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Abstract

Background: Despite the successful retrieval of genomes from past remains, the prospects for human palaeogenomics
remain unclear because of the difficulty of distinguishing contaminant from endogenous DNA sequences. Previous
sequence data generated on high-throughput sequencing platforms indicate that fragmentation of ancient DNA sequences
is a characteristic trait primarily arising due to depurination processes that create abasic sites leading to DNA breaks.

Methodology/Principals Findings: To investigate whether this pattern is present in ancient remains from a temperate
environment, we have 454-FLX pyrosequenced different samples dated between 5,500 and 49,000 years ago: a bone from
an extinct goat (Myotragus balearicus) that was treated with a depurinating agent (bleach), an Iberian lynx bone not
subjected to any treatment, a human Neolithic sample from Barcelona (Spain), and a Neandertal sample from the El Sidrón
site (Asturias, Spain). The efficiency of retrieval of endogenous sequences is below 1% in all cases. We have used the non-
human samples to identify human sequences (0.35 and 1.4%, respectively), that we positively know are contaminants.

Conclusions: We observed that bleach treatment appears to create a depurination-associated fragmentation pattern in
resulting contaminant sequences that is indistinguishable from previously described endogenous sequences. Furthermore,
the nucleotide composition pattern observed in 59 and 39 ends of contaminant sequences is much more complex than the
flat pattern previously described in some Neandertal contaminants. Although much research on samples with known
contaminant histories is needed, our results suggest that endogenous and contaminant sequences cannot be distinguished
by the fragmentation pattern alone.
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Introduction

Ancient DNA (aDNA) analysis on extinct human populations

can potentially provide information on past human migrations and

evolutionary processes. aDNA extracts are composed, in variable

ratios, of endogenous DNA (either damaged or undamaged) and

exogenous DNA. The exogenous DNA can include environmental

contaminant DNA (mainly DNA from microorganisms such as

bacteria) derived from sample exposure in the ground, but also

sources that might enter post excavation, e.g. human DNA derived

from handling/manipulation of the ancient samples. Several years

ago, the adoption of several laboratory practices were advocated as

a means to ensure the authenticity of aDNA results [1]. These

included, for instance, physical separation of the ancient and

modern DNA laboratory, frequent bleaching and UV irradiation

on the working surfaces, the use of sterile laboratory wear

(including gloves and face masks), cloning of PCR products, and

the independent replication of the results in a second laboratory.

However, all these authentication criteria have proven to be

ineffective while working on ancient human specimens, because

modern human contaminant DNA can be mistaken for endoge-

nous DNA [2]. This is due to the near impossibility of discri-

minating between the two types of sequences, and the fact that not

all the contamination can be controlled for within the laboratory,

even under the most stringent precautions. Several studies pointed

to the existence of pervasive pre-laboratory contamination, as

showed by the presence of human DNA in non-human samples,

such as pigs, foxes, cave bear, dogs or Neandertals [3,4]. There-

fore, independent replication of the results in another laboratory

will not eliminate the problem.

Human handling-derived contamination can to some extent be

monitored during excavation, in which the sequences of the people

that recently have handled the remains can be genotyped. Studies

that have followed this approach have identified significant

amounts of these traceable contaminating sequences, mixed with

the putative -and usually prevalent- endogenous ones [5]. It has
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been suggested that ancient human DNA specimens destined for

future palaeogenetic studies should be based on material extracted

under controlled conditions (e.g., with sterile lab gear and with the

immediate freezing of the samples) [5]. Unfortunately however,

the majority of human archaeological material available for study

today derives from excavations in the past, in which these

precautions were not implemented. An additional concern is that,

as contaminants age, handling-derived contaminant DNA mole-

cules themselves can be chemically degraded to a level similar to

that observed among the endogenous sequences [6], thus

rendering it impossible to discriminate between the two types of

sequence using characteristics such as postmortem DNA damage

alone [7,8].

A further authentication criterion that has been proposed, that

of ‘‘appropriate molecular behaviour’’, refers to potential differ-

ences in length between the endogenous and the contaminant

DNA. As time passes following the death of an organism, the

surviving DNA is subjected to damage processes that break the

double helix and degrade it DNA molecules into progressively

smaller fragments [9]. Since contaminant DNA molecules are in

general considerably more recent than those endogenous to an

ancient sample, it is assumed that the former will often be of larger

average size than the original DNA. Mälmstrom et al. [4] analysed

dog samples contaminated with human DNA and found more

authentic DNA in shorter than in longer fragments retrieved.

Thus, ancient samples show an increase in authentic DNA yield

with decreased fragment size than the contaminating DNA. This

asymmetrical behaviour could be explained if the contaminant

sequences are on average longer than the endogenous ones [4].

