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Abstract

The identification of disease-causing genes is a fundamental challenge in human health and of great importance in
improving medical care, and provides a better understanding of gene functions. Recent computational approaches based
on the interactions among human proteins and disease similarities have shown their power in tackling the issue. In this
paper, a novel systematic and global method that integrates two heterogeneous networks for prioritizing candidate
disease-causing genes is provided, based on the observation that genes causing the same or similar diseases tend to lie
close to one another in a network of protein-protein interactions. In this method, the association score function between a
query disease and a candidate gene is defined as the weighted sum of all the association scores between similar diseases
and neighbouring genes. Moreover, the topological correlation of these two heterogeneous networks can be incorporated
into the definition of the score function, and finally an iterative algorithm is designed for this issue. This method was tested
with 10-fold cross-validation on all 1,126 diseases that have at least a known causal gene, and it ranked the correct gene as
one of the top ten in 622 of all the 1,428 cases, significantly outperforming a state-of-the-art method called PRINCE. The
results brought about by this method were applied to study three multi-factorial disorders: breast cancer, Alzheimer disease
and diabetes mellitus type 2, and some suggestions of novel causal genes and candidate disease-causing subnetworks were
provided for further investigation.
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Introduction

Computational investigation of gene functions in the context of

complex biological systems is promoted greatly by the accumulation

of high-throughput data, of which protein-protein interaction data

have been exploited to identify disease-causing genes, based on the

observation that genes implicated in a specific or similar diseases

tend to be located in a specific neighbourhood in the protein-protein

interaction network [1,2,3]. The identification of genes involved in a

specific disease has long been a challenge in the study of human

genetics. In addition to traditional gene-mapping approaches, many

computational methods based on gene functions have appeared,

which was reviewed by Oti and Brunner in [3]. Recently, a few

computational approaches for candidate gene prioritization have

been developed which exploit both the protein-protein interactions

and the disease phenotypic similarities. Lage et al. [4] scored a

candidate protein based on the involvement of its direct network

neighbours involved in a similar disease, in which a new disease

similarity measure was also given and applied for prioritizing both

the protein complex and the candidate disease gene in the protein

complex. Kohler et al. [5] presented a method for prioritization of

candidate genes by use of a global network distance measure-

random walk analysis-for definition of similarities in the protein-

protein interaction network. Wu et al. [6] proposed a computational

framework that integrates human protein-protein interactions,

phenotype similarities, and known gene-phenotype associations to

capture the complex relationships between disease phenotypes and

genotypes. They defined the global concordance score between the

phenotype similarity profile and the gene closeness profile as the

disease-gene association score. Furthermore, a tool named CI-

PHER was developed to predict and prioritize candidate disease-

causing genes. In their follow-up work [7], they studied the

consistency between the disease phenotypic overlap and genetic

overlap via the network alignment technique systematically and

quantitatively. Vanunu et al. introduced PRINCE [8], a global

method for prioritizing candidate genes that simulates a process

where proteins for which prior information exists pump information

to their neighbours in the protein-protein interaction network. In

PRINCE, for a given disease the prioritization is done iteratively

over the entire protein interaction network, and each protein

propagates the information received in the previous iteration to its

neighbours.
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Although many approaches have been developed for prioritiz-

ing candidate disease-causing genes based on exploiting the

protein-protein interaction network and phenotype similarities,

most of which deal with the disease-gene association score based

on the association between the diseases similar to the query

disease and their involved genes independently. In this work, the

modular nature of the genetic diseases [3,9] and the consistency

between the disease phenotypic overlap [10] and genetic overlap

[11] are fully exploited. For this purpose, the disease similarity

network and the protein-protein interaction network are

incorporated systematically and comprehensively in a simple

and compact manner to formulate the computation of the

prioritization scores. As for a single disease gene association score

function, both the similar diseases in the disease similarity

network and neighbouring genes in the protein-protein interac-

tion network are considered because of the modular nature of the

genetic diseases. What is more, all the association scores between

the similar diseases and neighbouring genes would be integrated

into the iterative computation of this single disease gene

association score. This is illustrated in Figure 1.

Our method is used to analyse disease-gene association data

from the Online Mendelian Inheritance in Man (OMIM) [12] and

to test, in the 10-fold cross-validation setting, the utility in

prioritizing genes for all the diseases with at least one known gene.

