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Abstract

In this study, we investigate the feasibility of a BCI based on transcranial Doppler ultrasound (TCD), a medical imaging
technique used to monitor cerebral blood flow velocity. We classified the cerebral blood flow velocity changes associated
with two mental tasks - a word generation task, and a mental rotation task. Cerebral blood flow velocity was measured
simultaneously within the left and right middle cerebral arteries while nine able-bodied adults alternated between mental
activity (i.e. word generation or mental rotation) and relaxation. Using linear discriminant analysis and a set of time-domain
features, word generation and mental rotation were classified with respective average accuracies of 82.9%+10.5 and
85.7%+10.0 across all participants. Accuracies for all participants significantly exceeded chance. These results indicate that
TCD is a promising measurement modality for BCI research.

Citation: Myrden AJB, Kushki A, Sejdić E, Guerguerian A-M, Chau T (2011) A Brain-Computer Interface Based on Bilateral Transcranial Doppler Ultrasound. PLoS
ONE 6(9): e24170. doi:10.1371/journal.pone.0024170

Editor: Gennady Cymbalyuk, Georgia State University, United States of America

Received May 10, 2011; Accepted August 1, 2011; Published September 7, 2011

Copyright: � 2011 Myrden et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by funding from the Canada Research Chairs program, the Canada Foundation for Innovation, the Ontario Centres of
Excellence, the Natural Sciences and Engineering Research Council of Canada, and the Bloorview Research Institute. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: andrew.myrden@utoronto.ca

Introduction

Brain-computer interfaces (BCIs) translate mental activity into

control signals for external devices, thereby providing their users

with movement-free communication and control channels [1].

BCIs can be employed in a wide variety of areas including virtual

reality [2], neurorobotics [3], and wheelchair control [4]. There

has also been a great deal of research into the usage of BCIs as

means of communication and control for individuals with severe

and multiple disabilities [5,6]. BCI systems offer these individuals

the potential to achieve some degree of independence and control

over their environments. Moreover, BCI control bypasses the

muscular system entirely and thus may allow communication even

for those who are completely locked-in due to conditions such as

stroke or amyotrophic lateral sclerosis (ALS) [7]. For instance,

BCIs have been used to generate text communication based on

measuring brain responses to visually presented letters on a

computer screen [8].

In BCI systems, mental activity can be detected using various

measurement modalities including electroencephalography

(EEG) [9], functional magnetic resonance imaging (fMRI) [10],

magnetoencephalography (MEG) [11], and near-infrared spec-

troscopy (NIRS) [12]. Though BCI systems developed using

these modalities have shown promise in controlled environments,

their practical success has been limited by a number of

shortcomings [13]. The most commonly used measurement

modality in BCI systems is EEG. These signals are susceptible to

interference from electrical sources and physiological artifacts

such as electrooculography (EOG) and electromyography (EMG)

[5]. Moreover, proficient use of EEG-based BCIs often requires

several training sessions. BCI systems based on fMRI and MEG

measurements employ extremely expensive instruments and

require highly controlled environments [14]. Consequently,

these technologies are presently impractical for widespread use

[15]. NIRS is still early in its development as a BCI technology.

Current studies employing this modality have predominantly

focused on the slow hemodynamic response, resulting in low

data transmission rates [16]. These shortcomings of current BCI

systems motivate the investigation of alternative measurement

modalities.

In light of the above limitations, this paper investigates

transcranial Doppler (TCD) sonography as the foundation for a

new type of non-invasive BCI. TCD is a medical imaging

technique used to monitor cerebral blood flow velocity (CBFV)

within the major arteries of the circle of Willis - namely the

anterior, middle, and posterior cerebral arteries [17]. Since its

introduction in 1982 [18], TCD has been successfully used in a

number of clinical applications [19–23]. It has also been used

extensively to describe brain function through the study of cerebral

lateralization [24–28]. TCD is portable, lightweight, and robust to

environmental conditions such as electrical artifacts [29]. It is also

relatively inexpensive, particularly in comparison to alternatives

such as fMRI and MEG [30]. TCD possesses excellent temporal

resolution, and previous research into lateralization indicates

that event-related changes in CBFV can be observed within 5–

10 seconds of the onset of cognitive activity in some cases [30,31].