Recently, high-throughput sequencing techniques, such as 454-

FLX pyrosequencing (Life Sciences-Roche) or the Illumina

Genome Analyzer platforms have enabled the generation of large

numbers of ancient DNA sequences, even resulting in the first

complete ancient genome sequences [10–13]. The advent of these

techniques has necessitated a re-examination of authenticity

criteria, in light of the new methods through which data is

generated. For instance, it is now possible to directly observe the

distribution length of endogenous and contaminant sequences in a

shotgun sequenced aDNA extract, for example as has been

demonstrated with Neandertal DNA [14]. Under the assumption

that short sequences are endogenous, and longer sequences

contaminant, this in theory can be used as a means to discriminate

contaminant from endogenous sequence. How straightforward it is

to do this however is unclear. While endogenous DNA sequences

from different DNA extracts have similar distributions (although

differing by sample on their modal and average length), the

modern human contaminant sequences that have been reported

exhibit rather different length distributions among samples. For

instance, in one Neandertal specimen (El Sidrón 1253), all modern

human contaminants were between 30–60 bp in length, while in

others (Feldhofer 1 and Vindija 33.16), they ranged from 30 up to

.200 bp [15]. Nevertheless, despite this apparent heterogeneity,

the reanalysis of the first published Neandertal genome sequences

showed that the longest sequences (accounting for up to 80% of all

reads) were likely modern human contaminants [16].

An alternate characteristic of shotgun sequenced DNA that can

be analysed, and that can play a role in discriminating between

contaminant and endogenous DNA, is the examination of the

nucleotide composition patterns near the 59 and 39-ends of the

454-FLX generated sequences. For example it was demonstrated

that in endogenous Neandertal sequences, guanine and adenine

residues are elevated relative to cytosine and thymine residues,

immediately before the strand breaks [17]. Additionally, at the 59-

end of sequences, thymines are present at above average

frequencies, while at the 39-end of sequences, adenines are

increased, due to a combination of the effects of enhanced rates

hydrolytic deamination of cytosine into uracil or its analogues in

the 59 single strand overlaps that are believed to be common in

aDNA, combined with the action of T4 DNA polymerase during

sequencing library construction [c.f. 17 for full details]. Based

upon these observations of DNA damage, it is believed that the

primary cause of fragmentation in ancient sequences is DNA

depurination [17]. Given the fact that such damage is believed

characteristic of aDNA, bioinformatic tools have now been already

developed to analyse these characteristic patterns so as to provide

a measure of credibility to aDNA results [18]. However in this

regard it is worth noting that the observations made so far have

been made in samples that share a number of traits, such as being

dated to the Pleistocene, having a low or negligible degree of

human contamination, and that contain data that allows the

phylogenetic discrimination of endogenous and contaminant

sequences [13,15,19–21]. Thus it is important to widen the range

of samples that such damage analyses have been undertaken on,

the aim of this study.

To further explore whether DNA depurination is the primary

mechanism underlying the detected fragmentation pattern, we

have analysed modern human contaminant sequences obtained

from a 454-FLX sequenced non-human ancient sample that had

been treated with bleach prior to DNA extraction, a known

depurinating agent. Secondly, we have explored the DNA

fragmentation patterns of human contaminant sequences obtained

by 454-FLX sequencing a non-bleach treated non-human ancient

sample. Thirdly, we have 454-FLX sequenced two ancient human

samples from different ages and taphonomic conditions: a recently

found Neandertal sample and a Neolithic human sample, to

investigate whether the observed sequence fragmentation patterns

are consistent with those previously described.

Materials and Methods

To generate a dataset of known human contaminant sequences,

DNA extracts from two different non-human samples were built

into MID tagged 454-FLX libraries, then pyrosequenced at the

Centre de Regulació Genòmica (CRG) in Barcelona: a Myotragus

bone and an ancient Iberian lynx mandible. Myotragus balearicus

was an extinct endemic caprine from the Balearic Islands [22]. A

Myotragus radius bone (IMEDEA 43619) excavated from Cova

Estreta (Pollença, Mallorca) in 1996 and radiocarbon-dated to

about 6,300-5,700 years ago was analysed [23]. The Iberian lynx

(Lynx pardinus) is a critically endangered carnivore currently

restricted to two isolated populations in the south of the Iberian

Peninsula. However, until historic times its distribution was larger,

reaching the North East of the Iberian Peninsula. A lynx mandible

from Cova del Toll (Barcelona) dated to about 11,420 years ago,

was analysed [24].