The performance of our method is evaluated in comparison to the

method PRINCE. Results show that our method outperforms

PRINCE significantly in the gene prioritization task. Our method

is also applied to the study of three multi-factorial diseases-Breast

Cancer, Alzheimer Disease and Diabetes Mellitus Type 2, for

which some novel causal genes and related disease subnetworks

are suggested.

This paper is structured as follows: In Section ‘‘Results’’, a

comparison of our method and PRINCE is first made with 10-

fold cross-validation. Then our method is further validated on

the three types of control data set, with its robustness also

evaluated. Finally, we perform a case study on three multi-

factorial diseases-Breast Cancer, Alzheimer Disease and

Diabetes Mellitus Type 2. In Section ‘‘Discussions and

Conclusions’’, the success and improvements of this method

are described, with further applications of this method also

discussed and prospected. In Section ‘‘Methods’’ we introduce

the principle of this method, the network construction, and the

iterative algorithm for the computation of the disease gene

association score.

Results

Materials and Implementation
The 1428 known disease-gene associations and the protein-

protein interactions used to create the disease gene association

matrix Adg0 and the protein-protein interaction network G,

respectively, are downloaded from Cipher’s website [13]. Accord-

ing to the declaration in Cipher [6], the disease-gene associations

are from the OMIM knowledge database [12], and the protein-

protein interactions from the Human Protein Reference Databa-

se(HPRD) [14]. The disease similarity data constructed by van

Driel et al. [10] are downloaded from MimMiner’s website [15].

All these data will be illustrated carefully later in the Section

‘‘Methods’’.

In this method, there are three parameters to be tuned: (1)

the threshold parameter b which is used to filter out the disease

similarity and the prior association score smaller than it, and is

set as ‘‘0.5’’; (2) a, which controls the relative importance of the

prior information in the computation of the disease-gene

association scores. We choose ‘‘0.6’’ for it and the other values

above ‘‘0.6’’ can not improve the performance of the method;

and (3) the number of the iterations. a and b are tuned by the

performance of the algorithm in the cross-validation tests. The

iterative computation will stop by the mean square deviation of

the disease-gene association score matrix between the k th

iteration and the (kz1) th iteration. Once the mean square

deviation is not greater than 0.00001, the algorithm will be

stopped.

Our method has been implemented in MATLAB, and

PRINCE has been reimplemented on our input data sets. Their

parameters were also tuned in the cross-validation test, in which

the parameter c and d were tuned as 21414 and 528, respectively,

to get the best performance, and the relative importance of the

prior knowledge and the mean square deviation were set as the

same as those in our method.

All the computational experiments were executed on four cores

of Intel(R) Xeon(R) CPU E5504 @2.00Ghz.The MATLAB code

and data sets described herein are available upon request.

Precision, recall and irrelevant control set
According to the standard definitions of precision and recall in

Formula (1), which were given by Lage et al. [4].

Figure 1. Principle of our method. In Figure 1, green round nodes
represent proteins, and blue square nodes represent diseases, with
each dot line connecting a green round node and a blue square node
indicating a known disease-gene association. The red line connecting
gene g and disease d is a candidate disease-gene association remaining
to be estimated, which is measured by the associations indicated by
black dot line in this figure iteratively in our method.
doi:10.1371/journal.pone.0024171.g001
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precision~
the number of relevant items retrieved

the total number of items retrieved

recall~
the number of relevant items retrieved

the total number of relevant items

ð1Þ

For a given-rank threshold, precision is the fraction of the

relevant genes retrieved among all the genes retrieved (the number

of relevant genes retrieved/the number of genes retrieved) and

recall is the proportion of the relevant genes retrieved to all the

relevant genes in collection (the number of relevant genes

retrieved/the number of relevant genes). Here, the relevant genes

are considered as the known disease genes for each disease, and

the total number of items (genes) retrieved is the total number of

genes above the rank threshold.

To compute the precision and recall, the relevant items and

irrelevant items should be constructed. First and foremost, the

known disease-gene associations are relevant items here. As for the

irrelevant items, we associated the genes that are not known to any

disease with a disease artificially, and these disease-gene

associations are considered as irrelevant items and constitute the

irrelevant control set. It should be known that the genes, which are

not associated with any disease in our disease-gene association set

and called ‘‘unassociated genes’’, are not ‘‘irrelevant’’ and just

‘‘unknown to us’’. In our method, three types of irrelevant control

set are constructed. One is the whole genome wide control set,

another is the random control set and the last one is the artificial

linkage interval control set. As for the random control set in 10-

fold cross-validation, we divided all the 1428 disease-gene

associations into ten subdivisions averagely, with about 142

diseases and 142 disease-gene associations in each subdivision.

