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Abstract

We analyzed the lung mRNA expression profiles of a murine model of COPD developed using a lung-specific IL-18-
transgenic mouse. In this transgenic mouse, the expression of 608 genes was found to vary more than 2-fold in comparison
with control WT mice, and was clustered into 4 groups. The expression of 140 genes was constitutively increased at all ages,
215 genes increased gradually with aging, 171 genes decreased gradually with aging, and 82 genes decreased temporarily
at 9 weeks of age. Interestingly, the levels of mRNA for the chitinase-related genes chitinase 3-like 1 (Chi3l1), Chi3l3, and
acidic mammalian chitinase (AMCase) were significantly higher in the lungs of transgenic mice than in control mice. The
level of Chi3l1 protein increased significantly with aging in the lungs and sera of IL-18 transgenic, but not WT mice. Previous
studies have suggested Chi3l3 and AMCase are IL-13-driven chitinase-like proteins. However, IL-13 gene deletion did not
reduce the level of Chi3l1 protein in the lungs of IL-18 transgenic mice. Based on our murine model gene expression data,
we analyzed the protein level of YKL-40, the human homolog of Chi3l1, in sera of smokers and COPD patients. Sixteen COPD
patients had undergone high resolution computed tomography (HRCT) examination. Emphysema was assessed by using a
density mask with a cutoff of 2950 Hounsfield units to calculate the low-attenuation area percentage (LAA%). We observed
significantly higher serum levels in samples from 28 smokers and 45 COPD patients compared to 30 non-smokers. In COPD
patients, there was a significant negative correlation between serum level of YKL-40 and %FEV1. Moreover, there was a
significant positive correlation between the serum levels of YKL-40 and LAA% in COPD patients. Thus our results suggest
that chitinase-related genes may play an important role in establishing pulmonary inflammation and emphysematous
changes in smokers and COPD patients.
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Introduction

Chronic obstructive pulmonary disease (COPD) is an important

pulmonary inflammatory disease whose prevalence and associated

mortality rates have been increasing [1,2]. In this disease, T cells

(predominantly IFN-c-producing CD8+ T cells (type 1 cytotoxic T

cells) and Th1 cells), neutrophils and macrophages are activated in

the lungs [3,4], producing proteases such as neutrophil elastase

and matrix metalloproteinase (MMP)-9, resulting in alveolar wall

destruction (emphysematous change) and mucus hypersecretion.

COPD patients also show increased concentrations of MMP-1

(collagenase) and MMP-9 (gelatinase B) in bronchial lavage fluid

(BALF), and higher expression of these enzymes in lung macro-

phages [5]. In addition, various cytokines (e.g. IL-1b, IL-6, TNF-a,

IFN-c), growth factors (e.g. EGF, GMC-SF, TGF-b), and

chemokines (e.g. CCL2, CXCL1, CXCL8, CXCL9, CXCL10,

CXCL11) may be involved in the development of pulmonary

inflammation, emphysema, and fibrosis around small airways in

COPD [6]. Furthermore, Th17 cells can also activate neutro-

phils, and are thought to contribute to the development of COPD

[4,6].

The proinflammatory cytokines IL-1, IL-18, and IL-33 belongs

to the IL-1 family [7]. IL-18 is well known to play an important

role in Th1 polarization, and can also act as a co-factor for Th2

cell development and IgE production [8–11]. Recently, IL-18 was

reported to take part in the differentiation of Th17 cells by

amplifying IL-17 production by polarized Th17 cells in synergy

with IL-23 [12]. IL-18 plays important roles in the pathogenesis of
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inflammatory diseases such as atopic dermatitis [13], rheumatoid

arthritis (RA), adult-onset Still’s disease, Sjögren’s syndrome, and

inflammatory bowel diseases including Crohn’s disease [see review

[8]]. IL-18 is also involved in the development of inflammatory

lung diseases including pulmonary inflammation, asthma, lung

injury and idiopathic pulmonary fibrosis (IPF) [14,15] [16].

Previously, we showed that constitutive overproduction of mature

IL-18 protein in the lungs of transgenic mice resulted in severe

emphysema accompanied by pulmonary inflammation [17]. A

significant negative correlation between the serum IL-18 level and

%FEV1 has also been reported in COPD [18]. Taken together,

these results provide strong support for the involvement of IL-18 in

the pathogenesis of COPD.

Mammals are not able to synthesize or metabolize chitin.