To explore the pattern of human sequences found in

contaminated ancient (anatomically modern) human specimen,

we similarly 454-FLX sequenced DNA extracted from a Neolithic

tooth (inventory number CCG94-E33) belonging to the site of

‘‘Camı́ de Can Grau’’ (Granollers, Barcelona, Spain). This is a

necropolis excavated in 1994, that comprised 23 tombs radiocar-

bon dated to between 5,500-5,000 years ago, and that was

previously studied by conventional, PCR-based methods [25]. It is

known that these samples have been washed and handled without

special precautions by the excavators, and had a contamination

content that was quantified using conventional PCR and cloning

as about 17.1% of all PCR-produced mtDNA sequences [6].

However, the contaminating sequences in this particular sample
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(unpublished data) seem to be lower (,5%) than the average of the

other samples from this particular site [6].

In addition we 454-FLX sequenced a Neandertal bone

fragment from the El Sidrón site (Asturias, Spain), dated to about

49,000 years ago and labeled SD 1504. Previously, two mito-

chondrial DNA fragments were determined by PCR from this

sample, and no contaminant sequences were found among 115

clones generated (data not shown). Therefore, little or no

contamination is suspected to be present within this sample and

thus, it we hypothesised that it could be taken as a control from

which the ‘true’ endogenous DNA fragmentation pattern could be

discerned.

Post sequencing, the following protocol was followed so as to

describe the fragmentation patterns among the data. Starting with

the raw 454-FLX sequence files, the sequence reads were analysed

to check for the presence or absence of both (59 and 39) MID

adaptor tags. Only the reads containing both adaptor sequences

were kept in this analysis, to avoid possible mis-assignment of the

sequence ends. The remaining sequence reads were aligned using

NCBI Blast with the megablast algorithm, against the non-

redundant nucleotide database (nt). Only blast hits with a coverage

over 98% were retained, and, in case of uncertainty in the blast

assignment, the higher bit score hit was selected. The blast output

was assigned to a specific taxonomic level, using the NCBI

taxonomy database. TaxID assigned blast outputs were back-

tracked to the order level, and filtered keeping only the sequences

that matched to primate taxa using a customised perl script that

performs the Lowest Common Ancestor algorithm (M.G.G,

unpublished). To avoid uncertainties in finding the fragmentation

point in the sample sequence, the remaining 454 reads were

extended 10 nt up- and downstream, using the GI reference

sequence and the extreme up-/downstream 21 nucleotides to

analyse the fragmentation pattern. Nucleotide frequencies for the

resulting 21 positions were calculated.

To sum up the frequency patterns on the fragmentation point of

the ancient DNA sequences we used entropy variation as statistical

measure. Given the definition of entropy as a measure of the

uncertainty associated to a random variable, we can calculate the

entropy per position using the Shannon diversity as:

H(S)i~{
Xn

i~1

X4

j~1

pi, j log2pi, j

where H(S)i is the entropy of the i-th position of a given dataset of

n sequences, and pi,j is the frequency of the j-th nucleotide for that

given position, resulting in a single value associated with each

position that sums up all diversity information.

Given the low numbers of primate sequences in all datasets, we

used a bootstrap method to assess the variation in entropy along

the breakpoint. As variability in the fragmentation point tends to

decrease in the ancient endogenous sequences, the uncertainty

level decreases, and the bootstrap resampling would give us the

statistical power to compare the different samples and to check for

the level of contamination.

Results

Human contaminant sequences in animal bones
Among the 96,357 sequences obtained from Myotragus, 337

(corresponding to 0.35% of the total) could be identified as

contaminant human sequences (a greater number than the

endogenous sequences, that accounted for only 260 reads

[0.27%]) (Table 1). These human sequences probably originated

from palaeontologists who washed and cleaned the remains after

their excavation in 1996, inadvertently contaminating the

specimen. The average length of these sequences is 85 nucleotides,

and they range from 30 bp (determined by the length cut-off in the

analysis) to 300 bp (limited by the 454-FLX technology used)

(Figure 1). Filtering to remove reads that did not contain the

adaptor at the 39 end (thus reads derived from a library insert

longer than the maximum sequence read length capability) lead to

removal of only a small fraction of reads (,1%). This low level

renders it unlikely that the subsequent analyses will be biased due

to the size distribution of the endogenous versus contaminant

reads. Moreover, frequency and entropy calculations at the 59 end,

including the sequences without 39, did not result in any difference

on the results. From the data we note that the length distribution

of the human contaminant sequences is similar in shape to

previously reported endogenous aDNA distributions that have also

been generated by shotgun sequencing methods [14,19,20].