Most importantly, cognitive activation produces increases in CBFV

[32] that are easily measurable by TCD.
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The above features suggest that TCD may be a suitable

measurement modality for BCI systems. To further demonstrate

the viability of a TCD-based BCI system, it must be shown that

mental activity can be automatically detected with high accuracy

based on these measurements. In this light, the present study

investigated whether two specific mental tasks can automatically

be differentiated from rest using TCD measurements. If adequate

classification accuracies can be obtained, these mental tasks can be

used to generate control signals in a TCD-based BCI system.

We investigated two mental tasks, namely word generation and

mental rotation of geometric shapes. Word generation is known to

cause significant increases in CBFV within the left and right

middle cerebral arteries (MCAs) [24,25]. Moreover, these increases

have been characterized as being left-lateralized in right-handed

individuals - higher relative increases in CBFV have been found in

the left MCA than in the right MCA [33]. We expected that this

lateralization would make it possible to automatically detect the

word generation activity. Spatial tasks involving mental rotation

have also been explored in a number of TCD studies [25,34,25],

where they have likewise been observed to cause significant

increases in CBFV within the left and right MCAs. We hypo-

thesized that large bilateral increases in CBFV induced by complex

mental rotation tasks can be automatically detected using TCD

measurements.

Materials and Methods

Ethics Heading
This study was approved by the Research Ethics Boards of both

Holland Bloorview Kids Rehabilitation Hospital and the Univer-

sity of Toronto. All participants provided written informed consent.

Participant
Nine able-bodied participants (6 female) were recruited from

amongst the population of the Bloorview Research Institute. Ages

of the participants at the time of the study ranged between 22 and

30 (mean age 25.6 years). All participants were right-handed, as

quantified by the Edinburgh Handedness Inventory [36], with

scores ranging between 50 and 100 (mean score 79.4). Participants

had no history of migraine, and no known neurological or

respiratory conditions.

Signal Acquisition
CBFV was monitored using a Multi-Dop X4 TCD unit

(Compumedics USA). Dual 2 MHz ultrasonic transducers were

fitted on the included headgear and placed over the left and right

transtemporal windows, located in front of the ear and above the

zygomatic arch [33]. The headgear ensured that the transducers

remained stationary throughout the experiment. For all partici-

pants, a screening test was performed to ensure that there were no

CBFV abnormalities. Following the insonation procedure detailed

by Alexandrov et al. [37], CBFV was measured within the left and

right anterior, middle, and posterior cerebral arteries. Compared

to expected velocities [38], no unusual values were observed, and

thus all participants were accepted for this study. Optimal

transducer locations for each participant were determined during

the screening test and recorded by the experimenter. During

subsequent sessions, transducers were placed at the previously

recorded locations to ensure within-participant consistency and

repeatability. The same procedure was used for all participants.

Locations were similar but not identical between participants, due

to slight deviations in the location of the transtemporal window.

Each participant completed two sessions. Insonation followed

the same procedure that was used for the screening test. We

measured CBFV within the left and right middle cerebral arteries

(MCAs). These arteries were selected because the MCAs profuse

approximately 80% of the brain [28] and, as such, are implicated

in a wide variety of mental tasks [25]. Signals were acquired by

adjusting the probe angle, probe location, and measurement depth

until optimal signals were located. Insonation depths ranged from

45 to 60 mm. Signals were acquired from approximately the same

depth on both sides. Signals from both channels - the left MCA

and the right MCA - were used to characterize each state during

the experiment. Thermal cranial index was monitored and kept

below 2 at all times. The lowest power level for which signals were

adequate was used. Insonation lasted for no longer than 15 minutes

at a time, consistent with ultrasound safety guidelines such as [39].

Respiratory modulation and carbon dioxide levels are known to

influence CBFV [40]. These signals were recorded to ensure that

fluctuations in CBFV did not simply result from changes in

respiration. Participants wore a nasal cannula, which was con-

nected to a capnometer built into the Multi-Dop X4 unit to monitor

end-tidal CO2 levels. Respiration was also directly measured using a

respiratory belt. Blood volume pulse (BVP) was measured using an

FDA-approved photoplethysmography sensor (Flexcomp Infiniti,

Thought Technologies Ltd.). The sensor was secured to the palmar

surface of the distal phalange of the first digit of the non-dominant

hand.