For each subdivision, we randomly selected n genes from the set of

‘‘unassociated genes’’. For each disease involved in the subdivision,

we constructed n disease-gene associations with the n random

selected genes. So, there are about 142 � n disease-gene associa-

tions constructed artificially, which constitute the random control

set and are considered as irrelevant items. There are about 142

known disease-gene associations, which are considered as relevant

items. Both the irrelevant and relevant items are measured by their

ranks in the whole genome to compute precision and recall. All ten

subdivisions are done separately in the same way as above. For a

given rank k, the final precision and recall are the average results

of all ten subdivisions. As for the whole genome wide control set,

all the ‘‘unassociated genes’’ in the protein interaction network

rather than random selected n genes are used, and the irrelevant

items and the irrelevant control set are constructed in the same

way as above. As regard to simulating the real-life situation in

which one or more susceptible linkage intervals rather than

specific genes have been associated with some disease, an artificial

linkage interval around a known disease-causing gene is

constructed according to the genes’ coordinates on the whole

genome, and this is motivated by the method used in Lage et al.

[4]. We extracted no more than 100 genes around the known

disease gene on the same chromosome, and these genes are used to

construct the irrelevant items and the irrelevant control set as

above. The tests were performed on the three irrelevant control

sets, and the results will be described in detail later.

A comparison between our method and the method
PRINCE

Only a comparison was made between our method and the

state-of-the-art method PRINCE because in PRINCE both the

random-walk based method of [5] and the Cipher method [6]

were reimplemented and evaluated on the same input data. We

reimplemented the method PRINCE on our input data and made

the comparison with it. Our method was compared with PRINCE

by the 10-fold cross-validation procedure. In each test of 10-fold

cross-validation, 1/10 of the known associations in the disease-

gene association set were removed, each method being evaluated

by its success in recovering the hidden association. For a given-

rank threshold k, if the hidden disease-gene association was ranked

within the top k over the entire protein interaction network, it

could be said that the association was successfully recovered. The

two methods were evaluated in performance in terms of precision

versus recall when varying the rank threshold k.

The results obtained by prioritizing candidates on all 1126

diseases in the 10-fold cross-validation show that our method is

superior to PRINCE in both precision and recall (Figure 2). Of all

1126 diseases, in terms of 10-fold cross-validation on the random

control set of size 2000, there are 633 different predictions ranked

within top 10, among which there are 622 correctly identified

disease genes, so that the precision at this threshold is 98.3%. At

the same threshold, the recall is 43.6%. A plot of precision versus

threshold k shows the proportionality between the rank and the

chance that the candidate gene is the correctly identified disease

gene. Candidates ranked within top 100 are correct in more than

85.7% of the cases (Figure 3-a). That is, top ranked candidates are

very likely to be correct disease-causing genes. Another plot of

recall versus rank threshold k is depicted in Figure 3-b.

One type of failure to reconstruct the known disease gene

association should be recognized. In our method, the topological

correlation between the disease similarity network and the protein-

protein interaction network are considered fairly in combination

with the prior information on the disease-gene associations, and

as a result, the well-connected genes in the protein-protein

interaction network may tend to be top ranked.

Tests on three irrelevant control sets
Our method was tested on three types of irrelevant control set:

the whole genome wide control set, the random control set and the

artificial linkage interval control set. For the random control set,

we randomly selected two thousand or three thousand ‘‘unasso-

ciated genes’’ to construct the irrelevant control set and the

irrelevant items. The two other irrelevant control sets and

irrelevant items are constructed in the way as described above.

The 10-fold cross-validation tests were performed and the result

analysis was made on the three irrelevant control sets. The results

on the three types of control set are shown in Figure 4. Ranking

over the whole genome is of great importance because many

OMIM phenotypes have no causative genes till now. In terms of

the 10-fold cross-validation, our method is used to successfully

rank the known disease-causing gene as one of the top five from

the 8919 genes in the protein interaction network for 391 cases,

with a precision of 0.0548 obtained. It is natural that the

performance of our method for the whole genome control set

should be inferior to that for either the random control set or the

simulated interval control set because the former control set is

much larger than the other two. The method performed worse for

the simulated interval set than for the random control set, which

may be attributed to the incompleteness of protein-protein

interaction data. In the construction of the artificial linkage

interval control set, we chose the upstream and downstream 50

genes about the known disease gene on the same chromosome to

simulate the linkage interval, and at the same time these 100 genes

must be in the protein-protein interaction network. It can be

expected that the linkage analysis in combination with the system

Predicting Disease-Causing Genes
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Figure 2. Comparison in performance between our method and PRINCE. A comparison between our method and PRINCE. We can see that
our method gives a high precision as well as a fairly high recall, and this is superior to that from PRINCE.
doi:10.1371/journal.pone.0024171.g002

