [25-

27] and the mRNA expression level of FGFR4 is correlated with its

protein level [25,26,28]. Furthermore, it has been shown that

mutationally activated FGFR4 acts as an oncogene [29]. Another

level-1 gene ranked within the top 10 for the SRBCT data set,

CD99, is highly expressed in Ewing sarcomas (EWS) class. It has

been reported that CD99 is highly expressed in all EWS and the

engagement of CD99 with anti-CD99 monoclonal antibodies

would induce massive apoptosis as well as reduce malignant

potential of EWS cells [30]. The deletion of CD99 expression in

human EWS cell lines would reduce their abilities of tumorigenesis

and metastasis [31]. Moreover, the engagement of CD99 improves

the efficiency of the conventional chemotherapeutic agents and

reduces tumor growth along with a significant delay of metastasis

[32]. These are some of the examples to demonstrate that GMI is

capable of identifying the known biomarkers as well as the special

type of group biomarkers.

Table 1. Summary of top 10 genes of each level selected by GMI in the SRBCT data set.

Level Probe ID Gene Symbol Upper Group Lower Group Freq. Ave. GMI value p-value q-value

1 236282 WAS 2 143 100 2.98 0 0

770394 FCGRT 1 432 99 4.98 0 0

241412 ELF1 2 143 91 2.45 0 0

814260 FVT1 1 234 76 3.65 0 0

377461 CAV1 1 432 57 2.37 0 0

784224 FGFR4 4 213 53 2.43 0 0

812105 MLLT11 3 412 52 2.57 0 0

1435862 CD99 1 432 50 2.14 0 0

183337 HLA-DMA 2 413 42 1.78 0 0

796258 SGCA 4 231 37 2.02 0 0

2 774502 PTPN12 34 12 95 1.02 0 0

365826 GAS1 14 32 75 0.80 0 0

784593 RND3 34 12 72 0.75 0 0

812965 MYC 21 43 64 0.72 0 0

789182 PCNA 23 41 54 0.64 0 0

859359 TP53I3 43 12 44 0.62 0 0

714453 IL4R 42 13 38 0.57 2.17E-06 2.17E-06

82903 (EST) 21 43 37 0.54 2.17E-06 2.17E-06

159455 PLD3 41 32 34 0.53 2.17E-06 2.17E-06

308163 YAP1 41 32 32 0.53 2.17E-06 2.17E-06

3 897164 CTNNA1 134 2 100 1.40 0 0

504791 GSTA4 314 2 100 1.89 0 0

897788 PTPRF 134 2 100 1.40 0 0

295985 CDK6 342 1 86 1.52 0 0

810057 CSDA 142 3 69 1.19 0 0

21652 CTNNA1 143 2 61 0.85 0 0

51320 DBNDD1 341 2 50 0.73 0 0

212542 PBX1 143 2 48 0.59 0 0

813742 XPO6 341 2 38 0.80 0 0

741831 PLTP 143 2 28 0.54 2.17E-06 2.17E-06

Ewing sarcomas (EWS), Burkitt lymphomas (BL), neuroblastomas (NB), and rhabdomyosarcomas (RMS) are represented as Group 1 to Group 4 in order.
doi:10.1371/journal.pone.0024259.t001
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Comparison with template-based method
For a fair comparison of our GMI method with the existing

methods for similar purpose, we have selected the most widely

used template-matching based method and adapted it using the

same iterative procedure as followed for GMI. We call this method

as the template-based method (TBM). The detailed steps of the

template-based method are described in the Materials and Methods

section. First, we have used TBM to select group specific genes in

the SRBCT and CNS data sets. Although, for the CNS data set,

GMI can identify good level-2 discriminatory genes, it cannot

identify good level-2 discriminatory genes for the SRBCT data set

(please refer to Table 1 and Table S2). So for the SRBCT data set

we want to check if there are useful level-2 discriminatory genes

and GMI cannot identify those. For the CNS data set, we want to

check whether GMI has already found good level-2 and level-3

discriminatory genes. In other words, we want to check if TBM

can identify better genes. For each case, we have compared the top

10 genes identified by GMI and TBM.

Comparing the top 10 level-2 genes in the SRBCT data set

(Table 2), we find that both GMI and TBM select PTPN12

(774502) as the top most gene. Therefore, there may be no better

level-2 gene in the SRBCT data set. To further check whether

GMI miss any good level-2 gene, we focus on those genes which

are identified by TBM but not by GMI. Between the two gene

lists, there are four common genes. With a careful inspection of

scatter-plots of the TBM-selected unique genes, we find that for

each of such genes there is a substantial overlap between the upper

and the lower groups. For a few of the GMI-selected unique genes,

a similar situation arises. Thus to make a better objective

evaluation of the two lists, for each gene in Table 2, we have

performed a leave-one-out cross validation (LOOCV) with the

nearest neighbor classifier (NNC), which enables us to assess the

discriminating power of each gene for the two groups of diseases.

The resultant accuracies are tabulated in the last column of

Table 2. On the average, the GMI-selected unique genes are

superior to the TBM-selected unique genes. One GMI-selected

unique gene, Probe ID = 365826 (ranked the second by GMI)

achieves the highest accuracy of 0.9048! On the other hand, Probe

ID = 841620, which is ranked the second and selected only by

TBM, achieves the least accuracy of 0.6508! This suggests that

GMI selected genes are better discriminator; however, as we have

mentioned earlier, finding genes suitable for designing classifiers is

not the objective of this study.

Table S4 reveals that for the CNS data set in the lists of top 10

level-2 genes identified by GMI and TBM there are 8 common

genes; while for the level-3 genes there are 5 common genes (Table

S5). Most of the genes common to both methods are on the top of

the TBM gene list. These findings imply that there may not be

better level-2 and level-3 discriminatory genes in the CNS data set.

Also, the higher agreement between the gene lists identified by

GMI and TBM in this data set with more balanced distribution of

number of samples over classes may indicate that difference in

sample sizes between classes can affect the gene selection.

To investigate the effect of variation of sample sizes between

classes, we have compared the gene lists produced by GMI and

TBM on Leukemia and Lung Cancer data sets. All classes in the

Leukemia data set have comparable sample size. On the other

hand, the Lung Cancer data set has one class with a relatively

large sample size. We compare the top 10 genes for these two data

sets. For the Leukemia data set, considering the level-2 genes we

find that seven of the top 10 genes are common in the two lists.

Moreover, both lists have the same genes at the top (Table S6).

This high percentage of common genes in the two lists might be

taken as an indicator that TBM would identify genes similar to

those identified by GMI in cases where there is not much variation

between sample sizes from different classes.

For the Lung Cancer data set, we consider both level-2 and

level-3 discriminatory genes. In the case of level-2 genes, we have

three common genes in the top 10 genes identified by GMI and

TBM (Table S7). In order to assess the quality of the genes

identified by GMI and TBM, we have compared the scatter-plots

of those genes, which are identified by only one of the methods. A

Table 2. The comparison of top 10 level-2 genes selected by GMI and TBM in the SRBCT data set.

Probes GMI Mean Order GMI Rank GMI Freq. TBM Rank TBM Template TBM Freq. LOOCV NNC Acc.