However a number of chitinolytic chitinase-like proteins including

acidic mammalian chitinase (AMCase), chitinase 3-like 1 (Chi3l1),

and chitin-binding protein, belonging to the 18 glycosyl-hydrolase

family, have been discovered in mice [19]. Chi3l1, which is also

known as breast regression protein (BRP)-39 and cartilage gp39,

and its human homolog YKL-40 (also known as human cartilage

gp39), have been regarded as prototype chitinase-like proteins in

mammals [19]. Recent studies have demonstrated increased levels

of YKL-40 protein and/or mRNA in serum or tissues of patients

with inflammatory diseases, including RA, osteoarthritis (OA),

sarcoidosis, and several types of malignancy [see review [20]].

YKL-40 is thought to be a useful prognostic or diagnostic

biomarker for coronary artery disease and cancer [21][22]. In

addition, YKL-40 and chitinase-like protein may be involved in

the pathogenesis of asthma in humans, as well as in a mouse

asthma model [23–25]. Recently, elevated levels of YKL-40 in

serum, BALF, and/or lung tissues of COPD patients have been

reported [26][27]. In the present study, we determined mRNA

expression profiles in the lungs of our murine model of COPD, the

IL-18-transgenic mouse [17], using microarray analysis. We found

that the levels of mRNAs for chitinase-like proteins Chi3l1,

Chi3l3, and AMCase were significantly increased in the lungs of

IL-18-transgenic mice as compared with control wild-type mice.

Moreover, the protein levels of YKL-40 were significantly higher

in serum samples from smokers and COPD patients than in those

from non-smokers. In COPD patients, there was a significant

negative correlation between the serum level of YKL-40 and

%FEV1. In contrast, there was a significant positive correlation

between the serum level of YKL-40 and the low-attenuation

area percentage (LAA%) in COPD patients. In the light of

the findings presented here, we discuss the potential roles of YKL-

40 and chitinase-like protein in pulmonary inflammation and

emphysema.

Methods

Lung-specific IL-18-transgenic (Tg) mice
We used female C57BL/6N (B6) background SPC-IL-18 Tg

mice in which the mature mouse IL-18 was overproduced in the

lungs under the control of the human surfactant protein (SP) C

promoter [17]. We established B6 IL-13 (2/2) SPC-IL-18 Tg

mice by backcrossing SPC-IL-18 Tg mouse line A with B6 IL-13

(2/2) mice, as reported previously [28]. Age-matched female B6

wild-type (WT) mice, purchased from Charles River Japan

(Yokohama, Japan), were used as controls. All procedures were

approved by the Committee on the Ethics of Animal Experiments,

Kurume University (Approval No. H22-079-084). Animal care

was provided in accordance with the procedures outlined in the

‘‘Principle of laboratory animal care’’ (National Institutes of

Health Publication No.86-23, revised 1985).

RNA isolation
Lung tissues were obtained from both Tg and control WT B6

mice, and frozen immediately in liquid nitrogen. Total RNA was

isolated by homogenization of the lung tissues in Trizol reagent

(Invitrogen, Tokyo, Japan) using a Polytron PT2100 (Kinematica

AG, Littau, Switzerland), as reported previously [14].

DNA microarray analysis
A Whole Mouse Genome Oligo Microarray Kit H (catalog

no. G4121A, Agilent Technologies, Tokyo, Japan) was used for

the DNA microarray analysis. We individually hybridized 500 ng

of total RNA isolated from each Tg and control mouse. RNAs

isolated from WT and Tg mice were labeled with Cy5 and Cy3,

respectively, and the Cy3/Cy5 ratio was used as an absolute

indicator of the fold-change of expression in the SPC-IL-18 Tg

mouse relative to the WT control. GeneSpring softwareH (Agilent

Technologies) was used for analysis.

Quantitative real-time reverse transcriptase (RT) PCR
TaqMan RT-PCR was performed using a LightCycler 480 and

Universal Probe Library Probes (Roche Diagnostics, Tokyo,

Japan), as reported previously [13]. Briefly, first-strand cDNAs

were synthesized using oligo (dT)12–18 primers from total RNA

(4 mg) using a First-Strand cDNA Synthesis kit (Invitrogen).