Figure 3. A plot of precision and recall versus threshold k of our method. Figure 3-a A plot of precision versus threshold k. Figure 3-b A plot
of recall versus threshold k, where k means that the gene was ranked within top k in our method.
doi:10.1371/journal.pone.0024171.g003
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approaches based on the biological interaction networks would

give more powerful insights in identifying novel disease-causing

genes.

Robustness of Our Method
We tested our method, biased towards the disease similarity

information and the protein-protein interaction networks. We

randomly selected 1/5 the disease gene associations from our data

set and 1000 genes from the protein-protein interaction network,

and then added white Gaussian noise on 1/5 the disease similarity

data and the interactions among all the 1000 genes to test the

robustness of our method. In terms of the 10-fold cross-validation,

the method can give a precision of 0.053 and 0.049, respectively,

on the genome wide control set, and the precision degradation is

small compared with the original precision of about 0.055. The

results indicate that our method does not rely heavily on known

disease similarity information or that it is not biased towards the

better characterized genes heavily in the protein-protein interac-

tion network.

Case Study
To further demonstrate the power of our method, we proceeded

to execute our method on multifactorial disorders. Breast Cancer

(MIM:114800), Alzheimer Disease (MIM:104300), and Diabetes

Mellitus Type 2 (MIM:125853) were selected for case studies.

First, the ranks for the known disease genes or susceptibility factors

implicated in the three cases are listed in Table 1. Second, we

checked the top ranked candidate genes for these cases in the

protein-protein interaction network, and at the same time a

clustering algorithm called PageRankNibble [16] was performed

over the protein-protein interaction network to discover the

functional subnetworks. The clustering algorithm PageRankNib-

ble is based on the random walk and PageRank vector. For a given

starting protein in the protein-protein interaction network, a

subnetwork near the starting protein may be found, and the

computing time is proportional to the size of the subnetwork.

Because of this property the algorithm PageRankNibble was used

to discover the subnetworks (which are considered as functional

modules and may be disease associated subnetworks) near all the

known disease-causing genes. First we filter these subnetworks by

their sizes and the ranks of the genes in them, and then a web

server g:Profiler with default parameters [17,18] was used to

analyse these subnetworks. Some subnetworks are given as

examples in Figure 5. The genes and their ranks in these

subnetworks (Figure 5) are also listed in Table 2. The primary

input to the web server g:Profiler is a list of gene, protein, or probe

identifiers from any of the currently supported species [17]. Here

in our analysis a list of genes in every subnetwork was provided as

the input to g:Profiler. The typical output of g:Profiler is a set of

enriched functional terms. Every term is accompanied by the size

of the query and the term gene lists, their overlap and the

statistical significance (P-value) of such enrichment [17]. In our

analysis of the gene list in one subnetwork, we only focused on

biological processes, molecular functions, subcellular localisations

and pathways, and the number of genes annotated by the term

and the P-value of term enrichment are analyzed and summarized

later for each case study.

Results for Breast Cancer
The section on the overview of Breast Cancer (MIM:114480) in

OMIM gives a list of 23 susceptibility genes (January, 2011), which

are also characterized by the protein-protein interaction network.

The rank results of the genome-wide prioritization scores for the

known disease and susceptibility genes are listed in Table 1. Our

method assigned the No. 1 rank to the known disease genes in our

data and also high ranks to most of the known breast cancer

causative genes which are not in our data, with 15 of these 23

genes ranked in the top 300 of the ranked whole genome (Table 1),

and with 300 being a reasonable number for the high-resolution

single nucleotide polymorphism (SNP) association analysis of a

complex disease in human population [19].

