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Abstract

Background: Simple models of insect populations with non-overlapping generations have been instrumental in
understanding the mechanisms behind population cycles, including wild (chaotic) fluctuations. The presence of
deterministic chaos in natural populations, however, has never been unequivocally accepted. Recently, it has been
proposed that the application of chaos control theory can be useful in unravelling the complexity observed in real
population data. This approach is based on structural perturbations to simple population models (population skeletons).
The mechanism behind such perturbations to control chaotic dynamics thus far is model dependent and constant (in size
and direction) through time. In addition, the outcome of such structurally perturbed models is [almost] always equilibrium
type, which fails to commensurate with the patterns observed in population data.

Methodology/Principal Findings: We present a proportional feedback mechanism that is independent of model
formulation and capable of perturbing population skeletons in an evolutionary way, as opposed to requiring constant
feedbacks. We observe the same repertoire of patterns, from equilibrium states to non-chaotic aperiodic oscillations to
chaotic behaviour, across different population models, in agreement with observations in real population data. Model
outputs also indicate the existence of multiple attractors in some parameter regimes and this coexistence is found to
depend on initial population densities or the duration of transient dynamics. Our results suggest that such a feedback
mechanism may enable a better understanding of the regulatory processes in natural populations.
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Introduction

A central theme in population ecology is to understand the

mechanisms of survival and extinction in animal populations [1–

5]. Simple mathematical models of insect populations where

generations do not overlap have served as a basic tool for

researchers for many decades [6–11]. As well as enriching our

understanding of nonlinear (chaotic) dynamics, these simple

models (also known as population or deterministic skeletons) have

provided further insights into boom and bust behaviour in animal

populations. Although there has been some success in the

observation of chaos in laboratory experiments [12,13] and in

childhood diseases such as measles [14], the clinching evidence of

chaos in natural populations remains elusive and this has

generated considerable discussion on whether animal populations

are, in general, chaotic [14–25].

The basis for such arguments is rooted in the finding that the

pattern of fully chaotic fluctuations shown by deterministic

skeletons [6–8] is not consistent with those observed in field data

[17,19,20,26,27]. A related issue is whether the modelling of

animal populations should rely only on deterministic skeletons or

consist of both deterministic and stochastic elements [28,29], while

recognising the limitations imposed by the assumption of constant

model parameters [30]. Motivated by such arguments, there has

been a need to introduce more biological realism into mathemat-

ical models of animal populations [26], notably via the

introduction of essential ecological processes (such as the migration

of individuals competing for food, shelter and/or mating partners)

in terms of feedbacks to population skeletons.

Accounting for the migration of individuals, a class of

structurally perturbed population models studied in previous work

[27,31] can be written as
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xtz1~F (xt)zsK ð1Þ

where xt is the population size at growth generation t. The

function F (x) is a single-humped map (e.g. F (x)~mx(1{x))
representing insect population growth with non-overlapping

generations. Model dynamics are controlled by the growth

parameter m and sK represents a perturbation to the basic model.

The parameter s presets the direction of migration, while K(w0)
determines the amount of feedback. Under the constant-feedback

formalism, deterministic chaos of population models is fully

suppressed (Fig. 1). (Note that while chaos can still be found,

careful examination of the m{K parameter space in [27] and [31]

reveals that chaotic behaviour of (1) lies within an extremely small

region of parameter space.) The predictive behaviour of these

models, combined with accumulated insights into the theory of

chaotic dynamics, led to the suggestion that perhaps chaos control

techniques could help in detecting chaos in natural populations

[19,32].

Although the model is simple for suppressing chaotic dynamics,

it requires a priori knowledge of F (x) governing the underlying

dynamics at any population patch [32]; emigration (s~{1) as

feedback works well with F (x)~mx(1{x) [31], while immigration

(s~z1) is required when F (x)~xexp½m(1{x)� [26,27,33]. In

retrospect, although the aim (to understand how small structural

changes to population skeletons may suppress chaotic behaviour)

of previous work [27,31] was well achieved, these approaches lack

the ability to be a general formulation on two counts. Firstly, there

is no robust method of identifying a particular form of F (x) that

may govern the growth dynamics of a population; trial and error

experiments are required [32]. Secondly, and perhaps most

importantly, if the current findings of population cycles (ranging

from regular to quasicyclic to weakly chaotic or chaotic) in

population data [17,20,34] are of relevance to understanding

complexity in natural settings, then the predictive behaviour of (1)

seems to be biased towards the prevailing view of asymptotic

equilibrium dynamics in population ecology.