TaqMan PCR reactions were carried out using premade kits

from Roche Diagnostics, and 5 ml of 5-fold-diluted cDNA was

used in each 20-ml reaction volume. The mixture solution was

denatured for 10 min at 95uC and then subjected to 45 two-step

amplification cycles, each comprising an annealing/extension step

at 60uC for 25 s, followed by denaturation at 95uC for 10 s. The

primer sequences were:

Mouse IL-18 sense primer: 59- CATGTACAAAGAC-

AGTGAAGTAAGAGG –39;

Mouse IL-18 antisense primer: 59-TTTCAGGTGG-

ATCCATTTCC-39;

Mouse Chi3l1 sense primer: 59-AGGCTTTGCGGT-

CCTGAT-39;

Mouse Chi3l1 antisense primer: 59-CCAGCTGGTG-

AAGTAGCAGA-39;

Mouse Chi3l3 sense primer: 59-GAACACTGAGC-

TAAAAACTCTCCTG -39;

Mouse Chi3l3 antisense primer: 59-GAGACCATGG-

CACTGAACG-39;

Mouse GAPDH sense primer: 59-TGTCCGTCGTG-

GATCTGAC-39;

Mouse GAPDH antisense primer: 59-CCTGCTTCAC-

CACCTTCTTG -39;

Relative expression levels were determined using the delta delta

Ct method. Amplification of the gene for mGAPDH was

performed on all samples tested to control for variations in RNA

content, and all transcript values were normalized with reference

to the GAPDH mRNA level.

ELISA assays
The whole lung tissues were homogenized in 2 ml of lysis buffer

(1% Triton X-100, 10 mM Tris-HCl, 5 mM EDTA, pH 7.6)

containing a protease inhibitor cocktail (CompleteTM Mini,

Boehringer Mannheim GmbH, Mannheim, Germany) and

centrifuged at 20,0006 g for 15 min. The supernatant was then

collected and stored at 280uC until ELISA assay, as reported

previously [15]. Sandwich ELISA kits were used for mouse
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chitinase 3-like 1 (Chi3l1) (R&D Systems, Minneapolis, MN) and

YKL-40 (Quidel Corporation, San Diego, CA). The limit of kit

sensitivity was 16.0 pg/mL and 20 ng/mL, respectively.

Human subjects
Serum samples were obtained from 30 non-smokers, 28

smokers, and 45 COPD patients. Forty-five COPD patients

diagnosed with COPD were monitored at Kurume University

Hospital (Kurume Japan), Fukuoka University Hospital (Fukuoka,

Japan), Chikugogawa Onsen Hospital (Ukiha, Japan), Kirigaoka

Tsuda Hospital (Kitakyushu, Japan), Shigemoto Hospital (Shimo-

noseki, Japan), Keisinkai Hospital (Tosu, Japan), Tokunaga-Naika

Clinic (Fukuoka, Japan), the Social Insurance Futase Hospital

(Iizuka, Japan), and Arao Central Hospital (Arao, Japan). Table 1

give details (number, age, sex, GOLD Stage, smoking history,

body mass index [BMI], pulmonary function, and treatment) of all

subjects. All patients with COPD were diagnosed on the basis of

clinical history, physical examination, chest X-ray, chest computed

tomography, and pulmonary function tests in accordance with the

Global Initiative for Chronic Obstructive Lung Disease (GOLD)

clinical criteria for the diagnosis and severity of COPD [29].

Written informed consent was obtained from each subject. Sample

collection and all procedures were approved by the ethics

committee of Kurume University (Approval No. 08067).

Pulmonary function tests
Predicted normal values for Japanese individuals were used to

calculate the predicted FEV1, which met the Japanese Pulmonary

Function Standard stipulated by the Japanese Respiratory Society

[30,31].

Assessment of HRCT
HRCT was performed at suspended full inspiration, 1-mm slice

thickness, a 10-mm gap, and the smallest field of view that include

both lungs using a CT scanner (Light Speed Ultra, GE

Healthcare, Milwaukee, WI, USA). The three images were

obtained at three anatomical levels: (a) near the superior margin

of the aortic arch (level of the upper lung zone); (b) at the level of

the tracheal carina (level of the middle lung zone); and (c) at the

level of the orifice of the inferior pulmonary veins (level of the

lower lung zone). The lungs were divided into six zones (upper,

middle, and lower on both sides), and each zone was evaluated

separately. Emphysema was assessed by using a density mask with

a cutoff of 2950 Hounsfield units to calculate LAA% as previously

reported [32] [33].