Experimental Protocol
At the beginning of each session, participants were seated

comfortably facing a computer monitor in a data collection room.

Following signal acquisition, participants rested naturally for

10 minutes to allow CBFV to stabilize. Data from this baseline

period were not used for further analysis. Following this interval,

participants received verbal instructions on how to perform the

two required mental tasks. Participants were then instructed to

begin the experiment when ready.

In each session, participants completed two 15-minute blocks,

separated by a 5-minute break. Each block consisted of 10 rest

periods and 10 activation periods. Each period had a duration of

45 seconds, and successive periods alternated between rest and

activation states. During activation states, participants received

onscreen prompts to perform either the word generation or mental

rotation task. Each task occurred five times within each block in

randomized order. Each block proceeded automatically once

begun, and included only text-based prompts. There were no

auditory distractions during the experiment. The experiment

contained a total of 40 rest states, 20 word generation states, and

20 mental rotation states for each participant.

During the word generation task, a letter was presented on

screen and participants were prompted to silently generate words

that began with the given letter. Letters were selected from among

the most common first letters of English words. No letters were

repeated within sessions, but some letters were used in both sessions.

During the mental rotation task, participants were presented

with four pairs of figures simultaneously. Each pair consisted of

two similar objects rotated to different angles around the x-axis.

Participants were required to mentally rotate the two objects in

each pair to determine if they were the same object or mirror

images. Participants were instructed to work sequentially through

all four pairs. Each pair was randomly selected from a database of

such figures [41–43]. The entire set of figures was replaced with

four new pairs every nine seconds. Post-experiment feedback from

participants confirmed that this method allowed them to con-

stantly perform this task over the entire activation period.

Participants were instructed to keep their eyes open during both

activation and rest, and to perform each task as quickly as possible.

Transcranial Doppler Brain-Computer Interface
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Participants were also instructed to refrain from vocalizing their

answers, thus preventing CBFV increases due to speech. During

rest periods, participants were instructed to relax. No instructions

were given regarding modulation of respiration.

Pre-processing
TCD data were exported from the Multi-Dop X4, and the

mean of the maximum velocity was extracted for analysis. This

parameter is automatically computed by the Multi-Dop X4, and

reduces the effect of CBFV variability between systole and

diastole. The raw data from each block were normalized, and

then filtered using a third-order Butterworth low-pass filter with a

cutoff frequency of 0.6 Hz to remove the effects of beat-to-beat

fluctuations in CBFV. The data were then segmented into rest and

activation states, using markers that were automatically inserted

into the TCD recordings at the beginning of each state during the

experiment. Data from the respiratory belt were also segmented

into rest and activation states.

Feature Extraction
Feature extraction was performed on the recorded signals from

each rest and activation state. The list of extracted features is given

in Table 1. All features were computed over four intervals within

each state - 0–45 seconds, 0–15 seconds, 15–30 seconds, and 30–

45 seconds. Features were divided between unilateral features,

which were dependent solely on the signal from one MCA, and

bilateral features, which compared signals from both MCAs. For

respiratory signals, we extracted the signal mean and the

respiration rate.

Feature Selection
Features were selected on the basis of the Fisher criterion [44].

For one feature, this criterion can be expressed as:

J~
jm1{m2j2

s2
1zs2

2

, ð1Þ

where m1 and s1 represent the mean and standard deviation of a

feature evaluated over all rest states, and m2 and s2 the mean and

standard deviation of the same feature evaluated over all activation

states. The Fisher criterion increases as the average separation

between groups increases and the average separation within

groups decreases. Using this criterion for feature selection yields

the features that provide maximum separability between rest and

activation patterns.

Using only the Fisher criterion for feature selection could

potentially lead to the selection of highly correlated features. When

multiple features were required, the feature set was first reduced by

selecting the eight highest-ranking features based on the Fisher

criterion. The highest-ranked feature was selected as the initial

feature. To select subsequent features, the correlation coefficients

between the initially selected feature and each remaining feature

were computed. The feature with the lowest magnitude correlation

coefficient was then selected. If necessary, a similar procedure was

used to select a third feature, taking into account the correlation

with both previously selected features.