Next, we inferred Breast Cancer-related subnetworks by a

clustering method PageRankNibble, with two of such subnetworks

shown in Figure 5(a). The ranks of the genes in such subnetworks

are also given in Table 2. We can see that the genes in such two

subnetworks are ranked within top 200, except the gene ALG9 in

the rightmost subnetwork of Figure 5(a). Also we examined the

gene function in terms of GO [20] annotations and KEGG [21]

pathway enrichment. This enrichment analysis is carried out on

the g:Profiler web server. The leftmost subnetwork in Figure 5(a)

Figure 4. The performance of our method for three types of control data set. The method was tested on the whole genome, random
control set and simulated interval data set.
doi:10.1371/journal.pone.0024171.g004
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contains 11 proteins, 6 of which are known to be involved in the M

phase of the meiotic cell cycle (p-value = 1.08e-11), 7 of which are

related to DNA recombination (p-value = 5.28e-14), 10 of which

respond to the DNA damage stimulus (p-value = 7.27e-14), and 10

of which are associated with DNA repair (p-value = 7.17e-15).

There are 8 proteins in the rightmost subnetwork, and the gene

MDC1 is skipped because of ambiguous hits in GO database. 6 of

7 are related to the response to DNA damage stimulus (p-

value = 8.67e-10), 6 of 7 are correlated to DNA recombination (p-

value = 2.10e-13), 6 of 7 are involved in DNA repair (p-

value = 1.86e-10), and 5 of 7 genes are connected with double-

strand break repair (p-value = 7.55e-12). All this agrees well with

the current knowledge on the breast cancer [22].

Results for Alzheimer Disease
The section on the overview of Alzheimer(MIM:104300) in

OMIM gives a list of 11 susceptibility genes (January, 2011), which

are also characterized by the protein-protein interaction network.

The rank results of the genome-wide prioritization scores for the

known disease and susceptibility genes are listed in Table 1. The

known disease genes in our data are top ranked, and high ranks

are also given to most of the known Alzheimer causative genes

which were not in our data, with 4 of these 11 genes ranked within

the top 300 of the ranked whole genome (Table 1).

We made the same clustering analysis for Alzheimer Disease.

We inferred Alzheimer related subnetworks, with one of such

subnetworks shown in Figure 5(b). The ranks of the genes in this

subnetwork are ranked within top 40, except for the gene

KCNIP4. In the result analysis of the g:Profiler on the subnetwork

in Figure 5(b), we can see that 5 of those genes are enriched in cell

death and its regulation, that 5 of them are related to membrane

protein intracellular domain proteolysis (p-value = 2.76e-15), that

5 of them are involved in induction of apoptosis (p-value = 2.23e-

07), that 4 of them are correlated to Alzheimer’s disease pathway

(p-value = 4.15e-06), and that 4 of them are connected with Notch

signaling pathway (p-value = 2.45e-08). Almost all the knowledge

agrees well with the current knowledge on Alzheimer Disease

[23,24].

Results for Diabetes Mellitus Type 2
The section on the overview of Diabetes Mellitus, Type 2

(MIM:125853) in OMIM gives a list of 20 susceptibility genes

(January, 2011), which are characterized by the protein-protein

interaction network. The rank results of the genome-wide

prioritization scores for the known disease-causing genes and

susceptibility genes are listed in Table 1. Our method assigned the

top ranked to the known disease genes in our data and also high

ranks to most of the known Diabetes Mellitus causative genes

which were not in our data, with 15 of these 20 genes ranked

within the top 300 of the ranked whole genome (Table 1).

The subnetworks related with Diabetes Mellitus, Type 2 were

discovered by PageRankNibble, with one of such subnetworks

shown in Figure 5(c). We ranked 9 of the genes in this subnetwork

within top 200, except for the gene FGF12. The g:Profiler web

server was also used in analyzing the gene set of this subnetwork in

terms of GO annotation and KEGG pathway. Results show that 7

of them are related to MAPK signaling pathway (p-value = 9.91e-

10), that 7 of them are correlated to protein kinase binding (p-

value = 2.57e-09), and that 6 of them are connected with

MAPKKK cascade; furthermore, 3 of them are responsible for

the MAP-kinase scaffold activity(p-value = 1.93e-10), which agrees
well with the current knowledge of Diabetes [25,26].

Table 1. The ranks of known disease-causing or susceptibility genes for three cases on the whole genome.