Statistical analysis
Data were presented as the mean 6 standard error of the mean

(SEM). Differences between two groups were analyzed by the

Wilcoxon rank-sum test. Statistical analysis was performed with

the JMP 7.0.1 software package (SAS Institute Japan, Tokyo,

Japan). Differences were considered significant at P,0.05.

Results

K-means clustering analysis of 608 genes
Lung tissues were obtained, and total RNA extracted from

SPC-IL-18 Tg and control Tg negative littermate mice at 5, 9, and

13 weeks of age (n = 3 per group). It was found that the mRNA

levels of 608 genes were altered ,0.5-fold or .2-fold at 5, 9, and/

or 13 weeks of age in the lungs of Tg mice relative to those in

control Tg negative mice. We classified these 608 genes into 4

groups using K-means clustering analysis. Group 1 included 140

genes whose expression levels were constitutively enhanced in the

lungs of Tg mice at 5, 9, and 13 weeks. Group 2 included 215

genes whose expression levels were elevated gradually with aging.

Group 3 included 171 genes whose expression levels were

decreased gradually with aging. Group 4 included 82 genes whose

expression levels were decreased at 9 weeks of age. In group 1

(Table S1), we demonstrate that several genes including those for

IL-18 (transgene), chloride channel calcium activated 3 (Clca3),

and the chitinase-related genes chitinase 3-like 3 (Chi3l3), Chi3-

like 1 (Chi3l1) and acidic mammalian chitinase (AMCase), were

strongly upregulated in the lungs of Tg mice from 5 to 13 weeks of

age. Immunoglobulin (Ig), Ig receptor, small inducible cytokines,

complement genes, major histocompatibility (MHC) class I and

class II antigens, amyloid, chemokines, and apoptosis-related

genes were also constitutively increased at 5 to 13 weeks of age. In

group 2 (Table S2), Igs, cholesterol 25-hydroxylase (Ch25h), small

Table 1. Clinical characteristics of COPD patients, smokers,
and non-smokers examined in this study.

Non-smoker Smoker COPD

No. of patients 30 28 45

Age (years) 64.662.6 61.862.5 67.961.3

Sex

Male 13 23 38

Female 17 5 7

GOLD

Stage I 0 0 11

Stage II 0 0 15

Stage III 0 0 11

Stage IV 0 0 8

Smoking history

Current 0 28 23

Ex-smoker
(Years since quitting smoking)

0 0 22
(6.7561.2)

Pack-years 0 35.063.7* 56.563.7*{#

BMI 20.160.7 20.960.8 21.260.5

%FVC 93.9764.8 97.064.4 84.964.1

%FEV1 115.864.4 102.963.5 58.564.0*{

FEV1% (FEV1/FVC) 83.962.0 78.861.5 48.162.2*{

Treatment

Systemic steroids 0 0 0

LAMA 0 0 15/39 (38.5%)

ICS 0 0 12/39 (30.8%)

LABA 0 0 18/39 (46.2%)

Other bronchodilatorsa 0 0 10/39 (25.6%)

No drug treatment 30/30 (100%) 28/28 (100%) 16/39 (41.0%)

*P,0.05 vs. non-smoker.
{P,0.05 vs. smoker.
#Smoking history in patients with stage I , II, III, and IV COPD were 51.867.7,
60.867.9, 56.265.7 and 56.367.0 pack-years, respectively.
a: Methylxanthines or Oxitropium bromide.
COPD: Chronic Obstructive Pulmonary Disease.
GOLD: Global Initiative for Chronic Obstructive Lung Disease.
BMI: body mass index.
FVC: forced vital capacity.
FEV1: forced expiratory volume in one second.
LAMA: long-acting muscarinic antagonists.
ICS: inhaled corticosteroids.
LABA: long-acting b2-agonists.
doi:10.1371/journal.pone.0024177.t001
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inducible cytokines, arginase, a lysosome enzyme (cathepsin), and

apoptosis-related genes including caspase showed a gradual

increase of expression with age. In group 3 (Table S3), several

genes including spermine binding protein, cytochrome P450

(CYP4B1, CYP2F2, CYP2A4, CYP2S1), antioxidant genes (e.g.

glutathione s-transferase (GST) and peroxiredoxin), G-protein-

coupled receptors (GPCRs, olfactory receptor-like), aquaporin and

myosin showed a gradual decrease of expression with age. Among

the 82 genes of group 4, those such as GPCR (olfactory receptor-

like) and P450 (26A2) showed a transient decrease at 9 weeks of

age (Table S4).