Classification
Twenty runs of five-fold cross-validation were performed for

n = 1, 2, and 3 features. A linear discriminant analysis (LDA)

classifier was used. Both activation states (i.e. mental rotation and

word generation) were compared independently to the rest state

using the same procedure. Due to unbalanced classes, 20 rest states

were randomly selected at the beginning of each run to be used

during classification. During each fold, feature selection was

performed using only training data.

Classification was also performed using several reduced sets of

features. Namely, classification was performed using only features

from the respiratory belt, and only bilateral features from the TCD

recordings. In the latter case, three features were selected from the

set of bilateral features using the procedure already described.

Evaluation Criteria
The percentage of correctly classified samples was used as the

evaluation criteria. We also report sensitivity (the percentage of

correctly classified activation states) and specificity (the percentage

of correctly classified rest states).

Results

A sample TCD recording depicting CBFV fluctuations during a

three-minute segment of the experiment is shown in Figure 1. In

this recording, visually detectable differences between rest and

activation states are apparent. In particular, we note apparent

bilateral activation during the mental rotation task, and left

lateralization during the word generation task.

The accuracies for each task, participant, and feature selection

condition are reported in Tables 2 and 3. The best results were

achieved using three features (mean classification accuracy for

word generation and mental rotation tasks were 82.9+10.5% and

85.7+10.0% respectively). For this case, sensitivities and specific-

ities are reported in Figure 2.

Chance results were simulated by performing classification with

randomized state labels, resulting in accuracies of approximately

50%. Results from three-feature classification were compared to

these chance results using the Wilcoxon rank sum test at a 0.05

significance level. These results were also compared to those from

classification of respiratory signals using the same procedure. All

participants showed accuracies that were significantly greater than

chance (pv0.0001) for both tasks. Eight of nine participants

showed a significant difference between CBFV and respiration

classification for both tasks (pv0.015).

The most frequently selected features for each participant are

given in Table 4, while average feature selection across all

participants is shown in Figure 3. A sample scatter plot based on

Table 1. Candidate feature set.

Feature
Number Feature Description Laterality

1–4 Left MCA Mean (LM) Unilateral

5–8 Left MCA Slope (LS) Unilateral

9–12 Left MCA Standard Deviation (LSD) Unilateral

13–16 Right MCA Mean (RM) Unilateral

17–20 Right MCA Slope (RS) Unilateral

21–24 Right MCA Standard Deviation (RSD) Unilateral

25–28 Lateralization (Difference of Means) (DM) Bilateral

29–32 Lateralization (Difference of Slopes) (DS) Bilateral

33–36 Cross-correlation of Left and Right MCAs (CC) Bilateral

37–40 Dot Product of Left and Right MCAs (DP) Bilateral

All features were computed over four different time intervals - 0–45 s, 0–15 s,
15–30 s, and 30–45 s.
doi:10.1371/journal.pone.0024170.t001
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the three most frequently selected features for Participant 2 is

shown in Figure 4.

Discussion

Feasibility of a TCD-based BCI
This study investigated the potential of TCD as the measure-

ment modality for a BCI. We demonstrated that two types of

mental activity can be classified with greater than 80% accuracy

on the basis of changes in cerebral blood flow velocity. These

accuracies were achieved without any prior training. It is likely

that this can be partially attributed to the usage of intuitive mental

tasks as activation states. Our results show that TCD is a

promising measurement modality for BCI development, and

further research should be performed to continue investigation

into the performance of a TCD BCI.

Classification of Word Generation and Mental Rotation
For both mental tasks, we observed that sensitivity was generally

higher than specificity (see Figure 2). This may be related to the

more specific directions given for activation states compared to rest

states. During activation, participants performed one of two well-

defined tasks. During rest, participants were simply instructed to

relax - they were not instructed to ‘think of nothing’ or to perform

any specific low-intensity mental task. Therefore, it seems

reasonable for rest states to be less consistent than activation

states, leading to lower specificities. This usage of relaxation as a

rest state reflects realistic conditions for BCI use.