774502 (34)(12) 1 95 1 (34)(12) 83 0.8413

365826 (14)(32) 2 75 33 (14)(23) 7 0.9048

784593 (34)(12) 3 72 19 (34)(12) 16 0.7778

812965 (21)(43) 4 64 4 (12)(34) 65 0.7143

789182 (23)(41) 5 54 5 (23)(14) 50 0.8730

859359 (43)(12) 6 44 13 (34)(12) 25 0.8889

714453 (42)(13) 7 38 8 (24)(13) 40 0.7460

82903 (21)(43) 8 37 32 (12)(34) 7 0.7460

159455 (41)(32) 9 34 22 (14)(23) 12 0.8254

308163 (41)(32) 10 32 24 (14)(23) 11 0.7302

841620 (13)(42) 12 27 2 (13)(24) 77 0.6508

789204 (23)(41) 16 21 3 (23)(14) 71 0.7460

841641 (13)(42) 11 28 6 (13)(24) 47 0.7778

809557 (23)(14) 18 17 7 (23)(14) 40 0.7460

782811 (23)(14) 33 6 9 (23)(14) 36 0.6984

47542 (23)(41) 15 22 10 (23)(14) 35 0.7460

TBM: Template-based method.
Ewing sarcomas (EWS), Burkitt lymphomas (BL), neuroblastomas (NB), and rhabdomyosarcomas (RMS) are represented as Group 1 to Group 4 in order.
doi:10.1371/journal.pone.0024259.t002
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careful inspection of the scatter-plots suggests that the genes

identified only by TBM are not better genes than those identified

only by GMI for the purpose of discrimination (see File S1).

Furthermore, TAGLN3 (32650_at), which is ranked by GMI as the

top most level-2 gene with the highest frequency of selection, is not

in the top 10 gene list selected by TBM. But the scatter-plot of

TAGLN3 (Figure S3b) reveals that it is definitely a good level-2

gene. Concordant results are also revealed by the single gene

LOOCV accuracy as depicted in Table S7, where TAGLN3

achieves the perfect accuracy. While comparing the level-3

discriminatory genes, we have found that there are three common

genes between the lists of top 10 genes identified by GMI and

TBM (Table S8). Four of the top 10 genes (2nd, 3rd, 5th and 10th)

selected by TBM appear much like level-2 genes (see Figs. 2a-d).

The top sixth and eighth genes selected by TBM appear more like

level-1 genes (see Figs. 2e–f). Unlike genes selected by TBM, the

scatter-plots of the top genes identified by GMI reveal that these

genes are good level-3 discriminatory genes. On the average, the

single gene LOOCV accuracies of GMI-selected unique genes are

higher than the accuracies of TBM-selected unique genes.

We find that when the class sizes are balanced, more genes are

found common in the top 10 level-n genes produced by GMI and

TBM. When the class sizes are widely different, the lists of top 10

level-n genes are significantly different. And GMI is found to

identify better discriminatory genes. A natural question arises,

why? A possible reason for this may be the fact that correlation

value for a gene with the designated template (used in TBM) is

quite sensitive to the relative sizes of different classes in the training

data. For example, even if the sizes of different classes remain the

same, but the number of samples from one class keeps on

increasing, the correlation value exhibit a monotonic behavior.

This is illustrated in Fig. 3. Suppose in a K-class problem, class 1

has n1 samples, class 2 has n2 samples and the remaining classes

together have n3 samples. Suppose for a gene g, all samples from

class 1 and 2 are highly expressed (with gene expression value of

1), while for the other classes the gene g is unexpressed (i.e., the

gene expression value is zero). In this case, the correlation for the

gene g with the ideal vector for class 1 (the ideal vector will have

expression of 1 for class 1 and 0 for all other classes) will beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1|n3=½(n1zn2)(n2zn3)

p
�. It can be easily seen that as n3

increases with more and more unexpressed samples keeping the

nature of the n1 and n2 samples from class 1 and 2 unaltered, the

correlation goes to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1=(n1zn2)

p
. The filled circle in Fig. 3

illustrates this when n1 = 60, n2 = 15 and n3 varies from 20 to 300.

Note that, when n3 = 20, the correlation value is 0.68 but that

increases to 0.85 when n3 becomes 140, although neither the

expression profiles for class 1 and class 2 change nor the expression

profile of the remaining classes changes, and for a multiple-class

Figure 2. The level-2-like and level-1-like genes ranked within top 10 level-3 genes by template-based method in the Lung Cancer
data set. Panels (a), (b), (c) and (d) are the scatter-plots of the level-2-like genes. Panels (e) and (f) are the scatter-plots of the level-1-like genes.
doi:10.1371/journal.pone.0024259.g002
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data 140 is not a big number. Thus, the template-based method,

which selects genes based on correlation value, sometimes is not

sensitive enough to reflect the desired behavior of samples. This

will lead to improper ranking.

Following the same experimental design, we add one extra class

(class (K+1)) with only five samples, which is either up-regulated or

down-regulated. The template is so set that samples in class 1 and

class (K+1) are highly expressed while unexpressed in the

remaining classes. When class (K+1) is up-regulated, the tendency

of the resultant correlation values (shown by the symbol ‘‘+’’ in

Fig. 3) is almost the same as that of the K-class case. In case, class

(K+1) is down-regulated, the nature of the resultant correlation

values (shown by triangles in Fig. 3) is still similar to the previous

two cases with correlation values in a slightly lower region. In these

two (K+1)-class cases, most samples are unexpressed, which are

contributed by the pool (class 3 to class K) with n3 samples.

Therefore, it has practically no effect when we set class (K+1) up-

regulated. On the other hand, there is a little influence when class

(K+1) is down-regulated. However, as the number of samples

increases, the impact becomes less and less.

The level 2-like genes selected by TBM in the Lung Cancer data

set (Figs. 2a–d) are good examples to show that this effect indeed

happens in real data. All of those four genes are selected based on

the template with high expression for classes 2, 3, and 5 (please

refer to Table S8). However, the Lung Cancer data set is quite

unbalanced in the number of samples between different classes.

There are only six samples for class 3, which contributes a little in

computing the correlation value of TBM (only four samples are

randomly selected during the repeated random splitting proce-

dure). Therefore, irrespective of whether class 3 is highly expressed

or unexpressed, the contribution of class 3 in correlation may not

be significant (Figs. 2b–d). Even for class 2 (Normal) which has 17

samples, the selection by TBM suffers from the same problem

(Fig. 2a). Similarly, the level 1-like genes (Figs. 2e–f) can also

support this effect.

Biological Relevance of some level-2 and level-3
biomarkers

CNS data set. The first 4 genes in level-2 are highly

expressed in human cerebellar tumors and malignant glioma

(i.e., Ncer and MGlio; upper group representing 4 and 2) and are

practically unexpressed in the rest of the classes (lower group

consisting of 1, 3 and 5). Interestingly, six of the top genes in level-

2 (PRUNE2, TIMP4, TMOD1, ADORA1, NEUROD1 and C1orf61/

Croc4) with GMI score ranging from 2.38 to 1.17 are primarily, if

not solely, involved in cytoskeleton maintenance. Perturbation in

the expression levels of these genes is likely to affect morphological,

structural and functional integrity of the cell. For example,

PRUNE2 gene is over-expressed in prostate cancer and down-

regulates Rho-A and Rho-C that are involved in actin

polymerization and oncogenic transformation [33,34]. TIMP4

inhibits tumor progression by inhibiting cell matrix degradation by

endopeptidase MMP-2 [35]. TMOD1 regulates actin filament

dynamics [36]. On the other hand, C1orf61/Croc4 positively

controls c-fos activity and the later one up-regulates actin

expression [37,38]. Moreover, NEUROD1, a transcriptional

factor, controls transcription of cytoskeletal genes [39]. In

cancer, one of the frequently affected pathways is the

Figure 3. Effect of sample size on Pearson’s correlation coefficient values.
doi:10.1371/journal.pone.0024259.g003
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cytoskeletal structural organization and the genes in this pathway

are dys-regulated but not necessarily mutated. For example, cofilin

expression is frequently increased in glioblastoma and ovarian

cancer [40,41] whereas cortactin is often over-expressed in breast

cancer and squamous carcinoma of head and neck [42,43].

Literature search revealed that none of the level-2 genes are ever

mutated in any cancer but rather work to protect the cytoskeletal

integrity of the cell. Over-expression of these genes in human

cerebellar tumors and malignant glioma may reflect as an innate

attempt of the cell to counteract the process of tumor

transformation.