The aim of this paper is to overcome the drawbacks of the

constant feedback mechanism. The suggested approach does not

require a priori knowledge of the governing equation, perturbing

population skeletons in an evolutionary way instead of requiring

constant feedbacks. We observe the same repertoire of patterns,

from predictive (equilibrium/periodic) states to non-chaotic

aperiodic oscillations to chaotic dynamics, across different

population models in agreement with the observations in animal

census data. In addition, results on the existence of multiple

attractors provide further insights into the importance of transient

dynamics, a subject of growing research interest in ecological

studies [35-37]. These findings suggest that such a feedback

method may be applied to deterministic skeletons for a better

insight into regulatory processes in natural populations.

Materials and Methods

We present a new framework for modelling structural

perturbations to the deterministic skeletons of single-species insect

populations as

xtz1~F (~xxt) ð2Þ

where ~xxt~xt(1zse) is the resident population size at generation

t. The population size at any generation depends on two

parameters, namely the gain parameter e, a constant quantity

that moderates the magnitude of migration, and the direction

parameter s~sgn(xt{1{xt) that can change through time,

subjecting the patch dynamics to non-fixed (inward or outward)

migration.

Because the model involves the population density from the

previous generation, this is no longer a one-dimensional problem.

We can instead rewrite (2) as the two-dimensional map

xtz1~F (yt), ð3Þ

ytz1~xtz1(1zesgn(yt{xtz1)): ð4Þ

Here, the population growth phase (3) is followed by the

migration phase (4), in which individuals migrate from or to a

refuge. The migration process results in a net population ytz1 (the

resident population) at the habitat at generation tz1, which

reproduces for the next generation, and the cycle of reproduction

and migration continues.

In this way, model (2) receives perturbations at generation t
either as immigration or emigration of individuals from or to an

outside refuge. Such non-fixed directional flow of migrants can be

found in nature and it is well-documented [38] that species living

in source-sink metapopulations can persist only when net source-

to-sink, with occasional net sink-to-source, migration exists.

Numerical Simulations, Lyapunov Exponents and
Bifurcation Plots

Here, we consider the behaviour of the logistic map

F (x)~xm(1{x), but note that the same procedures can be

followed for numerical experiments with other systems such as the

Ricker and Hassell maps. Individual simulations are carried out in

two steps. In the first, a simulation of (2) is initialised with the

initial population density selected at random from the interval (0,1)

and run for more than w100 generations with e~0. The final

population density is stored and used as y0, the initial resident

population density. In the second step, the gain parameter e is set

to a desired value (w0) and the model is run for a number of

generations, with the resident population densities recorded.

The Lyapunov exponent for the logistic map is calculated as

l~
1

Ntotal

XNtotal

t~1

log jm(1{2yt)j ð5Þ

where Ntotal is the total number of generations (on the order of

Figure 1. Predictive dynamics of the model xtz1~F(xt)zsK .
They are for functional forms (a) F (x)~mx(1{x) and (b) F (x)~
xexp½m(1{x)�. The bifurcation plots in grey are for the unperturbed
maps (sK~0), while those in black represent the perturbed maps with
(a) sK~{0:2 and (b) sK~0:06.
doi:10.1371/journal.pone.0024200.g001
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106). Lyapunov exponents are a measure of determining the long-

term or asymptotic dynamics of nonlinear systems; negative l for a

given growth rate m is indicative of predictive map dynamics, while

positive l suggests chaotic population dynamics.

Bifurcation plots are obtained by plotting the resident population

densities against the values of a control parameter (also known as the

bifurcation parameter). Only the last 200 density values (after

discarding transient dynamics) are recorded and plotted at selected

values of the bifurcation parameter. Both the growth rate m and gain

parameter e are used as the bifurcation parameter.