Increased levels of Chi3l1 and Chi3l3 expression in the
lungs of COPD model mice

Three chitinase-related genes, Chi3l1, Chi3l3 and AMCase,

were strongly upregulated in the lungs of SPC-IL-18 Tg mice from

5 to 13 weeks (Table S1). To validate these results, TaqMan RT-

PCR was used to assess RNA samples isolated from the lungs of 5-

week-old female Tg and control WT B6 mice (n = 4 per each

group). Quantitative RT-PCR analysis demonstrated that the

expression levels of Chi3l1, Chi3l3, and IL-18 mRNAs in Tg mice

were 3.7-, 10.6-, and 99.0-fold higher than in control WT mice,

respectively. There were significant (p,0.01) differences in the

expression levels of Chi3l1, Chi3l3 and IL-18 (transgene) in the

lungs when compared to those in Tg and WT mice (Fig. 1A). Gene

array analysis showed that the expressions levels of IL-18 mRNA

in Tg mice were approximately 5- to 7-fold higher than in WT

mice at 5, 9, and 13 weeks of age (average increase, 5.93-fold; see

Table S1), similar to data that we have previously reported [17].

We then examined Chi3l1 protein levels in the lungs and sera of

Tg and WT mice. Lung tissues were obtained from 7-, 16- and 24-

week-old SPC-IL-18 Tg and WT control mice (n = 4 per each

group) and ELISA analysis showed that the level of Chi3l1 protein

in the lungs of WT mice did not alter significantly during aging,

whereas there was a significant increase of Chi3l1 protein in the

lungs of SPC-IL-18 Tg mice. Moreover, the level of Chi3l1 protein

increased significantly (P,0.05, 7 weeks vs. 24 weeks) with age in

the lungs of SPC-IL-18 Tg mice. The serum levels of Chi3l1 level

were significantly increased in IL-18 Tg mice when compared with

control wild type mice at 16 and 24 weeks (Fig. 1B). We also

examined the levels of IL-18 protein in the lung and sera of IL-18

Tg mice. The ELISA analysis showed the levels of IL-18 in the

lungs and sera were significantly increased in IL-18 Tg mice when

compared with control wild type mice. The level of IL-18 protein

increased significantly with age in the lungs and sera of IL-18 Tg

mice (Fig. 1B), as we previously reported [17].

IL-13 gene deletion does not reduce the level of Chi3l1
protein in the lungs of IL-18-transgenic mice

Previous studies have suggested that Chi3l3 and AMCase are

IL-13-driven chitinase-like proteins [25,34]. Therefore, we

evaluated whether IL-13 gene deletion would reduce the level of

Chi3l1 protein in the lungs of IL-18-transgenic mice. We

established B6 IL-13 (2/2) SPC-IL-18 Tg mice by backcrossing

SPC-IL-18 Tg mouse line A with B6 IL-13 (2/2) mice. ELISA

analysis revealed that IL-13 gene deletion did not significantly

reduce the level of Chi3l1 protein in the lungs of the IL-18-

transgenic mice (Fig. 2).

Expression levels of YKL-40 in sera of non-smokers,
smokers and COPD patients

Based on our data with the transgenic mouse model, we next

asked if similar changes in the chitinase-like genes could also be

observed in patients with significant lung inflammation, i.e.

smokers and COPD patients. Data classifying the patients is

shown in Table 1. Serum levels of YKL-40 in current smokers

without COPD (331.8637.0 ng/mL, n = 28) and COPD patients

(268.9632.3 ng/mL, n = 45) were significantly (P,0.01) higher

than those in non-smokers (177.8622.6 ng/mL, n = 30). The

serum levels of YKL-40 did not differ significantly between 28

current smokers without COPD and the 45 COPD patients.

Serum levels of YKL-40 in 23 current smokers with COPD and 22

ex-smokers with COPD were 254.5641.1 and 283.9651.0 ng/

mL, respectively. There were no significant differences in serum

YKL-40 levels between current smokers with COPD and ex-

smokers with COPD. The serum levels of YKL-40 in 23 current

smokers with COPD were not significantly higher than those in 28

current smokers without COPD, or in 30 non-smokers. Next, we

classified the 45 COPD patients according to the GOLD

classification of COPD severity . Serum YKL-40 levels in GOLD

stages I (n = 11), II (n = 15), III (n = 11), and IV (n = 8) were

181.6638.2, 199.4639.8, 376.2659.6, and 371.66120.6 ng/mL,

respectively. Interestingly, the serum levels of YKL-40 in GOLD

stages III and IV, but not stages I, or II, were significantly

(P,0.01) higher than those in non-smokers. The serum levels of

YKL-40 in GOLD stage III were significantly (P,0.01) higher

than those in stages I or II. It is of note that the serum levels of

YKL-40 in some smokers were over 600 ng/mL (Fig. 3). Next, the

correlation between serum levels of YKL-40 and pulmonary

function was analyzed in nonsmokers, smokers and COPD

patients. In COPD patients, there was a significant (P,0.05)