Figure 1. Recordings from two rest-activation cycles for participant 4. The solid line depicts CBFV in the left MCA, while the broken line
depicts CBFV in the right MCA. Decreasing trends in CBFV during rest and increasing trends during activation are apparent. The signal is the mean of
the maximum velocity, filtered by a Butterworth low-pass filter with a cutoff frequency of 0.6 Hz.
doi:10.1371/journal.pone.0024170.g001

Table 2. Classification accuracies for the word generation task.

Participant
Number

CBFV Only
(1 Feature)

CBFV Only
(2 Features)

CBFV Only
(3 Features)

Bilateral
Features Only

Respiration
(2 Features)

1 87.9+11.2 89.5+10.2 89.1+11.6 87.5+11.2 69.6+16.4

2 94.4+7.0 91.9+9.5 93.6+8.6 94.6+7.8 50.8+16.3

3 82.6+12.3 82.9+12.4 85.1+12.3 87.3+10.8 52.8+15.8

4 88.5+9.7 94.2+8.0 95.3+6.6 89.8+10.0 85.9+11.6

5 61.5+15.2 64.1+17.4 65.0+18.6 64.5+16.7 55.9+17.4

6 87.1+11.4 87.5+12.9 90.2+10.6 88.4+9.4 71.1+14.0

7 71.3+14.9 73.3+15.7 76.3+14.3 70.3+15.2 70.8+14.5

8 68.5+15.1 70.5+15.4 70.4+15.7 70.5+14.9 71.0+15.6

9 74.0+16.1 79.2+12.2 81.4+12.5 83.8+11.7 70.3+14.2

Average 79.5+11.1 81.5+10.4 82.9+10.5 81.8+10.6 66.4+11.2

Columns two through four show accuracies when 1–3 features were selected from the entire candidate pool. Column 5 shows the accuracies when the candidate pool
was restricted to the 16 bilateral features. In this case, the analysis was performed for only the selection of three features, using the same feature selection algorithm.
The final column shows classification accuracies when only respiratory features were used. All participants except for Participant 8 displayed significantly higher
accuracies for three-feature TCD classification (using the entire candidate pool) than for classification based on respiration. Mean classification accuracy was significantly
greater for two and three features than for one feature (repeated-measures regression, pv0.012). The comparison between two and three features approached
significance (p = 0.056).
doi:10.1371/journal.pone.0024170.t002
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Some participants displayed large variations in accuracy

between the two tasks. Most glaringly, Participant 8 attained

70% accuracy for the word generation task, but 93% accuracy for

the mental rotation task. Such individual differences highlight the

importance of appropriate task selection. In a TCD-based BCI

that is operated using simple mental tasks, significant gains in

performance could potentially be achieved by testing a number of

different mental tasks and choosing the optimal task on a case-by-

case basis.

One individual, Participant 5, had accuracies which were

considerably lower than average. For this individual, the transtem-

poral insonation window was very difficult to find. Although

adequate TCD signals were acquired and recorded during each

session, it is possible that the extended set-up time and associated

frustration for the participant were partially responsible for these

lower accuracies.

The mental rotation task was classified with a slightly higher

accuracy than the word generation task. However, the word

generation task is considerably easier to comprehend and perform,

and may be more suitable for a younger population. The word

generation task also has a significant advantage in that, with

practice, it can be performed autonomously without any prompting.

This ease of implementation means that the word generation task

may be a more promising alternative for future TCD-based BCI

development.

Feature Selection
During classification, we used two main types of features -

unilateral features and bilateral features. Unilateral features are

important when a signal parameter shows significant differences

between activation and rest. Selection of these features may reflect

a difference in net cognitive load between rest and activation

Table 3. Classification accuracies for the mental rotation task.

Participant
Number

CBFV Only
(1 Feature)

CBFV Only
(2 Features)

CBFV Only
(3 Features)

Bilateral
Features Only

Respiration
(2 Features)