Insights from the Analysis of a Simplified Version of
Model (2)

Here, we present a simple analysis of (2) by imagining an

idealised situation. The direction component (i.e. sgn(yt{xtz1))
can be expressed as ({1)n where n intermittently takes either the

value of 1 (when ytvxtz1) or 0 (when ytwxtz1). Thus, the

migration phase of the population dynamics can be re-written as

ytz1~xtz1(1ze({1)n): ð6Þ

First, consider the case when n~1, i.e. ytvxtz1, so that (2) for the

logistic map can be rewritten as

xtz1~xt(1{e)m(1{xt(1{e)): ð7Þ

The equilibrium behaviour of (7) can be easily analysed and we

find that

xtz1~xt~�xx~
1

(1{e)
1{

1

m(1{e)

� �
: ð8Þ

To determine the stability of the fixed point, differentiating (7) with

respect to xt and substituting xt~�xx gives

df (xt)

dxt

jxt~�xx~2{(1{e)m ð9Þ

(where f (xt) is the right-hand side of (7)), whereupon using the

standard criteria for the stability of fixed points in one-dimensional

maps [39], we obtain the stability condition as 1vm(1{e)v3.

The n~0 case (ytwxtz1) can be similarly analysed, giving the

stability condition 1vm(1ze)v3. For the growth rate 3vmv4,

there exist non-zero e values such that the former condition (when

n~1) leads to the controlling of chaotic behaviour, while the latter

leads to anti-control behaviour.

Insights from a Fixed-Point Analysis of the General Model
(2)

For a general function F representing the population model of

interest, the steady-state values (X ,Y ) of the model (from (3) and

(4)) are given by the solutions to

X~F (Y ),

Y~XzeX sgn(Y{X ), ð10Þ

or equivalently

Y~F (Y )zeF (Y )sgn(Y{F (Y )), ð11Þ

leading to the two steady-states (F ((1+e)F(Y )),(1+e)F(Y )),
since e and F are always positive. To assess the stability of these

equilibria, we calculate the Jacobian matrix M of (10), so that

using the fact that sgn0(z)~2d(z) (where d(z) is the Dirac delta

function) and, for our model, F (Y )=Y , we obtain

M~
0 F ’(Y )

1zesgn(F (Y ){Y ) 0

� �
: ð12Þ

For asymptotic stability of the critical point (X ,Y ), we require all

eigenvalues li of M to satisfy jlijv1 (for all i). [40] demonstrate

that a necessary and sufficient condition for this to hold is when

2w1zdetMwjtrMj, ð13Þ

which corresponds here to the requirement that

2w1{F ’(Y )(1zesgn(F (Y ){Y ))w0, ð14Þ

so that solving both sides of the inequality leads to the condition

for asymptotic stability of the steady-states as

jF ’(Y )(1zesgn(F (Y ){Y ))jv1: ð15Þ

Determination and analysis of the 2-cycle solutions is outlined in

Appendix S1.

Analysis with the logistic population model. Substituting

F (Y )~mY (1{Y ) into (10) and solving gives four non-trivial steady-

states (see Appendix S2), the biological relevance of which depend on

the parameter regimes of interest; in particular, solution in Maple

reveals the need to consider the values of (mzem{1)e and

(1{mzem)e. Since we are predominantly interested in chaotic

regimes of the logistic map (when mw3) and we define ew0 (with

particular interest in small values of e), we have (mzem{1)ew0 and

(1{mzem)ev0, leading to the two steady-states

(X1,Y1)~
mzem{1

m(1ze)2
,
mzem{1

m(1ze)

� �
ð16Þ

and

(X2,Y2)~ {
1{mzem

m(e{1)2
,
1{mzem

m(e{1)

� �
, ð17Þ

both of which reduce (as expected) to the standard solution

X �~1{
1

m
when e~0. Thus, the steady-state in the unperturbed

system splits into two new equilibria when ew0 and it is readily

shown that X1vX � and X2wX �.
To assess the stability of (X1,Y1), we substitute F(Y )~

mY1(1{Y1) into (15), leading to the conditions on e for asymptotic

stability as

1{m

m
vev

3{m

m
: ð18Þ

Structural Perturbation to Population Skeletons

PLoS ONE | www.plosone.org 3 September 2011 | Volume 6 | Issue 9 | e24200



However, when 3vmv4, the right-hand side of (18) is never

satisfied (since ew0) and (X1,Y1) is therefore always unstable.