negative correlation between serum level of YKL-40 and predicted

FEV1 (%FEV1) (r = 0.338) (Fig. 4A) but not between serum YKL-

40 and %FVC (Fig. 4B). In contrast, no significant correlations

between serum levels of YKL-40 and %FEV1 were observed in

nonsmokers or smokers (data not shown). Serum levels of IL-18 in

smokers (n = 28, 216.5615.5 pg/mL) and COPD patients (n = 40,

235.4613.2 pg/mL) were significantly (P,0.0001) higher than

those in nonsmokers (n = 30, 113.7613.5 pg/mL), as we previ-

ously reported [18]. There was a significant association between

serum levels of IL-18 and YKL-40 among nonsmokers, smokers

and COPD patients (data not shown). We evaluated whether ICS

treatment influenced serum levels of YKL-40 in COPD patients.

However, we observed that ICS treatment did not significantly

affect serum levels of YKL-40 in COPD patients.

Positive correlation between serum level of YKL-40 and
LAA% in COPD patients

Sixteen COPD patients had undergone HRCT examination,

LAA% was calculated, and serum levels of YKL-40 were examined.

In COPD patients, there was a significant (P,0.0001) positive

correlation between serum level of YKL-40 and LAA% (%FEV1)

(r = 0.830) (Fig. 5).

Discussion

Smoking is recognized to be the largest risk factor for COPD.

Cigarette smoke is a major source of reactive oxygen species

(ROS), exposure to which can lead to pulmonary inflammation

and emphysema [2]. In fact, treatment with antioxidants has been

shown to decrease the degree of oxidative damage in COPD

patients and COPD animal models. For example, orally

administered N-acetylcysteine (NAC) reduces the viscosity and

purulence of phlegm in COPD patients [35]. CuZn superoxide

dismutase is known to be a strong antioxidant, and Tg mice

overproducing human CuZn superoxide dismutase do not develop

pulmonary inflammation in models of pulmonary emphysema

Chitinase 3-Like 1 in COPD Model, Smokers and COPD
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induced by cigarette smoke or elastase [36]. In addition, the

antioxidant thioredoxin 1 (TRX1) inhibits elastase-induced em-

physema in mice [37]. In the present study, we showed that

expression of antioxidant genes such as GST, SOD1, and SOD3

was decreased in the lungs of IL-18 Tg mice. These results suggest

that decreased antioxidant activities in the lungs may contribute to

pulmonary inflammation and emphysema in the COPD mouse

model .

Cathepsins are lysosomal cysteine proteases involved in the

pathogenesis of COPD [5,38]. Expression of cathepsin S is

induced by IFN-c in several cell types, including smooth muscle

cells. Increased levels of cathepsin L have been observed in BALF

of patients with emphysema, and alveolar macrophages from

COPD patient secrete more cysteine protease than macrophages

from smokers without disease, or those from non-smokers [5].

Overexpression of IFN-c in the lungs induces emphysema in mice

with increased expression of cathepsins B, D, H, L and S [39]. In

the present study, we found that cathepsins S, D, B, Z, L and C

were strongly expressed in the lungs of IL-18 Tg mice, and that

Figure 1. Expression of chitinase-related genes in the lungs of ling-specific IL-18 transgenic mice. (A) TaqMan RT-PCR analysis of chitinase
3-like 1 (Chi3l1), chitinase 3-like 3 (Chi3l3), and IL-18 (transgene) mRNA expression in the lungs of 5-week-old SPC-IL-18-Tg (TG) mice, in comparison with
control wild type (WT) mice (n = 4, each group). * P,0.01 vs. WT mice. (B) Lung tissues and sera were obtained from 7-, 16- and 24-week-old SPC-IL-18-Tg
and control WT mice (n = 4 per group). The whole lung tissues were homogenized in 2 ml of lysis buffer, as described in Methods. The levels of Chi3l1 and
IL-18 protein in the lungs and sera were analyzed using sandwich ELISA kits *: P,0.01 vs. WT mice. +: P,0.05 vs. 7-week-old Tg mice.
doi:10.1371/journal.pone.0024177.g001