Earlier we proposed GDI system (Gene Dominant/Dormant

Index) that selects two specific types of gene, i.e., dominant and

dormant genes wherein the former is up-regulated in one specific

class and down-regulated in the remaining classes, and the latter is

down-regulated in one specific class but up-regulated in the rest of

the classes [1]. Although different cancers, according to their tissue

of origin, do differ in their mode of action through regulation and/

or dys-regulation of various physiological pathways, they do also

share some common genes/pathways in the formation of cancers.

In that sense, GMI-discovered genes that are up-regulated in more

than one-class of cancer (here we can also termed them as co-

dominant) may provide additional biological insights of how various

cancers might be related and probable molecular pathways

involved in them.

In case of the level-3 genes, it appears that they are functionally

diverse. However, the first two genes share a common cytoskeletal

pathway. For example, FEZ1 (GMI score 3.95), highly expressed

in the group {4, 2, 5}, is a brain specific cytoskeletal regulatory

protein associated with microtubule and in various tumors it is

either deleted and/or mutated [44]. But here in malignant glioma,

human cerebellar tumor and primitive neuroectodermal tumor

(PNET) the expression of FEZ1 is increased signifying a failed

attempt of the cell to contain the tumor growth. Recent study

shows that FRG1 (GMI value 2.07, up-regulated in group {1, 4,

3}) a multifunctional protein, specially binds to F-actin and its

misregulation leads to facioscapulohumeral muscular dystrophy

(FSHD) [45]. HMGN2 with GMI value of 1.11 (up-regulated in

group {1, 3, 5}) is a highly conserved nucleosomal protein

involved in unfolding higher-order chromatin structure and acts as

an impediment for cell migration [46,47]. VAT1 with GMI value

of 1.14 (up-regulated in group {3, 1, 2}) controls the storage and

release of neurotransmitters in the nerve terminal [48]. Impor-

tantly, none of these top-5 genes in both level-2 (except PRUNE2)

and level-3 are ever reported as biomarkers (over-expressed and/

or under-expressed) for any type of cancer. In that sense, our

analysis demonstrates that these co-dominant genes may be used as

unique signature genes in defining the respective tumor groups.

Lung Cancer data set. Level-2 and level-3 discriminatory

genes in the Lung Cancer data set are quite interesting. As in the

case for CNS data set, the four top level-2 discriminatory genes

with GMI values ranging from 3.45 to 1.58 are primarily involved

in regulation of cytoskeleton that controls vesicular trafficking in

golgi bodies [49]. These genes are basically co-dominant in classes 5

and 3, representing pulmonary carcinoids (COID) and small cell

lung cancer (SCLC), respectively. TAGLN3 associates with and

regulates F-actin, a-tubulin, tau and MAP2 [50]. CRMP1 is a

phosphoprotein and controls microtubules [51]. NCAM1 is a

classical cell adhesion molecule that interacts with a number of

cytoskeletal proteins and regulates cell architecture. INSM1 gene

encodes a zinc finger DNA-binding domain and a putative

prohormone domain. This gene is a sensitive marker for

neuroendocrine differentiation of human lung tumors [52].

Interestingly, INSM1 acts as a transcriptional repressor of

NEUROD that is involved in regulating cytoskeleton genes [53].

It is important to note that four of the first five genes in level-2

(TGLN3, CRMP1, NCAM1 and SCAMP5) are supposed to be

neuron-specific [54-57]. But our analysis shows that these neuron-

specific genes are aberrantly expressed in COID and SCLC class

of lung tumor, most likely as a result of mis-functioning of SWI/

SNF complex [58]. The fact that the top 4 level-2 discriminatory

genes both in CNS and Lung Cancer data sets are involved in the

same molecular pathway might be a pure coincidence or else it

could be that pathways of cancer, irrespective of types, are

frequently involved dys-regulating genes associated with

cytoskeleton architecture.

On the other hand, the top 6 level-3 discriminatory genes are

basically involved in calcium signaling; however, they bear quite a

low GMI values ranging from 1.25 to 0.34. These genes, except

SEC14L1, are primarily co-dominant in the classes 4, 1 and 2, i.e.,

squamous cell carcinomas (SQ), lung adenocarcinomas (Adeno)

and normal lung (Normal). S100A11 and S100A10 are calcium

binding proteins and their increased expression are often observed

in colorectal and prostate cancer, including non-small cell lung

cancer [59,60]. VAMP8 is involved in calcium-dependent

exocytosis process and SEC14L1 is a membrane trafficking

protein, and none of them is linked to cancer pathways. On the

other hand, LGALS3, an IgE-lectin binding protein, is often

abundantly expressed in thyroid cancer, hepatocellular carcinoma

and in non-small cell lung cancer [61,62]. FAM38 is involved in

intracellular calcium release [63]. Calcium signaling plays very

important role in cancer in mediating angiogenesis steps such as

invasion, adhesion and tumor cell migration. In many cancers,

calcium signaling genes are up-regulated. The fact that the

aforementioned genes are also up-regulated in normal lung (class

2) indicates that intact calcium signaling pathway may be

necessary for tumorigenesis process in these cancer subgroups.

In a nutshell GMI method establishes that cytoskeleton

regulating genes are aberrantly expressed in pulmonary carcinoids

(COID) and small cell lung cancer (SCLC) whereas calcium

signaling pathway genes are active in the rest of the classes, i.e.,

squamous cell carcinomas (SQ), adenocarcinomas (Adeno), and

normal lung (Normal).

Typical microarray data analysis finds markers that can

differentiate one class of cancer from the others, while GMI can

find markers, which exhibit similar expression pattern in a group

of cancers and can distinguish one group of cancers from another

group of cancers. Thus, the importance of our GMI algorithm is in

identifying de novo group specific genes in an automatic manner.

When we have samples from multiple cancers/diseases with less

knowledge about the relationship between them, GMI could be

very useful to discover a group (subset) of cancers, if exists, that can

be discriminated from the remaining set of cancers using

expression pattern of one or more genes. This in turn can help

us to understand the relationship between subsets of cancers/

diseases groups via functional analysis of the GMI-identified group

specific genes. Further, existence and discovery of such group

markers open up the possibility of finding common drug targets for

different diseases as well as possibility of using drugs designed for

one disease to cure another disease.

KEGG pathway analysis
After analyzing the relationship between a single gene and

multiple diseases, we attempt to explore the relationship between

the groups of discriminatory genes and diseases. For this, instead of

considering level-1 discriminatory genes, which may be identified

by all gene selection methods, we focus on the level-2

discriminatory genes first. We try to identify related biological
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pathways in which the level-2 discriminatory genes are involved by

cross-referencing to the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database [64-66].

We take the advantage of the abundant number of genes in the

Leukemia and Lung Cancer data sets in the data selection for

pathway analysis. For the Leukemia data set, we consider all level-

2 genes with p-values smaller or equal to 0.0001. Subsequently, we

divide these level-2 genes into three different gene lists based on

the composition of the upper group. The numbers of genes,

actually probe sets, in each list were: 712 for the upper group

composed of acute lymphoblastic leukemia (ALL) and mixed-

lineage Leukemia (MLL), which we call ALL-MLL list; 3 for the

upper group composed of ALL and acute myelogenous leukemia

(AML), which is termed as ALL-AML list; 100 for the upper group

composed of MLL and AML (MLL-AML list). Next, we use the

functional annotation tool provided by the database for annota-

tion, visualization and integrated discovery (DAVID ver. 6.7)

[67,68] to cross-reference to the KEGG database (accepted default

parameters).