1 79.8+12.5 83.1+11.7 85.4+10.7 74.9+13.0 74.5+14.0

2 82.0+12.1 86.9+11.4 88.6+11.1 74.4+16.0 79.5+13.0

3 77.1+15.4 80.3+12.8 81.1+13.0 70.8+13.3 63.8+16.9

4 95.0+7.5 96.1+6.6 97.9+4.7 57.3+15.9 82.0+12.7

5 56.5+16.7 59.0+14.8 63.9+15.2 58.9+14.3 55.1+18.9

6 90.3+10.9 89.8+10.0 90.1+10.3 64.4+17.4 88.0+11.5

7 78.3+12.5 81.3+14.1 79.5+12.8 56.1+16.4 65.5+16.8

8 91.9+9.6 92.8+8.7 93.4+9.0 92.9+8.6 70.3+14.2

9 85.6+11.7 91.5+8.5 91.0+9.1 54.9+18.3 82.2+12.7

Average 81.8+11.4 84.5+11.0 85.7+10.0 67.2+12.4 73.4+ 10.6

Columns two through four show accuracies when 1–3 features were selected from the entire candidate pool. Column 5 shows the accuracies when the candidate pool
was restricted to the 16 bilateral features. In this case, the analysis was performed for only the selection of three features, using the same feature selection algorithm.
The final column shows classification accuracies when only respiratory features were used. All participants except for Participant 6 displayed significantly higher
accuracies for three-feature TCD classification (using the entire candidate pool) than for classification based on respiration. Mean classification accuracy was significantly
greater for two and three features than for one feature (repeated-measures regression, pv0.001). There was no significant difference between two and three features.
doi:10.1371/journal.pone.0024170.t003

Figure 2. Sensitivities and specificities for all participants for both tasks. The word generation task is on top, and the mental rotation task
on bottom. Black bars correspond to sensitivity, and white bars to specificity. Sensitivity was significantly greater than specificity (Wilcoxon rank-sum
test, pv0.03) for six of nine participants for word generation (exceptions are Participants 1, 2, and 5) and for seven of nine participants for mental
rotation (exceptions are Participants 5 and 8).
doi:10.1371/journal.pone.0024170.g002
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states. Bilateral features are important when a given mental task

causes some level of asymmetry between activation in the left and

right hemispheres of the brain. As such, selection of these features

may represent a difference in lateralization between rest and

activation states. From this reasoning, it seems plausible that

markedly different features could be selected for the classification

of different mental tasks. Indeed, this proved to be the case in this

study, as seen in Table 4. However, for each task, there was some

consistency across all participants.

Consistent with previous findings [25], we observed that the

word generation task was strongly lateralized to the left MCA in

most participants. Consequently, bilateral features were frequently

selected. More specifically, the features corresponding to differ-

ences in means and differences in slopes were very important

during this task; two of the three most commonly selected features

came from these categories for six of nine participants. From

Figure 3, it is also clear that during the word generation task,

features from the left MCA were chosen more frequently than

features from the right MCA. Again, this meshes well with the

observation that this task was lateralized to the left MCA.

As expected, lateralization was less prominent for the mental

rotation task. Figure 3 shows that bilateral features were rarely

selected for this task, while features from the left and right MCAs

were chosen fairly equally, reflecting bilateral activation. When the

mean of either MCA was selected, it was typically from 15–30 or

30–45 seconds. This could, perhaps, represent CBFV settling near

the end of the state at a low value during rest or a high value

during activation. When the slope of either MCA was selected, it

was typically from 0–45 or 0–15 seconds. This may represent the

general decreasing/increasing trend in CBFV during rest/

activation, which is particularly pronounced at the beginning of

each state. The frequent selection of the interval from 0 to

15 seconds suggests that slope features may be useful for

shortening the BCI response time. Potential justification for this

reasoning can be drawn from Figure 1, which shows a repre-

sentative example of the CBFV trends in both MCAs during the

rest state and both types of activation states. It is clear in this case

that significant increases in CBFV occurred very early within both

activation states.

Table 4. Most frequently selected features for each
participant for each task (abbreviations given in Table 1).