Figure 2. The effects of IL-13 gene deletion on the expression
of Chi3l1 in the lungs of lung specific IL-18 transgenic mice.
Lung tissues were obtained from 21- to 24-week-old B6 SPC-IL-18 Tg, B6
IL-13 (2/2) (KO) SPC-IL-18 Tg, B6 IL-13 (2/2) and control B6 WT mice
(n = 4 per group). The whole lung tissues were homogenized in 2 ml of
lysis buffer, and then the levels of Chi3l1 protein in the lungs were
analyzed using sandwich ELISA kits, as described in Methods. *: P,0.05
vs. WT mice. +: P,0.05 vs. IL-13 (2/2) mice.
doi:10.1371/journal.pone.0024177.g002
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this was associated with severe emphysematous changes. These

results suggest that in Tg mice, overexpression of IL-18 may

increase the levels of cathepsins, which may in turn induce the

development of emphysematous changes in the lungs.

In the present study we found that the levels of mRNA and/or

protein for the chitinase-related genes Chi3l1, Chi3l3, and

AMCase were strongly increased in the lungs of IL-18 Tg mice,

relative to Tg negative littermate mice, suggesting that IL-18

induces the expression of chitinase-related genes in vivo. Previous

studies have demonstrated that IL-13 directly induces the

expression of Chi3l1 in vivo [34] and Chi3l1 induction by cigarette

smoke was found to be partly dependent on the IL-18 pathway. In

contrast, IL-18 induction was not significantly modulated in the

absence of the Chi3l1 gene, suggesting that Chi3l1 operates

downstream of IL-18 [27]. A previous study reported that

AMCase was greatly induced in lung-specific IL-13 transgenic

mice over-expressing mouse IL-13 proteins in the lungs. In

contrast, AMCase was not up-regulated relative to WT mice in the

IL-13 (2/2) mouse asthma model [25]. These results suggest that

Chi3l3 and AMCase are IL-13-driven chitinase-like proteins. We

have reported that IL-18 induces both Th1 and Th2 cytokines,

including IL-13 and IFN-c in vivo and in vitro (9–11). Moreover,

disruption of the IL-13 gene but not the IFN-c gene prevented

emphysema and pulmonary inflammation in SPC-IL-18 Tg mice

[17]. Therefore, we hypothesized that the expression of Chi3l1

induced by IL-18 is at least partly dependent on the IL-13

pathway in vivo. We established IL-13 (2/2) SPC-IL-18 Tg mice

by backcrossing B6 SPC-IL-18 Tg mice with B6 IL-13 (2/2)

mice. However, IL-13 gene deletion did not significantly reduce

the protein level of Chi3l1 in the lungs of IL-18 transgenic mice,

suggesting that IL-18 drives the expression of Chi3l1 indepen-

dently of the IL-13 pathway. Previous studies have demonstrated

that the proinflammatory cytokines TNF-a and IL-1b both

regulate the expression of YKL-40 in articular chondrocytes via

NF-kB signaling [40]. Various inflammatory cytokines including

IL-13, IFN-c, IL-1a, IL-1b, and IL-12 were greatly up-regulated

in the lungs of lung-specific IL-18-Tg mice [17]. Therefore it is

suggested that IL-18 regulates the expression of multiple

inflammatory cytokines, together with Chi3l1.

In this study, we found that Chi3l1 protein was induced in the

lung of SPC-IL-18 Tg mice. However, as we examined levels of

Figure 3. Serum levels of YKL-40 in smokers and a subset of
COPD patients. Serum samples were obtained from 30 non-smokers,
28 current smokers, and 45 COPD patients (GOLD stages I [n = 11], II
[n = 15], III [n = 11], and IV [8]), and analyzed for YKL-40 protein levels
using sandwich ELISA kits. *: P,0.01 vs. nonsmokers. +: P,0.05 vs.
GOLD stages I or II.
doi:10.1371/journal.pone.0024177.g003

Figure 4. Relationship of serum levels of YKL-40 with %FEV1

and %FVC in COPD patients. Serum YKL-40 levels and %FEV1 (A)
and %FVC (B) in COPD patients (n = 45) were analyzed.
doi:10.1371/journal.pone.0024177.g004

Figure 5. Positive correlation between serum level of YKL-40
and LAA% in COPD patients. Sixteen COPD patients had undergone
high resolution computed tomography (HRCT) examination. Emphyse-
ma was assessed by using a density mask with a cutoff of 2950
Hounsfield units to calculate the low-attenuation area percentage
(LAA%). Serum levels of YKL-40 and LAA% were evaluated in COPD
patients.
doi:10.1371/journal.pone.0024177.g005
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Chi3l1 protein in the lung homogenate samples, it is unclear which

type of cells are the major source of Chi3l1 in these mice.