For the ALL-MLL list, 709 probe sets that belong to Homo

sapiens, are selected and the default background is used for the

analysis. A total of 665 DAVID IDs are converted and 228 probe

sets are involved in the KEGG pathway category. The output

results provided by DAVID are summarized in Table 3. The

identified pathways/annotation terms are tabulated in the first

column (Term). The total number of genes (Count) and the

corresponding percentage (%) in our gene list involved in each

pathway along with the modified Fisher Exact p-value (p-value),

and other enrichment quantitative measurements (Fold Enrich-

ment, Bonferroni, Benjamini, FDR) are also included in Table 3.

As shown in Table 3, there are four pathways with EASE Score,

the modified Fisher Exact p-value, smaller than 0.01. These are

spliceosome, B-cell receptor signaling, basal transcription factors

and inositol phosphate metabolism pathways. Literature search

revealed that these pathways are often impaired in ALL and MLL

development [69–73]. On the other hand, if we consider EASE

Score smaller than 0.05, then 15 pathways are identified. The full

table with probe set lists is provided in Table S9. Most of these

additional pathways are involved in cancer as evident by their

name such as colorectal cancer pathways, base excision repair,

mismatch repair, nucleotide excision repair, and more specifically

involvement of chronic myeloid leukemia pathway is noteworthy.

Interestingly, pathways like fatty acid metabolism, phosphatidy-

lionositol signaling and ubiquitin mediated proteolysis that at first

Table 3. Summarization of the identified pathways related to the level-2 discriminatory genes in the Leukemia data set.

Term Count % p-value Fold Enrichment Bonferroni Benjamini FDR

ALL-MLL List

hsa03040:Spliceosome 21 3.1579 5.38E-07 3.7171 8.23E-05 8.23E-05 6.44E-04

hsa04662:B cell receptor
signaling pathway

14 2.1053 2.13E-05 4.1632 0.0033 0.0016 0.0256

hsa03022:Basal transcription factors 7 1.0526 0.0040 4.4605 0.4623 0.1868 4.7433

hsa00562:Inositol phosphate metabolism 8 1.2030 0.0095 3.3041 0.7685 0.3064 10.8272

hsa05210:Colorectal cancer 10 1.5038 0.0120 2.6551 0.8413 0.3080 13.4271

hsa03420:Nucleotide excision repair 7 1.0526 0.0126 3.5481 0.8565 0.2765 14.1065

hsa04910:Insulin signaling pathway 13 1.9549 0.0168 2.1477 0.9248 0.3091 18.3459

hsa03430:Mismatch repair 5 0.7519 0.0175 4.8484 0.9333 0.2871 19.1067

hsa05220:Chronic myeloid leukemia 9 1.3534 0.0178 2.6763 0.9363 0.2636 19.3979

hsa03410:Base excision repair 6 0.9023 0.0184 3.8233 0.9419 0.2477 19.9781

hsa05340:Primary immunodeficiency 6 0.9023 0.0184 3.8233 0.9419 0.2477 19.9781

hsa04660:T cell receptor
signaling pathway

11 1.6541 0.0216 2.2716 0.9646 0.2620 23.0243

hsa00071:Fatty acid metabolism 6 0.9023 0.0312 3.3454 0.9922 0.3327 31.6244

hsa04120:Ubiquitin mediated proteolysis 12 1.8045 0.0414 1.9535 0.9985 0.3923 39.7743

hsa04070:Phosphatidylinositol
signaling system

8 1.2030 0.0459 2.4111 0.9992 0.4014 43.0280

MLL-AML List

hsa05221:Acute myeloid leukemia 4 4.4944 0.0055 10.6270 0.3252 0.3252 5.5876

hsa04662:B cell receptor
signaling pathway

4 4.4944 0.0112 8.2182 0.5520 0.3307 11.0767

hsa04664:Fc epsilon RI
signaling pathway

4 4.4944 0.0125 7.9021 0.5909 0.2577 12.2495

hsa04062:Chemokine
signaling pathway

5 5.6180 0.0285 4.1201 0.8715 0.4013 25.9129

The contents of Tables 3-5 are the output results provided by DAVID. The first column (Term) contains the identified KEGG pathways. The second column (Count)
indicates the total number of genes in our gene list which is involved in each pathway. The third column (%) shows the same information as shown by the second
column but using percentage. The following columns (p-value, Fold Enrichment, Bonferroni, Benjamini, FDR) represent the modified Fisher Exact p-value and other
enrichment quantitative measurements, respectively. For more detailed information, please refer to DAVID[67,68].
doi:10.1371/journal.pone.0024259.t003
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sight seemed to be remotely associated with ALL or MLL but are

indeed found to be very much molecularly involved in the

pathogenesis of ALL and MLL as revealed by literature search

[74–77].

Using the same procedure, 98 probe sets belonging to Homo

sapiens and one probe set belonging to Mus musculus are selected for

the MLL-AML list. These probe sets are mapped to 89 DAVID

IDs and only 33 probe sets are involved in the KEGG pathway

category. Befitting our method of analysis, the only pathway

identified by the functional annotation tool with EASE Score

smaller than 0.01 is the Acute Myeloid Leukemia pathway

(KEGG entry ID: hsa05221). This attests that our method of

analysis may be relevant in identifying the gene(s) signatures for

distinguishing subtypes of cancer. Additional three pathways, B

cell signaling, Chemokine signaling and Fc epsilom R1 signaling,

which have passed the EASE Score criterion (p-value , 0.05) are

also shown in the Table 3. These are all well documented

pathways that are impaired in AML and/or MLL cancer [78-80].

Moreover, MLL is a special ALL group, which carries MLL gene

translocation. The authors of the Leukemia data set [22] collected

ALL and MLL samples from the individuals diagnosed as CD19+

B-precursor ALL without and with MLL translocation, respec-

tively. Those well-known B cell marker genes, e.g., CD19, CD81,

CD79A, CD79B, are all contained in the ALL-MLL list. Some

other genes, which have been discussed by the authors [22] e.g.,

IL7R, DNTT, TCF3, POU2AF1 and SMARCA4, are also listed in

the ALL-MLL list. The rest of genes in the ALL-MLL list are

related to B cell proliferation, phosphorylation, DNA replication,

tumor development. On the other hand, the myeloid-specific

genes e.g., CCNA1, SERPINB1, RNASE3, and some other genes

that are discussed by the authors who published the data set e.g.,

CD44, HOXA9, HOXA5, SPN, LGALS1, ANXA1, ANXA2, are

contained in the MLL-AML list. The only three genes exhibiting

common up-regulated pattern in ALL and AML are RYK,

SCHIP1, and YESP1. The long list of level-2 discriminatory genes

for the ALL and MLL group suggests that between the three

classes, the ALL and MLL group share more similar physiological

properties. MLL represents mixed-lineage features yet we can find

some similarities between MLL and AML. However, ALL and

AML are distinguished from each other. In a nutshell, many of the

level-2 discriminatory genes identified in our analysis for leukemia

class-specific signatures are directly involved in pathways that lead

to the development of leukemia. We believe that GMI would be

helpful in understanding the relationship between unknown

classes.