Repeating this process with (X2,Y2) requires

m{3

m
vev

m{1

m
ð19Þ

for asymptotic stability of this critical point and (X2,Y2) is

therefore a stable steady-state when (19) holds.

Analysis with the exponential population model. Repeating

this analysis for the exponential map with F(Y )~Yexp½m(1{Y )�
gives four non-trivial steady-states (see Appendix S2), the biological

relevance of which depend on the parameters mz ln (1ze) and

mz ln (1{e). It is clear, however, that since 0vev1, we always

have mz ln (1ze)w0 and mz ln (1{e)w0, giving the two steady-

states of interest

(X1,Y1)~
mz ln (1{e)

m(1{e)
,
mz ln (1{e)

m

� �
ð20Þ

and

(X2,Y2)~
mz ln (1ze)

m(1ze)
,
mz ln (1ze)

m

� �
, ð21Þ

both of which reduce, as expected, to the standard solution X �~1
when e~0. Thus, the steady-state in the unperturbed system splits

into two new equilibria when ew0 and it is readily shown that

X1wX � and X2vX �.
To assess the stability of these equilibria, we substitute

F (Y )~Yexp½m(1{Y )� into (15), from which we find that

(X1,Y1) is asymptotically stable when

1{e{m
wew1{e2{m: ð22Þ

The left-hand side of (22) is always satisfied, while the right-

hand side is only satisfied at relatively high values of e (e.g. when

m~2:69 at the point where chaos just begins in the exponential

map with e~0, we require ew0:50 for stability of (X1,Y1)).
Repeating this for (X2,Y2) leads to the stability condition

e2{m{1wewe{m{1, ð23Þ

the left-hand side of which is never satisfied for mw2, which

incorporates the region where chaos occurs and where we are

interested, and thus (X2,Y2) is never stable.

Results

Numerical Verification of Fixed-Point Behaviour
Within the bounds of e given by (19), we expect the model to

have a single basin of attraction towards the equilibrium point

1{
1

m(1{e)
. Note the lower bound on e is the same minimum

value for the stability of the fixed point derived from the analysis of

the n~1 case earlier; it provides a cross-check on both

approaches. However, when the model is simulated with different

initial population densities, trajectories are attracted to both stable

fixed points – the non-trivial equilibrium and zero (Fig. 2). This is

not surprising though; in the derivation of our analytical results,

we assume that the asymptotic dynamics are independent of the

initial conditions. While this may be the case for the majority of

nonlinear dynamical systems, for systems like (2) where there is a

possibility that the dynamics may occasionally get pushed into

other regimes, this assumption may not always hold.

General Observations
Though we have verified our findings for different forms of F(x),

results are given for the logistic map. Firstly, within the limiting

value (the lower bound from condition (19)) of the gain parameter e,

there is no feedback-induced escape to -? as observed in [31]

(which occurs due to violation of the necessary condition

(F (x)zsK)[(0,1) for avoiding escape). This conclusion results

from the extensive numerical model runs required to construct the

parameter space in Fig. 3. Secondly, unlike previous results [27,31],

the dynamics of (2) are of predictive or chaotic type across values of

the gain parameter within this limiting bound (Fig. 4).

An important feature of the model dynamics is the occurrence

of non-chaotic aperiodic oscillations (NAO). When analysed on a

suitable scale, NAO behaviour looks like a noisy limit cycle (Fig. 5),

with population densities fluctuating around the (unstable) fixed

point X �~1{
1

m
. One diagnostic feature of this behaviour is that

population trajectories spend more than 50% of their time in the

region bounded by the two population densities (shown by solid

lines in the figure plots).