Breast cancer (MIM:114480)

Gene Rank Gene Rank Gene Rank Gene Rank

BRCA1 1 BRCA2 3 PIK3CA 6 NCOA3 261

BRIP1 5 RAD51 2 NBN 4 RAD51C 6369

TP53 10 RB1CC1 6223 AR 13 STK11 166

CHEK2 21 CDH1 407 PPM1D 4732 PTEN 7

CASP8 409 TGFB1 1881 NQO1 763 AKT1 28

HMMR 5789 ATM 11 BARD1 58

Alzheimer Disease (MIM:104300)

Gene Rank Gene Rank Gene Rank Gene Rank

APP 1 PSEN2 2 ABCA2 7388 TF 1090

A2M 651 HFE 1267 LRP1 14 VEGF 2195

NOS3 809 TNF 2232 PSEN1 7

Diabetes Mellitus, Type 2 (MIM:125853)

Gene Rank Gene Rank Gene Rank Gene Rank

SLC2A4 6 TCF2 5 MAPK8IP1 7 KCNJ15 7019

IRS1 2 PPP1R3A 8 NEUROD1 3 PPARG 1002

INSR 1 IPF1 4 KCNJ11 200 HNF4A 193

AKT2 117 ENPP1 158 IL6 4490 PTPN1 22

GPD2 2894 TCF1 9 TCF7L2 593

In Table 1, both the known disease-causing genes and the susceptibility genes for three cases of Breast Cancer, Alzheimer Disease and Diabetes Mellitus Type 2 are
listed, altogether with the corresponding rank in the whole genome.
doi:10.1371/journal.pone.0024171.t001
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Our results for the three cases were also examined for further

novel suggestions. We analyzed top-50 predictions in each case.

We checked whether our predicted genes were already found to

be involved in disease by searching for the online database or

scientific publications. All of the published disease-gene

associations that were not in our input data set were collected.

Table 2. The ranks of genes in candidate disease subnetworks.

Genes in Fig. 5(a) and their ranks

RAD52 112 DMC1 147 BCCIP 25 RAD54L 149 ERCC2 133

ATRX 145 C17orf28 144 RAD54B 121 RAD51AP1 148 RAD51 2

TREX1 108 RAD50 24 MRE11A 68 H2AFX 20 FANCD2 12

NBN 4 DCLRE1C 23 MDC1 17 ALG9 5758

Genes in Fig. 5(b) and their ranks

NCSTN 6 KCNIP4 104 APH1A 35 DOCK3 40 APH1B 36

ICAM5 28 PSENEN 37 PSEN2 2 METTL2B 39

Genes in Fig. 5(c) and their ranks

MAPK8IP3 97 MAP3K13 166 MAPK8IP2 98 MAP2K7 121 MAPK8IP1 7

DUSP16 120 FGF12 2464 KNS2 110 PAX2 162 15244/- 74

In Table 2, the genes in the candidate disease subnetworks (in Fig. 5) and their ranks are listed.
doi:10.1371/journal.pone.0024171.t002

Figure 5. Subnetworks involved in disease for three cases. Four examples of putative protein subnetworks associated with the three cases are
shown in Figure 5. The node in the figure represents the protein/gene, and the HPRD ID and gene symbol are given and separated by the slant ‘/’.
The two putative disease subnetworks in Figure 5-a were discovered for Breast Cancer. The putative disease subnetwork in Figure 5-b was associated
with Alzheimer Disease. The putative disease subnetwork in Figure 5-c was related to Diabetes Mellitus, Type 2.
doi:10.1371/journal.pone.0024171.g005
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There were 7 new associations for Breast Cancer (MIM:114480)

in the recent OMIM database (January,2011) which ranked

within top 50 in our result, but not in our data set. As for the

Alzheimer Disease(MIM:104300), 5 novel genes within top 50 in

our predicted results were verified in the online OMIM

database. The gene LRP1 on chromosome 12 was studied with

the Alzheimer Disease on 850 persons at the age of over 60 by

Farrer et al. [27]. A 480-kb region encompassing the IDE gene

was also investigated by Prince et al. [28] in relation to the

Alzheimer Disease; furthermore, the cerebellar expression levels

of IDE were measured by Zou et al. [29]. The same results were

extracted for Diabetes Mellitus, Type 2, and 4 novel genes

which were ranked among top 50 were verified in the online

OMIM database.

We also computed the disease-gene association scores and

corresponding ranks between all the 8919 genes characterized by

the protein-protein interaction network and all the 5080 diseases

in the disease similarity data set.