Furthermore, we find that the B cell receptor signaling pathway

was identified by both ALL-MLL list and MLL-AML list from

Table 3. To further investigate this pathway, we downloaded the

figure of this pathway from KEGG [64–66] and labeled the level-2

genes using the same principle as used by DAVID [67,68]. The

modified figure is shown in Fig. S4. In Figure S4, those genes,

which are relatively up-regulated in the ALL-MLL group, are

labeled with red stars. On the other hand, those genes, which are

up-regulated in MLL-AML group, are labeled with blue stars. We

may interpret those red star genes as lymphoblastic genes because

of the relatively up-regulated expression in both ALL and MLL

but down-regulated expression in AML. Subsequently, those blue

star genes can be treated as myelogenous genes because of their

relatively lower expression in ALL. As summarized by KEGG

[64–66], the activation of this pathway will involve in B cell

proliferation, differentiation and Ig production as well as other

processes. Thus, we find that many genes involved in this pathway

are labeled with red stars (highly expressed in the CD19+ B-

precursor ALL and MLL). We may interpret that the activation of

CD79A (Iga) and CD79B (Igb) with the co-simulators CD81 and

CD19 triggers the activation of B cell signaling pathway in ALL

and MLL. Furthermore, the co-inhibitor LIRB3 (PIR-B) is also

relatively down-regulated in ALL which could be treated as a

positive factor for activating the B cell signaling pathway. Notably,

the relatively lower expression of Rac in ALL may play an

important role of lymphoblastic leukemia. In murine study, it has

been demonstrated that Rac genes are important for appropriate

positioning of hematopoietic stem cells (HSCs) within the bone

marrow microenvironment. The deletion of both Rac1 and Rac2

murine alleles would lead to a massive egress of HSCs into the

blood from the marrow [81,82]. Thus, we may understand the

role of B cell signaling pathway between those different groups of

leukemia. This is an example to demonstrate how multiple level-2

(in general level-k) genes can be useful to interpret the observations

and to understand the mechanisms behind. We believe that GMI

algorithm will be a useful algorithm to the community.

In the Lung Cancer data set, we select all probe sets with p-value

smaller than or equal to 0.0001 and group these probe sets into

different gene lists for different compositions of the upper group.

In the results shown in Table 4, there are five combinations in

which we can identify related pathways (EASE Score , 0.05).

These five combinations are Adeno-Normal, Adeno-SQ, Normal-

SCLC, SCLC-SQ and Normal-COID. Each of these combina-

tions belongs to the upper group. These pathways associated with

SCLC-COID list are independently tabulated in Table 5. The full

tables with probe set lists are also provided in Table S10 and Table

S11. Out of these five combinations two combinations, Adeno-SQ

and SCLC-SQ are important in order to molecularly distinguish

four classes of lung cancer. In SCLC-COID group out of 27

pathways identified, 10 pathways are directly involved in cancer as

their name suggests and additional pathways like splicesome,

phosphatidylinositol signaling, calcium signaling and cell cycle

pathways are also participatory in cancer process as discussed

earlier. Importantly, the pathways like wnt, ErbB, MAPK,

autophagy and Jak-Stat signaling are all well established in cancer

development process. However, it is presently unclear as why

Alzheimer’s, Type II Diabetes, Long-term potentiation and

Neurotrophin signaling pathways genes are up-regulated in

SCLC-COID groups since their roles in cancer are not well

founded. In the Adeno-SQ list, genes belonging to pathways of

Ribosome, ECM receptor interaction and Focal adhesion were

found to be up-regulated. Literature search revealed that all of

these pathways are more or less compromised in Adeno-SQ [83-

86].

To summarize, KEGG pathway analysis establishes that there is

as such no specific pathway(s) that can exclusively determine the

subgroups of cancer. A plethora of pathways, shared and/or non-

shared, is activated in various cancer subgroups. The level-n

discriminatory genes found by GMI are important genes that play

a major role in multiple cancer pathways.

Discussion

In this study, we emphasize the important role played by

multiple-class specific marker genes. We found that most available

gene selection algorithms focus on or tend to identify single-class

specific signature genes as marker genes. But, multiple-class specific

markers may play important roles in biology besides construction of

computational prediction systems. The lack of intuitive, easy-to-use

methodologies for biologists inspired us to propose a novel gene

selection algorithm based on an index called, Group Marker Index

(GMI), which is efficient in the identification of both single- and

multiple-class specific signature genes from microarray data. For the

Group Biomarker Identification

PLoS ONE | www.plosone.org 10 September 2011 | Volume 6 | Issue 9 | e24259



sake of comparison, a template-based method (TBM) is also

formulated and used along with GMI. GMI differs from template-

based methods in two aspects. First, to evaluate each gene, GMI

uses the ordering of mean gene expression values for all classes that

enables it to identify de novo certain combination of classes for each

level of discrimination. It does not need to check all combinations of

classes and hence it reduces drastically the computation overhead.

We have demonstrated that GMI can identify robust and

statistically significant marker genes for each level of discrimination

using a repeated random-splitting procedure (Table 1 and Tables

S1, S2, S3). Second, no prior knowledge is required for template

assignment. It is possible for GMI to infer novel relationships

between the studied classes/diseases. We have discussed the

relevance/biological roles played by several level 2/3 genes. In

nutshell, we observed selective dys-regulation of cytoskeleton

regulating gene-network primarily at level-2 in both CNS and lung

cancer. Secondly, we found that neuron-specific cytoskeleton genes

are aberrantly expressed in COID and SCLC tumor of lung. Third,

calcium signaling pathway genes are upregulated at level-3 of lung

tumor. This method hitherto uncovered the importance of

cytoskeleton genes and their use as class-specific markers for cancer

diagnosis. In addition, we have also mapped a group of level 2/3

genes to the KEGG pathways. Both results exhibited concordant

findings and implied potentially common properties between

different classes or cancers. It suggests the possibility of identifying

common drug targets between different diseases. It also opens up

the possibility of using a specific remedy designed for one disease to

cure another disease.

Second, GMI uses a non-parametric indicator, between-class-

transition (BCT), to evaluate the discrimination between classes rather

than evaluating the similarity between a template and gene expression

values. An advantage of exploiting discrimination ability rather than

similarity is that it ensures that the selected genes will be able to

discriminate between subsets of classes at least to a reasonable extent.

Inspired by the work in [19,20] where authors used Analysis of

Variance (ANOVA) along with the template-matching step for their

Table 4. Summarization of the identified pathways related to the level-2 discriminatory genes in the Lung Cancer data set (Part I).

Term Count % p-value Fold Enrichment Bonferroni Benjamini FDR

Adeno-Normal List

hsa05416:Viral myocarditis 10 9.0909 1.17E-07 11.5516 1.17E-05 1.17E-05 1.30E-04

hsa05330:Allograft rejection 8 7.2727 1.60E-07 18.2258 1.60E-05 7.99E-06 1.77E-04

hsa05332:Graft-versus-host
disease

8 7.2727 2.86E-07 16.8238 2.86E-05 9.55E-06 3.18E-04

hsa04940:Type I diabetes mellitus 8 7.2727 4.88E-07 15.6221 4.88E-05 1.22E-05 5.42E-04

hsa05320:Autoimmune thyroid disease 8 7.2727 1.93E-06 12.8653 1.93E-04 3.85E-05 0.0021

hsa04612:Antigen processing and presentation 9 8.1818 5.23E-06 8.8933 5.23E-04 8.71E-05 0.0058

hsa05310:Asthma 6 5.4545 2.00E-05 16.9689 0.0020 2.86E-04 0.0222

hsa04514:Cell adhesion molecules (CAMs) 9 8.1818 1.54E-04 5.5920 0.0153 0.0019 0.1711

hsa05322:Systemic lupus erythematosus 8 7.2727 1.58E-04 6.6276 0.0157 0.0018 0.1754

hsa04672:Intestinal immune network for IgA
production

6 5.4545 2.68E-04 10.0428 0.0264 0.0027 0.2966

hsa00590:Arachidonic acid metabolism 6 5.4545 5.03E-04 8.7874 0.0490 0.0046 0.5564

hsa04640:Hematopoietic cell lineage 7 6.3636 5.18E-04 6.6757 0.0505 0.0043 0.5731

hsa04142:Lysosome 7 6.3636 0.0026 4.9069 0.2279 0.0197 2.8294

hsa04210:Apoptosis 5 4.5455 0.0199 4.7136 0.8660 0.1338 19.9982

hsa04610:Complement and
coagulation cascades

4 3.6364 0.0492 4.7546 0.9936 0.2858 42.8973

Adeno-SQ List

hsa03010:Ribosome 7 14.2857 4.68E-06 14.6121 0.0002 0.0002 0.0042

hsa04512:ECM-receptor interaction 6 12.2449 6.62E-05 12.9719 0.0025 0.0013 0.0598