Parameter Space of the Model Dynamics
Long-term behaviour of the model, summarised on a (m,e)

parameter grid in Fig. 3, presents a complex mosaic. The

dynamics at each grid point are characterised by Lyapunov

exponents for a set of 100 initial population densities such that

y0[(0,1). If the condition lv0 is satisfied for all simulations at a

(m,e) grid point, the model behaviour is termed predictive (fixed-

point or periodic) and such grid point is coloured blue. For NAO

dynamics at the grid points displayed in yellow, we find that all

100 l values are very close to ltheor where ltheor~
log jm(1{2X �)j. NAO behaviour is cross-checked using the other

diagnostic measure discussed above. Any other behaviours of l are

found to display chaotic dynamics and the corresponding grid

points are displayed in red. The cyan region (discussed further

below) differs significantly from the rest in that model dynamics

Figure 2. Coexistence of the non-trivial fixed-point with the
trivial one (0). The colour bar (in %) shows the extent to which we
expect the occurrence of this behaviour as the strength of the gain
parameter e increases at a given m. The lower dashed line was derived
from the lower bound on e from the equation (19), while the dot-dash
line derived from the upper bound.
doi:10.1371/journal.pone.0024200.g002
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are found to display coexisting attractors. As an aside, we note that

use of a more analytical technique (such as one based on

mathematical continuation) to demarcate boundaries of different

dynamical patterns in the parameter space is non-trivial because of

the coexistence of attractors.

The Changing Pattern of Long-Term Dynamics
The pattern of long-term dynamics (Fig. 4) is observed to

change with variation in the control parameters, but not in any

particular order. Strong chaotic fluctuations of the unperturbed

logistic map (cf. the sK~0 plot in Fig. 1a) are changed to mostly

NAO dynamics when e~0:005 (Fig. 4a1), through to mildly

chaotic plus NAO for e~0:05 (Fig. 4a2) and dynamics constituted

by a combination of NAO and periodic behaviour when e~0:1
(Fig. 4a3). Further increase in the gain parameter to e~0:2 is

found to completely suppress chaos at 3:57ƒmƒ3:8, while

maintaining weak chaotic fluctuations for higher growth rates

(Fig. 4a4).

Plots with e as a control parameter reveal (Figs. 4b1 to 4b4) the

phenomenon of period doubling reversal (PDR) in model

dynamics for weakly, as well as strongly, chaotic growth rate.

This is more conspicuous at m~3:57. The PDR phenomenon

(Fig. 1b), reported in [27], differs from our observations in that the

PDR regime here is interspersed with NAO or chaotic cycles. Note

that variability in the population dynamics disappears as e

approaches its lower bound of
m{3

m
derived from the fixed-point

stability analysis. Periodic or fixed-point dynamics at the limiting

value of e is confirmation that this feedback acts to control chaos.

However, as noted above in the case of m as the bifurcation

parameter, the progression (that is, the appearance of dynamic

patterns as e increases) towards suppressing chaos at different m

Figure 4. Changing patterns of long-term dynamics. Here, the bifurcation plots are obtained by plotting the resident population densities
from the last 200 generations after discarding transient dynamics. Both bifurcation parameters 3ƒmƒ4 (left) and 0ƒeƒ0:26 (right) are incremented
with a stepsize of 0:001. The left-panel plots are for different values of the gain parameter e~0:005 (a1), 0:05 (a2), 0:1 (a3) and 0:2 (a4). The right-panel
plots are for m~3:57 (b1), m~3:83 (b2), m~3:9 (b3) and m~4 (b4).
doi:10.1371/journal.pone.0024200.g004

Figure 3. The m–e parameter space of the dynamical patterns of
model (2). Here, m is incremented with a stepsize of 0:01, while a
stepsize of 0:001 is used for e. The grid points coded with blue denote
predictive behaviours (periodic or fixed point) – the dynamics
independent of initial population densities. Red denotes chaotic
behaviour, yellow NAO behaviour and cyan where model dynamics
eventually settle down to one of the coexisting attractors. Colour
coding in the parameter space is carried out on the basis of the model’s
long-term dynamics (removing transients for 20,000 generations and
using the remaining 5|106 generations for the calculation of l). The
white line represents the analytical result of the minimum value of e. In
the region above this line, the model is expected to have stable fixed-
point behaviour.
doi:10.1371/journal.pone.0024200.g003
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values is not same (see Figs. 4b1 to 4b4 in conjunction with the

parameter space below the white line in Fig. 3).