Discussion

The success of our method can be attributed to a combination

of several aspects. First, the large-scale disease similarity

information is exploited. Second, which is more important,

the disease similarity network and the protein-protein interac-

tion network are coupled in a comprehensive and systematic

way for the definition of the disease-gene association score

function, and this is well in accord with the consistency between

disease phenotypic overlap and genetic overlap. On one hand,

the definition of disease-gene association score makes full use of

the information implicated in both disease similarities and

neighbouring genes comprehensively. On the other hand, not

only the noise in the disease similarity information but also the

self-loop in the protein-protein interaction network are consid-

ered in the computation of the disease-gene association scores.

Third, an iterative algorithm was designed for the computation

of the disease-gene association score matrix for all the diseases

and all the candidate genes in the protein-protein interaction

network.

Nevertheless, our method can be improved in the following

ways. First, this method relies on the protein-protein interaction

data which have a low coverage and a high false positive ratio, and

the information on the isolated proteins in the network can not be

exploited. In our protein-protein interaction data there are 57

isolated proteins which are known to be involved in some diseases.

Second, the current disease similarity measurement is imprecise

and subjective. It can be expected that this method would show

more power if we could know more complete and reliable protein-

protein interactions, together with a more standardized and

objective disease description [30].

Two potential applications of our method should be noticed.

First, the prioritization score for candidate genes can give some

suggestions for further investigation. Second, the prioritization

score can be exploited to identify disease-causing protein

subnetworks, which are valuable for the study of the multi-

factorial diseases, and this has been experienced successfully in

PRINCE and this method.

Methods

In this section, the principle of our method is illustrated first.

Then the construction of several networks is defined and

formulated. Finally, an iterative algorithm is designed for the

computation of disease-gene association scores.

Principle of the method
The observation that the genes implicated in the same or

similar diseases lie close to each other in the protein-protein

interaction network [1,2,3] has motivated the design of some

computational approaches for prioritizing candidate genes

involved in diseases. Our method is predicated on this simple

observation together with the modular nature of the genetic

diseases [3,9] and the consistency between the phenotypic

overlap [10] and genotypic overlap [11]. Here, when a candidate

gene is prioritized for a disease, we consider the correlation of the

two subnetworks separately induced by the neighbours of the

gene in the protein-protein interaction network and the

neighbours of the disease in the disease similarity network. That

is, a single association between a gene and a disease is formulated

iteratively by the correlation of the two subnetworks. This

constraint can also be described as the fact that a gene is likely to

be involved in a disease if the gene’s neighbours are associated

with the similar diseases. In our method, the association score

between disease d and gene g is formulated iteratively as the

weighted sum of all the existing association scores between the

neighbours of g and the diseases similar to d. As in Figure 1, the

association between gene g and disease d is measured over all the

associations between g and d’s similar diseases, the associations

between g’s neighbours and d , and the associations between g’s

neighbours and d ’s similar diseases. In this figure, g’s neighbours

are g1, g2, g3, g4, g5, g6, and g7, and d ’s similar diseases are d1,

d2, d3, d4, d5, and d6. So, we compute the association score

between g and d based on the known disease-gene associations

iteratively as follows:

Adg½d,g�~Adg½d,g5�zAdg½d,g4�zDsim½d,d1�|Adg½d1,g�

zDsim½d,d2�|Adg½d2,g6�zDsim½d,d3�|Adg½d3,g5�

zDsim½d,d4�|Adg½d4,g3�zDsim½d,d5�|Adg½d5,g10�

zDsim½d,d5�|Adg½d5,g1�zDsim½d,d6�|Adg½d6,g�

So are the associations between d and g5, d and g4, d1 and g, d2

and g6, d3 and g5, d4 and g3, d5 and g1, d5 and g10, and d6 and g
computed in the same iterative way.

We define a disease-gene association matrix in favor of com-

puting and storing the association scores. The disease similarity

network and the protein-protein interaction network are also

constructed and incorporated into the formulation of the disease-

gene association matrix in a simple and compact manner of matrix

multiplication. As a result, an iterative algorithm is designed for

the computation of the disease-gene association matrix. All this

will be described in detail in the later part of this section.

Network Construction
Filtered Disease similarity network. In our method, the

disease similarity network is introduced, where the node in the

network represents a disease, the edge connecting two nodes

indicates that the two diseases are similar, and the weight of the

edge indicates to what extent the two diseases are similar. We

define a disease similarity matrix Psim to model this network, in

which Psim½i,j� is the similarity score between disease i and

disease j. These disease similarities spanning 5080 diseases in the

OMIM knowledge database were computed by van Driel et al.