hsa04510:Focal adhesion 4 8.1633 0.0888 3.6141 0.9708 0.6922 56.8582

Normal-SCLC List

hsa04510:Focal adhesion 3 10.7143 0.0286 9.4869 0.4567 0.4567 20.0947

Normal-COID List

hsa04142:Lysosome 5 3.9683 3.09E-02 4.1001 9.26E-01 9.26E-01 2.85E+01

SCLC-SQ List

hsa03040:Spliceosome 12 12.5000 1.83E-08 9.6857 9.15E-07 9.15E-07 1.76E-05

hsa03030:DNA replication 8 8.3333 3.34E-08 22.6000 1.67E-06 8.36E-07 3.22E-05

hsa04110:Cell cycle 10 10.4167 2.20E-06 8.1360 1.10E-04 3.67E-05 0.0021

hsa03410:Base excision repair 6 6.2500 1.76E-05 17.4343 8.81E-04 2.20E-04 0.0170

hsa00670:One carbon pool by folate 3 3.1250 0.0100 19.0687 0.3955 0.0958 9.2400

doi:10.1371/journal.pone.0024259.t004
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purposes, here we have performed the ANOVA test between gene

expression values and class labels for each gene. We find that a gene

with a low ANOVA p-value often does not exhibit good

discrimination ability between classes. Our experience shows that

most genes in a multiple-class microarray data set are evaluated with

small p-values by ANOVA test (See Fig. S5). Thus, for such a problem

the main criterion used for gene selection is essentially the correlation

value. Moreover, since TBM relies on correlation, it suffers from an

additional problem (as already explained) while applying on the

microarray data with unbalanced sample sizes over different classes.

We have designed an example with unbalanced samples (Fig. 3) to

demonstrate that the class with large sample size biases the resultant

correlation value and the class with small sample size may not

contribute much to the correlation. This is an inherent limitation of

template based methods.

Materials and Methods

Data sets
SRBCT data set. It is a cDNA microarray data set with 63

samples from 4 classes of childhood small round blue cell tumors

(SRBCT): 23 Ewing sarcomas (EWS), 8 Burkitt lymphomas (BL), 12

neuroblastomas (NB), and 20 rhabdomyosarcomas (RMS). Each

sample is represented by 2308 genes. This data set is available at

http://research.nhgri.nih.gov/microarray/Supplement/.
Leukemia data set. This Affymetrix high-density oligonu-

cleotide array data set has 57 samples from 3 classes of leukemia:

20 acute lymphoblastic leukemia (ALL), 17 mixed-lineage

leukemia (MLL), 20 acute myelogenous leukemia (AML), each

with 12582 genes. This data set is available at http://www.broad.

mit.edu/cgi-bin/cancer/datasets.cgi.

CNS data set. CNS is also an Affymetrix high-density

oligonucleotide microarray data set containing 42 samples dis-

tributed over 5 different types of tumors of the central nervous

system (CNS): 10 medulloblastomas (MD), 10 malignant gliomas

(MGlio), 10 atypical teratoid/rhabdoid tumors (Rhab), 8 primitive

neuro-ectodermal tumors (PNET), and 4 human cerebella tumors

(Ncer). For this data set each sample is represented by 7129 genes.

This data set is available at http://www.broad.mit.edu/cgi-bin/

cancer/datasets.cgi.
Lung Cancer data set. In this Affymetrix high-density

oligonucleotide array, we have 203 samples in 12600

Table 5. Summarization of the identified pathways related to the level-2 discriminatory genes in the Lung Cancer data set (Part II).

Term Count % p-value Fold Enrichment Bonferroni Benjamini FDR

SCLC-COID List

hsa04020:Calcium signaling pathway 55 2.0992 6.44E-06 1.8058 1.23E-03 1.23E-03 0.0080

hsa05223:Non-small cell lung cancer 24 0.9160 1.06E-05 2.5682 0.0020 1.01E-03 0.0132

hsa03040:Spliceosome 40 1.5267 1.01E-04 1.8344 0.0191 0.0064 0.1256

hsa04070:Phosphatidylinositol
signaling system

27 1.0305 1.54E-04 2.1083 0.0289 0.0073 0.1909

hsa04722:Neurotrophin
signaling pathway

39 1.4885 1.56E-04 1.8174 0.0294 0.0059 0.1941

hsa04210:Apoptosis 30 1.1450 1.89E-04 1.9926 0.0355 0.0060 0.2350

hsa05214:Glioma 24 0.9160 1.90E-04 2.2013 0.0357 0.0052 0.2363

hsa04010:MAPK signaling pathway 70 2.6718 1.95E-04 1.5149 0.0366 0.0047 0.2428

hsa05218:Melanoma 26 0.9924 1.97E-04 2.1160 0.0369 0.0042 0.2448

hsa05220:Chronic myeloid leukemia 27 1.0305 1.97E-04 2.0802 0.0370 0.0038 0.2452

hsa04110:Cell cycle 38 1.4504 4.09E-04 1.7566 0.0752 0.0071 0.5081

hsa04012:ErbB signaling pathway 29 1.1069 4.68E-04 1.9261 0.0855 0.0074 0.5806

hsa04930:Type II diabetes mellitus 19 0.7252 4.79E-04 2.3360 0.0874 0.0070 0.5937

hsa05210:Colorectal cancer 28 1.0687 6.01E-04 1.9261 0.1085 0.0082 0.7453

hsa05213:Endometrial cancer 20 0.7634 6.70E-04 2.2225 0.1201 0.0085 0.8297

hsa05200:Pathways in cancer 80 3.0534 7.56E-04 1.4094 0.1345 0.0090 0.9364

hsa05010:Alzheimer’s disease 45 1.7176 0.0011 1.5953 0.1875 0.0121 1.3434

hsa05215:Prostate cancer 28 1.0687 0.0016 1.8179 0.2646 0.0169 1.9818

hsa04720:Long-term potentiation 23 0.8779 0.0017 1.9545 0.2790 0.0171 2.1081

hsa04914:Progesterone-mediated
oocyte maturation

27 1.0305 0.0021 1.8142 0.3252 0.0195 2.5289

hsa04310:Wnt signaling pathway 41 1.5649 0.0026 1.5690 0.3949 0.0236 3.2188

hsa04114:Oocyte meiosis 32 1.2214 0.0028 1.6810 0.4135 0.0240 3.4154

hsa05222:Small cell lung cancer 26 0.9924 0.0031 1.7886 0.4524 0.0258 3.8464

hsa04622:RIG-I-like receptor
signaling pathway

23 0.8779 0.0032 1.8719 0.4533 0.0248 3.8563

hsa05212:Pancreatic cancer 23 0.8779 0.0038 1.8459 0.5188 0.0288 4.6529

hsa04140:Regulation of autophagy 14 0.5344 0.0039 2.3114 0.5298 0.0286 4.7956

hsa04630:Jak-STAT signaling pathway 41 1.5649 0.0043 1.5285 0.5645 0.0303 5.2701

doi:10.1371/journal.pone.0024259.t005
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dimensions. There are 5 classes: 139 lung adenocarcinomas

(Adeno), 21 squamous cell lung carcinomas (SQ), 20 pulmonary

carcinoids (COID), 6 small-cell lung cancer (SCLC), and 17

normal lung specimens (Normal). This data set can be obtained

from http://www.pnas.org/content/suppl/2001/11/13/191502998.

DC1/DatasetA_12600gene.xls.

Preprocessing
For the Leukemia and CNS data sets, in the preprocessing step

the gene expression values less than 100 are raised to 100 and gene

expression values greater than 16000 are set to 16000. All gene

expression values are then subjected to a base 10 logarithmic

transformation. After that, the distribution of gene expression

values in each sample is adjusted to zero mean and unit variance.