Coexistence of Attractors
The cyan area of parameter space has two distinct regions, with

a virtual line at e~0:15 acting as a separator (Fig. 6a). In this

region, numerical analysis shows that coexisting attractors occur in

one of these combinations: (i) all are periodic attractors; (ii)

periodic attractors coexist with the NAO attractor; or (iii) the

NAO attractor coexists with the chaotic attractor. However, when

we examine the dynamics on a majority basis, we can identify

three regimes of note. First, for some values of m and e (Fig. 6b),

the main attractor is a periodic attractor that coexists either with

another periodic attractor or with the NAO attractor. We find that

the coexisting periodic attractors are of even period, with one

being a multiple of the other. Occasionally, however, we observe

an odd-period attractor coexisting with an even-period one (such

as the coexistence of period-3 and period-2 attractors). Second, the

main NAO attractor can coexist with the periodic attractors

(Fig. 6c) and this coexistence has the largest domain. Here, for any

value of mv3:8, the gain parameter e needs to be less than 0:1 for

coexistence to occur. Third, the NAO attractor is found to coexist

with the chaotic attractor (Fig. 6d). We find that the attraction of

temporally evolving population trajectories towards one of the

competing attractors depends on the initial population densities.

Such dependence on initial densities has been reported to be

abundantly present in natural populations as a result of the impact

of environmental noise on population dynamics [34]. This echoes

well the observations made elsewhere [11] on the importance of

the historical origins on outcomes of dynamical systems, though

contrasts with other studies [27,31] where the behaviour of

perturbed models is found to remain almost always of the periodic

type – insensitive to the initial conditions.

Illusion of the coexistence of attractors. Apart from the

coexistence of attractors discussed above, long transient dynamics

are found to impact judgement on the appearance of possible

coexistence of attractors. Two examples are shown for m~3:95
and e~0:102 (Fig. 7) and m~4:0 and e~0:027(Fig. 8). The long-

term dynamics for each of these parameter combinations is a

single attractor, but the nature of the population trajectories

appears to suggest the coexistence of two attractors. Of course, as

explained below, this illusion of coexisting attractors critically

depends on the timing and frequency at which we sample or

record the population trajectories.

The mechanisms behind such behaviour are of two types. In the

former case, transient dynamics of variable duration are

responsible for the illusion of this coexistence. For example, the

time series in Fig. 7 are generated by running the model with

almost identical initial population densities. However, as shown in

Figs. 7a & 7b, the population trajectory mildly fluctuates around

the unstable equilibrium X � (shown by the horizontal line) until

the end of the 20,000th growth generation, while the predictive

time series (shown in Figs. 7c & 7d) settles down on the periodic

attractor by the end of the 12,000th generation (Fig. 7c).

In the latter case, changing dynamical behaviour from one type

(in a temporal window) to another in the next temporal window

may create the illusion of coexistence. For example, in Fig. 8 the

final attractor is an NAO attractor intermittently interrupted with

chaotic dynamics. However, when examined more closely, several

windows of the NAO dynamics of more than 200 generations long

are present in both Figs. 8b and 8c. Sampling or recording of the

population trajectories at certain periodicity can generate the

illusion that the dynamics are changing from one attractor to

another. This intermittent behaviour is not limited to the model

under discussion; it has also been observed in the dynamics of

forced SEIR (susceptible, exposed, infectious and recovered)

models of childhood diseases (e.g. measles outbreaks; see Fig. 8

in [41]). This behaviour reportedly occurs due to ‘transient’

periodicity, a natural part of (deterministic) chaotic dynamics,

which has been argued to be responsible for biennial episodes in

measles data [41].