Participant Number Rank Word Generation Mental Rotation

1 DM 30–45 sec DM 0–45 sec

1 2 DS 0–15 sec RM 0–45 sec

3 RM 0–15 sec RM 15–30 sec

1 LS 0–15 sec LM 15–30 sec

2 2 DM 0–45 sec LS 0–15 sec

3 RM 0–45 sec DS 0–15 sec

1 DM 0–45 sec RM 30–45 sec

3 2 RSTD 0–45 sec LS 0–15 sec

3 LS 0–15 sec RM 0–45 sec

1 LM 30–45 sec LM 30–45 sec

4 2 LS 0–15 sec LS 0–15 sec

3 DM 30–45 sec RM 15–30 sec

1 LM 0–45 sec DP 30–45 sec

5 2 DM 30–45 sec CC 30–45 sec

3 DS 0–15 sec CC 15–30 sec

1 DM 15–30 sec RM 15–30 sec

6 2 DP 15–30 sec LS 0–15 sec

3 DS 0–15 sec LM 15–30 sec

1 DS 0–45 sec RM 0–45 sec

7 2 LS 0–45 sec LM 15–30 sec

3 DM 15–30 sec LS 0–45 sec

1 DP 30–45 sec DS 0–15 sec

8 2 DM 0–45 sec DM 0–45 sec

3 DM 15–30 sec DM 15–30 sec

1 DM 0–45 sec DS 0–45 sec

9 2 DS 0–15 sec DS 0–15 sec

3 RSTD 0–45 sec DM 0–45 sec

doi:10.1371/journal.pone.0024170.t004

Figure 3. Average feature selection across all participants for both tasks. The word generation task is on top, and the mental rotation task
on bottom. Black bars are left MCA features, grey bars are right MCA features, and white bars are bilateral features. Bilateral features are more
frequently selected for the word generation task, likely due to the left-hemispheric lateralization of this task. Feature descriptions can be found in
Table 1.
doi:10.1371/journal.pone.0024170.g003
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Influence of Respiratory Modulation
Prior to the experiment, no instructions were given to

participants regarding the modulation of respiration. However, it

was observed that some participants, either intentionally or

unintentionally, modulated their respiration between rest and

activation states. These modulations were apparent when classifi-

cation was performed on respiratory data alone, as shown in

Tables 2 and 3. These findings are of interest because respiratory

modulations are known to affect CBFV [40]. However, classifica-

tion using TCD data obtained significantly greater accuracies than

classification using respiratory data for eight of nine participants for

both tasks. This indicates that the results we have obtained are not

merely the result of changes in respiration. Furthermore, it was

shown by Szirmai et al [30] and by Hartje et al [35] that respiration-

induced changes in CBFV tend to be bilateral. This suggests that we

can reduce the impact of changes in respiration by using only

bilateral features. The disadvantage of this approach is that we are

likely to significantly diminish the attained accuracy for tasks which

are weakly lateralized or unlateralized. When we restricted feature

selection to bilateral features, this hypothesis was verified; we did

incur a significant drop in accuracy for the mental rotation task.

However, we maintained a very high accuracy for the word

generation task. This provides further indication that the effects of

respiratory modulation were not a significant factor during

classification of the word generation task.

Limitations
During this study, we used a duration of 45 seconds for both rest

and activation states. This is comparatively long for BCI appli-

cations, and in practical usage would limit the data transmission

rate. Such a lengthy duration was chosen due to the lack of pre-

existing research into a TCD-based BCI, and the necessity of

obtaining high classification accuracy. However, results from this

study indicate that shorter durations would still allow for reliable

detection of cognitive activity. In Figure 1, it is clear that significant

increases in CBFV within the left and right MCAs occur soon after

the onset of cognitive activity. Future studies should investigate the

impact of shorter durations on classification accuracy.

In this study, the potential benefits of practice were not

examined, as the participant only completed two sessions. Despite

this, high classification accuracies were obtained. It is possible that

participants could become even more accurate as they gained

further proficiency with the required mental tasks. However, it is

also possible that further practice could lead to habituation and a

reduction in the cognitive activation caused by each mental task.

Longer-term studies are needed to investigate these issues.

One difficulty associated with TCD is the presence of CBFV

artifacts associated with movement. Significant head movement

could cause the TCD probes to shift, resulting in momentary or

persistent deterioration of the recorded signals. Body movement

can also induce CBFV changes that may incorrectly be classified

as activation, causing a false positive. These movements could also

affect lateralization if they occurred during the performance of

either mental task. However, such movements were observed in

many participants during this experiment, and they did not

prevent high classification accuracies. Consequently, we hypoth-

esize that a TCD-based BCI would be robust to movement

artefacts. Future studies should investigate this issue, as such

movement artefacts are likely to be common during practical BCI

usage.
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