[10] by the text mining technique. In their analysis, similarity

values in the range [0,0.3] were not informative, while the

similarities in the range [0.6,1] showed significant functional

similarity between corresponding diseases. So, in our method the
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parameter b is used to filter out the disease similarities smaller

than it, in order to purify the disease similarity network as much

as possible.
Extended Protein-Protein interaction network. The

protein-protein interaction network is modelled as matrix G, in

which the value of G½i,j� indicates whether the interaction between

proteins i and j exists. The value ‘‘1’’ denotes that the interaction

exists, and ‘‘0’’ denotes that the interaction does not exist. In our

method, with regard to the association between disease d and gene

g, the associations between the diseases similar to d and the

neighbours of g, the associations between the diseases similar to d
and the neigbours of g, and the associations between d and the

neighbours of g all need to be considered. So, we extend the

protein-protein interaction network by adding the self-interactions

of all the proteins into the interaction network. As a result, g is a

pseudo neighbour of g itself and will be counted when considering

the neighbours of g, and this will be in favor of the iterative

computation in a simple and compact manner of matrix

multiplication. Here, the associations between d and neighbours

of g will be considered definitely because d is the disease which is

the most similar to itself, and that is true in the construction of the

disease similarity network (all the elements on the diagonal being

‘‘1’’).
Disease-Gene Association Network. We construct the

disease-gene association network as the one where the node in

the network can be either a disease or a gene and the weighted

edge connecting a disease and a gene indicates to what extent the

gene is involved in the disease. This network can also be regarded

as a bipartite graph. In our method the disease-gene association

network is expressed by a disease-gene association matrix Adg, in

which the element Adg½i,j� stores the association score of gene j
and disease i indicating the association strength between the gene

and the disease. The matrix Adg is initialized with the prior

information on the disease-causing genes which are from the

online OMIM database [12]. If the gene is known to be

associated with the disease, the association score in the matrix is

set to be ‘‘1’’. With regard to the situation in which the disease q
is not known to be associated with the gene v, we deal with it in

the way motivated by PRINCE [8]: the association score between

q and v is defined as the similarity between the two diseases q and

p. Here p is chosen so carefully that p is not only the most similar

to q but also associated with the gene v in our dataset. To

eliminate the noise information brought about by disease

similarities, the parameter b is also used to filter out the

association score that is smaller than it.

Algorithm
The input of our method includes both the protein-protein

interaction network G(V ,E), where V is the protein/gene set

and E is the protein/gene interaction set (‘‘protein’’ or ‘‘gene’’

will be used alternatively according to the context in the paper),

and the disease similarity network Psim(U ,F ), where U is the

disease set and F is the disease similarity set over every two

diseases in U . In our method, the disease-gene association

matrix Adg is defined over all the diseases in U and all the genes

in V in Formula (2):

Adg~Psim|Adg|G ð2Þ

To solve the disease gene association matrix Adg in Formula (2),

we design an iterative algorithm. With regard to the prior

information on the disease gene associations, the disease-gene

association matrix is defined at the iteration k as Formula (3):

Adgk~(1{a)|Psim|Adgk{1|Gza|Adg0 ð3Þ

In Formula (3), the disease-gene association matrix is initialized

as Adg0 by the prior knowledge of the disease-gene associations.

The parameter a[(0,1) gives the relative importance between the

constraints which are opposed by the assumption and the prior

information. The constraint part of Adg½i,j� at the iteration k is

defined as Formula (4):

Adg½i,j�kz1
~
XGj j

l~1

((
XPsimj j

k~1

Psim½i,k�|Adg½k,l�k)|G½l,j�) ð4Þ

where Adg½i,j� is computed based on the associations between k

and l, in which k is over all the diseases similar to i (including i)

and l is over all the neighbours of j (including j). The iterative

computation is similar in manner to that by PRINCE, and our

method considers all the associations related to the association (i,j)
systematically and comprehensively while PRINCE considers just

the information which will flow into the node j when querying the

disease i in one iteration.

The final score of each association is determined by the

constraints opposed by both the protein-protein interaction

network and the disease similarity network, and also by the prior

knowledge. The iterative computation is controlled by the mean

square deviation of the two neighbouring disease-gene association

score matrixes. All the tests on the simulated data sets and the real

data sets have shown that the iterative computation would

converge eventually.
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