For the SRBCT data set, we do not make any change to the gene

expression values as that had already been preprocessed in the

original data source [21]. For the Lung Cancer data set, we use the

same preprocessed data as used in the original paper [24] without

doing any additional preprocessing. For these four data sets, we

adopt the same data preprocessing protocols as used in a previous

study [1,15]. In this study, the analysis is conducted using the R

environment [87].

Group Marker Index (GMI)
Our main objective is to develop a gene evaluation index, which

we call ‘‘Group Marker Index (GMI)’’, to select biologically

significant genes for both two- and multiple-class discrimination

problems. GMI builds on the Gene Dominant/Dormant Index

(GDI) which was proposed in our earlier study. GDI is a gene

evaluation index to select two specific types of genes, i.e., dominant

and dormant genes defined in our previous study [1]. In a

multiple-class microarray data set, a dominant gene has high gene

expression values only in the samples from one specific class and

low gene expression values in the samples of the remaining classes.

Contrary to the dominant gene, a dormant gene has low gene

expression values in only one specific class and high gene

expression values in the rest of the classes. GMI is a further

refinement of GDI in two aspects: First, irrespective of the number

of classes, GDI will only evaluate two levels of discrimination (i.e.,

dominant and dormant conditions). GMI, on the other hand, will

evaluate K-1 levels of discrimination where there are K classes in a

pooled microarray experiment. Second, GDI uses the same

equation of signal-to-noise ratio (SNR) to evaluate genes, which

makes GDI sensitive to outliers, if any. We have avoided these

deficiencies by utilizing a simple yet novel intuitive concept,

referred to as Between-Class-Transition (BCT), as a further

refinement to help identify overlapping classes.

Between-Class-Transition (BCT)
Let xgsbe the gene expression value for the gth gene in the sth

sample, g = 1, 2, …, G; s = 1, 2, …, S. The sth sample is associated

with a class label cs[ 1,2, :::, Kf g. For each gene g, g = 1, 2, …, G,

we sort the gene expression values of the S samples in descending

order. In the sorted sequence, each gene expression value is

associated with the class label of the corresponding sample. In this

sorted sequence, if the class labels of two successive samples (gene

expression values) are different, we count it as a between-class-

transition (BCT). In this way, for each gene, we find the total

number of BCTs.

Illustration of BCT
We now illustrate BCT using a simple synthetic data set.

Consider the gene expression values of a gene for 10 samples

divided into two classes (first five samples belong to class 1 and the

rest belong to class 2) as depicted in the left panel of Fig. S6. The

sorted gene values are depicted in the right panel of Fig. S6. Here

we have projected the samples on a vertical line and represented

the two classes using two different symbols. In the right panel, the

fourth sample from class 1 is sandwiched between two samples

from class 2 and this adds two to the BCT count. In this way, the

total number of BCTs is 5. An ideal marker gene in a two-class

problem will have no outlier sample in either class, and the

discrimination between the two classes will be very easy. In such a

case the BCT value is only one (for the transition from one class to

the other). In all other cases, where there are some outlier samples

with gene expression values that overlap with the gene expression

values of the samples from the other class, the BCT value will be

larger than one. Note that, there could be BCTs even when there

is no outlier in the true sense of the word, but the classes have

overlap. With an increase in the number of overlapped samples,

the BCT value will increase. Therefore, we can use the number of

BCTs to help identify overlapped samples, and thus improve

marker gene identification.

Consider a two-class problem, as an example. Suppose for a

gene g, the samples from each class form compact clusters and the

clusters are well separated except for the gene expression value of

just one sample in one of the two classes, which is mixed with

samples from the other class. In this case, the effect of the outlier

on the standard deviation will depend on its location; in other

words, how far the outlier is from the mean of the gene expression

values among samples in that class. Thus, the effect of just one

outlier (mixed sample) on the standard deviation could be

moderate to severe. However, this is not the case with BCTs

because the number of BCTs will not depend on the location of the

outliers in the other class.

Computation of GMI
For easy understanding, Fig. 4 depicts the steps involved in the

computation of GMI, which are explained next.

Normalization. The gene expression values of each gene are

normalized in the range from 0 to 1 across samples. This step

preserves the richness in the original gene expression values for

each gene among the samples and helps us to easily visualize the

distribution of gene expression values for the discriminatory genes.

Computation of the mean value of each class for each

gene. For each gene, the mean of the gene expression values in

each class is calculated. Let the mean for gene g in class k be mgk.

Sorting of the mean values and defining of K-1 levels of

discrimination. For notational simplicity, to explain the

computation of the GMI for gene g, we ignore the index g. We

sort mk, k = 1, 2, …, K (K = number of classes) in descending order.

Let the sorted mean values be mk(s); k = 1, 2, …, K. Suppose m1(s) is

the mean for class C1(s). This means that the gene under

consideration is the most highly expressed in class C1(s). We shall

call a gene level-n discriminatory gene, if it can discriminate

between two groups of classes where one group has n classes in it

and the other group has the remaining (K-n) classes. Moreover, for

a level-n discriminatory gene, it is highly expressed in the group

with n classes while in the remaining K-n classes, this gene is poorly

expressed or unexpressed. Note that, if there are K classes, we can

define (K-1) levels of discrimination.

Computation of GMI for each level of discrimina-

tion. For a good marker gene with clear level-n discrimination,

there are n classes that have high gene expression values and all

other classes have low gene expression values. Therefore, we

define the set of classes with high gene expression values as ‘‘upper

group’’ and the set of remaining classes as ‘‘lower group’’. For a
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good marker gene with level-n discrimination the upper and lower

groups should be well separated and the overlap between the

groups should be low. For level-n discrimination for gene g, first we

focus on the separation between upper and lower groups. We use

the difference between the mean values of classes Cn(s) and Cn+1(s),

i.e., mSep = mn(s) – mn+1(s). This is the closest separation between a

class in the upper group and a class in the lower group. We take

this as the separation between the two groups of classes. Note that,

we are not using the group mean. Next we define a measure of

overlap. For this we find the number of BCTs between these two

groups. To consider the effect of sample size, we use a weight

parameter, NS, to normalize the BCT value. Suppose Nup and Nlow

represent the total number of samples in upper and lower groups

and let NS = Min{Nup, Nlow}. Then a measure of overlap between

the two groups can be defined as OVL~No: of BCTs=NS . The

GMI value for level-n discrimination for gene g is then defined as

the ratio of mSep and OVL :

GMIng~
mSep

OVL
~

mn(s){mnz1(s)

No: of BCTs=NS

; NS~MinfNup,Nlowg: ð1Þ

A high value of GMI will indicate good separation with low

overlap between the two groups.

Finding a list of group specific genes for each level of

discrimination. After calculating the GMI values of K-1 levels

of discrimination for all genes, a list of group specific genes for each

level can be obtained as follows. Every gene has K-1 GMI values.

Clearly, genes with higher GMIn values have better level-n

discriminating power between upper and lower groups. Now for a

Figure 4. Steps involved to compute GMI and to find the list of group specific genes for each level of discrimination.
doi:10.1371/journal.pone.0024259.g004
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given discrimination level-n, we sort all genes in descending order

of GMIn values. The sorted values may be denoted as GMIn(s). A

smaller rank indicates a larger GMIn value and hence a better

level-n discriminating power of the gene. From the top of the list of

sorted level-n genes, we can select a set of genes that is likely to be

biologically interesting and is expected to be useful for level-n

discrimination. Note that, the upper and lower groups associated

with different level-n genes could be completely different. At this

point, we would like to emphasize that designing of classifier or

diagnostic prediction system is not the primary objective of this

study. The main objective is to find genes that can discriminate

between two sets of diseases, not necessarily one disease verses

other. We also emphasize that the proposed scheme neither uses

pooled mean of a group of classes nor uses the pooled standard

deviation of a set of classes and hence is free from the problems of

SNR type indexes [1].