Unfortunately we have not been able to identify the cellular source

as the commercial anti-goat mouse Chi3l1 polyclonal antibody

was not suitable for immunohistochemistry. Next, we examined

whether IL-18 can induce Chi3l1 protein from lymphocytes.

Spleen cells were isolated from wild type B6 mice, and were passed

through nylon wool column. The nylon wool column-passed cells

(26106/mL) were stimulated with recombinant human IL-2

(100 U/mL), recombinant mouse IL-18 (100 ng/mL), or IL-2

plus IL-18. Cells were stimulated for 18 hrs, and the supernatants

were harvested. ELISA analysis showed that stimulation with IL-2

plus IL-18 induced IL-13 and IFN-c production from the cells as

we previously reported [9]. In contrast, stimulation with IL-2, IL-

18 or IL-2 plus IL-18 did not induced Chil1 production from the

spleen cells (data not shown). Our results suggest that the Chi3l1 is

induced via paracrine mechanisms. Further analysis and better

biochemical tools are needed to clarify these issues.

We believe that our mouse model is a useful system to help us

understand the changes taking place in the lungs of smokers and

those patients with COPD. Letuve el. al. analyzed the serum levels

of YKL-40 in 15 non-smokers, 20 current smokers and 30 COPD

patients (comprising 14 current smokers and 16 ex-smokers) [26].

Very recently, Matsuura conducted similar measurements in 12

non-smokers, 11 (presumably current) smokers without COPD

and 18 (presumably current) smokers with COPD [27]; both

studies indicated that the serum levels of YKL-40 in smokers with

COPD were significantly higher than those in smokers without

COPD, or in non-smokers. Matsuura also has reported that the

number of YKL-40+ cells in the lungs was significantly increased

in current smokers than seen in ex-smokers or nonsmokers, but

serum levels of YKL-40 was not increased in current smokers [27].

It is of note that two of the previous studies [26][27] evaluated the

serum levels of YKL-40 in relatively small numbers of subjects. In

the present study, we analyzed the serum levels of YKL-40 in 30

nonsmokers, 28 current smokers without COPD and 45 COPD

patients (comprising 23 current smokers and 22 ex-smokers). We

found that the serum levels of YKL-40 in current smokers without

COPD, and those in COPD patients, were significantly higher than

in non-smokers. However, the serum levels of YKL-40 did not differ

significantly between current smokers with COPD and current

smokers without COPD patients, and there were no significant

differences in serum YKL-40 levels between current smokers with

COPD and ex-smokers with COPD. Similar to our results, Agapov

showed that the serum levels of YKL-40 in current- and ex-smokers

with COPD were not significantly higher than those in current

smokers without COPD [41]. Overall, the results suggest that

cigarette smoke may increase the serum level of YKL-40.

In this study, we found there was a significant negative

correlation between serum levels of YKL-40 and %FEV1 in

COPD patients. Previous studies reported that the decline of

%FEV1 was correlated with emphysematous changes in COPD

patients [32][33]. These results suggest that serum levels of YKL-

40 are associated with emphysematous changes in COPD patients.

Therefore, we evaluated the relationship of serum levels of YKL-

40 with LAA% in COPD patients. We found a very close

association between serum levels of YKL-40 and LAA% in COPD

patients. However, there was no significant association between

serum levels of IL-18 and LAA% in COPD patients (data not

shown). These results suggest that YKL-40 may be involved in the

development of emphysematous changes in COPD patients.

In conclusion, our results demonstrate that chitinase-related

genes (including Chi3l1, Chi3l3, and AMCase) and IL-18 may

play an important role in the establishment of pulmonary

inflammation and emphysematous change in COPD. The lung-

specific IL-18 Tg mouse is a new model that closely resembles

human COPD, and thus may be useful for screening drugs that

could inhibit or slow the progression of this disease.
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