Discussion

The approach presented does not require trial and error

experiments to select the most appropriate structural perturbation

to a given population model, thereby providing a uniform

mechanism. We observe the same repertoire of patterns, from

equilibrium to NAO to chaotic behaviour across different

population models. NAO behaviour can be compared with

quasicyclic (almost periodic, but with varying amplitude) fluctu-

ations observed in natural populations. Such complex dynamics

have been reported to be rife as a result of the interplay between

stochastic noise and the non-linearity present in population growth

processes [34] and are thought to be one of the factors responsible

for obscuring the presence of chaos in natural populations. To the

best of our knowledge, this behaviour has not been reported before

in structurally perturbed population models. However, such

trajectories are not limited to models of insect populations; they

Figure 5. Illustration of Non-chaotic Aperiodic Oscillations
(NAO). Time series are for different combinations of the gain parameter
e and growth rate m: (T1) e~0:005, m~3:8; (T2) e~0:005, m~3:9; (T3)
e~0:05, m~3:9 and (T4) e~0:1, m~3:75. Only 500 generations are used
in all four plots after discarding transients. Two horizontal lines are given

by �xxup~
1

(1{e)
(1{

1

m(1{e)
) and �xxlow~

1

(1ze)
(1{

1

m(1ze)
). The two

values are derived from the analysis of the simplified version of (2) for

n~1 and n~0, respectively. The time series T4 is plotted on a different y–
scale to emphasize small fluctuations in the time series. The dashed-line
represents the unstable fixed point of the map with e~0.
doi:10.1371/journal.pone.0024200.g005
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have also been observed in the dynamics of the seasonally-forced

SEIR epidemic model [41].

Our results suggest that caution should be exercised when

interpreting empirical data of animal populations. Chaotic/wild

fluctuations in data may appear due to intrinsic-extrinsic feedback

(accounting for some aspect(s) of demographic structure), even for

parameter values which, in the absence of such feedback, can only

cause equilibrium dynamics (cf. the red region of Fig. 3 for

3:4vmv3:57). The same argument also appears to be valid for

the opposite case (cf. the blue region of Fig. 3 for mw3:9 and

e&0:1). While it is not possible to draw a greater parallel between

our results and the observations of [42] due to the different level of

model complexity involved, the deterministic skeleton of rodent

population dynamics in the absence of structural perturbations

(namely not accounting for rainfall effects) can only produce

equilibrium dynamics (see [42], pp 486). When rainfall patterns

are taken into account, the model is able to reproduce strong

variability in time series data.

Furthermore, our model displays the existence of competing

attractors. Coexistence of multiple attractors has been reported in

the dynamics of discrete stage-structured competition models ([43]

and references therein) and those of mechanistic infectious disease

models ([44], pp. 155-189), where initial population densities are

found to be responsible for the emergence of coexisting attractors.

Figure 6. Coexistence of attractors. Plot (a) shows the extent to which one attractor, for any values of m and e, can coexist with another attractor
(expressed as a percentage on the colour bar). The other plots are (b) one periodic attractor coexisting with either another periodic attractor or an
NAO attractor, (c) a periodic attractor coexisting with an NAO attractor only and (d) an NAO attractor coexisting with a chaotic attractor.
doi:10.1371/journal.pone.0024200.g006

Figure 7. Effect of transients of varying length. Population densities for m~3:95 and e~0:102, plotted as points, are shown for the last 10,000
generations. Initial population densities are shown in the bottom left corners of (a) and (c). The last 100 generations of these time series are plotted as
line plots in (b) and (d) to clearly contrast the NAO behaviour in (a) with the final periodic behaviour in (c).
doi:10.1371/journal.pone.0024200.g007
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Stage-structured discrete models are by far more complex than the

model system here. The presence of multiple attractors in a simple

structurally perturbed model like the one here suggests that

perhaps the coexistence of attractors is rule rather than an

exception in natural populations.

In addition, we find that, for some values of model parameters

for which the asymptotic dynamics are a single periodic attractor,

transients of variable length could suggest that the population

dynamics have more than one attractor. Initial population

densities are again found to play a key role in shaping population

trajectories. The case where population dynamics continuously

appear to be transient, such as when NAO behaviour is

interrupted by chaotic fluctuations (Fig. 8), may also mislead us

in believing that the population dynamics hop between two

attractors (depending on the sampling frequency at which animal

censuses are carried out). In recent years, transient dynamics have

been argued to play a more critical role in shaping ecological

populations than asymptotic equilibrium dynamics [11,28,35,36].

Understanding new mechanisms by which transients can impact

our judgement is therefore a clear necessity, as well as a priority for

better conservation and sustainable management efforts targeted

at natural populations.
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