Illustration of GMI Computation
To understand the computation of the GMI value at each level

of discrimination for a given gene, we have generated a synthetic

example, which is composed of five classes of samples. As shown in

Fig. 5, there are five classes of samples and there are ten samples in

each class. The samples from different classes are labeled with

different colors. Since there are K = 5 classes, we evaluate the gene

for 4 possible levels of discrimination. In Fig. 5, panel a to panel d,

represent, respectively, the computation of level-1 to level-4

discrimination of this gene. In panel a, the level-1 discrimination is

evaluated between the third class and the fourth class because they

are ranked first and second based on the descending order of the

mean of the gene expression values in the five classes. These two

highest ranked means are used to calculate mSep and this separation

is indicated by two horizontal dashed lines in green and blue. For

an easy computation of BCTs, in all four panels, the upper and

lower groups are represented using filled in and empty symbols,

respectively. Similarly, for panels b to d. For example, in panel b,

for level-2 discrimination, mSep is computed using the mean values

of class four and class five. From these figures, it is clear that this

synthetic gene is a good level-2 gene because from panel b we find

that two groups are well separated and the BCT is just 1. This is

also revealed by the GMI values of 0.150, 9.537, 0.287, and 1.925

for level-1 to level-4, respectively.

Gene selection and evaluation of statistical significance
To evaluate the statistical significance of group specific genes

identified by GMI, we perform a permutation procedure to obtain

the corresponding p- and q-values. This procedure is similar to the

method used in our previous study [1]. The necessary steps are

summarized below. Let G be the total number of genes and S be

the total number of samples.

Step 1. Gene selection. Step 1.1 Repeated random splitting.

Given a microarray data set D with K classes (xgs is the gene

expression value of gene g in sample s; 1#g #G, 1#s#S) and with

class labels (cs, 1#s#S), we randomly select 2/3rd samples from

each class as the training set TR(r) (r denotes the rth random

selection of samples, 1#r#R).

Step 1.2 Computation of GMI and preliminary gene selection.

For each training set TR(r), we compute the GMI values for

different levels of discrimination GMIng(r) (1#n#K-1) for each gene

g. Simultaneously, we use an independent indicator Fng(r) to denote

whether the gene g is included in the list of top N1 genes (N1 genes

ranked in descending order of GMIng(r) values); Fng(r) = 1 represents

‘‘true’’ and Fng(r) = 0 represents ‘‘false’’.

Step 1.3 Gene selection. After R = 100 times of the random

selection of samples, we average the GMI values of different levels

of discrimination, GMIng(r), 1#r#R, for each gene g as GMIng(ave)

and sum up the Fng(r) values for each gene g as Fng(sum). Note that,

Fng(sum) is the number of times (i.e., frequency) the gene g is selected

as one of the top N1 genes in R experiments. For each level of

discrimination, we select the top N2 genes with the highest

frequencies, Fng(sum). In this study, we set both N1 and N2 = 10.

Step 2. Permutation. We randomly permute the class labels

cs for B times. In the bth permutation (1#b#B), we randomly select

2/3rd samples from each class as the training set TR(r)
(b) for R = 100

times. For each training set TR(r)
(b), we compute GMIng(r)

(b) for

different levels of discrimination for gene g using the permuted class

labels cs
(b). Next, we average these new GMI values of different levels

of discrimination GMIng(r)
(b) for each gene g as GMIng(ave)

(b). These

GMIng(ave)
(b) are used for the calculation of p- and q-values.

Step 3. Calculation of p-values. The p-value of the

observed averaged GMI value, GMIng(ave), for a particular level

of discrimination, of a gene g is

p(GMIng(ave))~

PB
b~1

PG
g0~1 I(GMI

(b)

ng0(ave)
§GMIng(ave))

G|B
, ð2Þ

Where I(.) is an indicator function that takes the value one when

true, and zero otherwise.

Step 4. Calculation of q-values. To account for the multiple

tests being performed in the G genes, the q-value of the observed

averaged GMIng(ave) is calculated as

q(GMIng(ave))~

PB
b~1

PG
g0~1 I(GMI

(b)

ng0(ave)
§GMIng(ave))

PG
g0~1 I(GMIng0(ave)§GMIng(ave))|B

: ð3Þ

In this study, we have performed this permutation test with

B = 200 for all data sets.

Comparison with other method
In order to demonstrate the effectiveness of our GMI method in

identifying group specific genes, we propose a scheme based on the

template-based method (TBM), which is similar to the method

used in a previous work [19] for comparison. In this study, we used

Pearson’s correlation coefficient to evaluate the relation between

gene expression values and pre-assigned templates. The detailed

steps of gene selection in the proposed TBM are described below:

TBM Step 1: Repeated random splitting. For a fair

comparison with GMI, the repeated random splitting scheme is

also used here. For a given microarray data set D with K classes (xgs

is the gene expression value of gene g in sample s; 1#g#G, 1#s#S)

with class labels (cs, 1#s#S), we randomly select 2/3rd samples

from each class as the training set TR(r) (as earlier, r denotes the rth

random selection of samples, 1#r#R).

TBM Step 2: Normalization. For each training set TR(r), the

gene expression values of every gene are normalized across

samples to [0, 1].

TBM Step 3: Identification of group specific genes for

level-n discrimination. For every gene in the training set

TR(r), K-1 levels of discrimination are defined as in the previous

section. To find group specific marker genes for level-n

discrimination, the following steps are followed:

TBM Step 3.1 Creation of template T0(r).We create a template

T0(r){0, 0, 0, … , 0}; the length of T0(r) is equal to the number of

samples in training set TR(r). Initially, every value in T0(r) is set to

zero.
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TBM Step 3.2 Creation of template Tn(m). For a given level-n,

there could be many combinations (subsets) of classes for the upper

group. We denote the appropriate template for the mth

combination (for level-n discrimination) as Tn(m)(r) and generate it

from T0(r) as follows. If the sth sample of gene g belongs to the

upper group (i.e., in the mth combination of classes) then the sth

value of T0(r) is set to 1. This modified T0(r) is the template Tn(m)(r).

TBM Step 3.3 Computation of Pearson’s correlation coefficient.

Note that, for level-n, mth combination, and sample set TR(r), the

Tn(m)(r) is fixed. Now we compute the Pearson’s correlation

coefficient for every gene g, with the template Tn(m)(r) and denote it

as Pn(m)(r)(g). For level-n we have M~ck
n combinations. Let

rn Eð Þ rð Þ gð Þ~ max
i

Pn ið Þ rð Þ gð Þ; i~1, . . . ,M
� �

. Now we sort the G

correlation values rn Eð Þ rð Þ gð Þ,g~1, . . . ,G in descending order and

Figure 5. A 5-class synthetic example to illustrate computation of GMI. There are four levels of discrimination in the 5-class synthetic data
set. Panels (a) to (d) depict the computation of GMI values at each level of discrimination. The dotted lines in each panel indicate the two mean values
used for GMI computation in each level of discrimination. All filled samples in each panel indicate the upper group samples. The remaining open
samples in each panel indicate the lower group samples.
doi:10.1371/journal.pone.0024259.g005
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create the list of top N1 genes (along with the associated upper groups) for

level-n as Ln(r). Thus, a typical element of the list will have two

components: the upper group (E) and the gene (g).

TBM Step 4: Gene selection. Steps 1 through 3 are

repeated for r = 1 to R times (here R = 100) resulting in R lists of

top N1 genes, Ln(r); r = 1, …, R. Let Fn(g, m) be the number of times

(frequency) with which the gene g, associated with upper group m,

appears in the R lists. This results in a list where every gene has

associated with it just one frequency and one upper group. Now,

we sort this list in descending order based on the frequencies and

select the top N2 genes from that list. Note that, each of these N2

genes will have an associated upper group. Here N1 = N2 = 10 as

used with GMI.
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