Furthermore, the fragmentation pattern in both the endogenous

and the human contaminant sequences is concordant with the

suggested depurination pattern characteristic of endogenous

aDNA [17] (Figure 2), with the entropy clearly decreasing

immediately prior to the breakpoint, indicating that fragmentation

is not produced at random (Figure 3). Given that the bone powder

was treated with bleach prior to DNA extraction as a

decontaminating procedure [23], the data suggests that bleach

treatment may convey ‘ancient’ characteristics on the contaminant

DNA.

Among the 361,151 sequences obtained from the lynx sample,

5,078 (1.4% of the total) were identified as human contaminants,

again a figure higher than the endogenous lynx sequences (414,

0.12% of the total reads [Table 1]). In contrast to a previous

observation that human contaminant sequences within Neandertal

DNA extracts showed no specific increase in the frequency of any

nucleotide either side of the DNA fragment [20], the contaminant

sequences in the lynx sample show a more complex, non-random

fragmentation pattern that is hard to interpret (Figure 4). The

pattern at the 59 end shows an increase of G (instead of the

expected T) at the breaking point, of T in subsequent 39 positions,

and an increase of T and A in positions prior to the breaking point

(Figure 4). Despite the apparent complexity of the pattern, the

resulting entropy is flatly distributed along the breaking point

(Figure 3).

Neolithic sequences
In the Neolithic sample, 168,998 sequence reads were

generated, of which 1,117 (0.66%) were human sequences

(Table 1). The efficiency of DNA retrieval is again low (,1%),

Table 1. Specimens subjected to 454-FLX pyrosequencing,
number of reads and ratio of endogenous and contaminant
sequences obtained.

Specimen N reads % endogenous seqs % human seqs

Neandertal 155,676 0.32% (N = 503) *

Neolithic 168,998 0.66% (N = 1,117) *

Lynx 361,151 0.11% (N = 414) 1.4% (N = 5,078)

Myotragus 96,357 0.27% (N = 260) 0.35% (N = 337)

*: in the case of human samples, it is impossible to discern a priori which
sequences are endogenous and which are human contaminants. However, we
have mitochondrial DNA estimates of the maximum potential contamination
,1% in the Neandertal sample and ,5% in the Neolithic sample.
doi:10.1371/journal.pone.0024161.t001

Fragmentation of Contaminants in Ancient Human DNA
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but it is consistent with that obtained from the Myotragus sample

that preserved at a similar thermal environment and age [23]. The

level is also similar to those previously reported in older specimens,

including some Neandertals [14,19].

Among the human sequences, thymine residues at the 59-ends

appear in 32.8% of the DNA fragments, while guanines at the 39-

ends appear as adenines in 28.3% of the cases, Both nucleotides

are significantly increased respective of their average frequency

along the sequences (Fisher’s exact test, P,0.05). Immediately

prior to the 59 strand break, purine bases are elevated to 52.0%

(P,0.05), while pyrimidines are decreased to 47.9% (P,0.05).

The converse pattern is observed following the 39-end of the

sequence, that is, pyrimidines are increased to 51.9% (P,0.05),

while purines are depressed at 48.1% (P = 0.05) (Figure 5). It

should be remembered that the 39-ends correspond to the terminal

59-position in the complementary strand, and that the whole

pattern is consistent with fragmentation at purine sites [17]. As in

Myotragus sequences, entropy decreases at the breaking point

(Figure 3).

Neandertal sample
In the El Sidrón Neandertal sample, 155,676 reads were

generated, of which 503 (0.32%) were primate sequences (Table 1).

The efficiency of DNA retrieval is again very low (,1%), but is

almost identical (0.27%) to that previously reported from another

sample recovered from the same site [19]. The purine fragmen-

tation pattern previously described in ancient sequences can also

be seen, although the sample size is lower than that analysed in

previous Neandertal studies (N = 503 reads). To visualize the

pattern more clearly, we have pooled purine and pyrimidine

frequencies (Figure 6). We observe that the frequency of purine

residues at the nucleotide immediately prior to the 59-end are

over-represented (56.4%), up from 49.8% at the 21 position. The

21 position is marked by a high decrease of pyrimidines, where

only 16.3% of residues in that position are cytosines, followed by a

marked increase of them in the position +1 with a 29.9% of all

fragments. At the 39-end the opposite effect can be seen (data not

shown). In this case, the breaking point is not marked by a drop in

the entropy value (Figure 3), although this may be an artefact of

the small sample size. However, considering that the depurination

pattern is clearly observed in previously analysed Neandertals [17],

it is obvious that the drop in entropy would be also present.

Discussion

The level of endogenous DNA within these four samples, all

from temperate environments but of different ages (ranging

between 49,000 and 5,500 years ago) and from heterogeneous

taphonomic conditions, are similar to each other, and generally

lower (,1%) than the levels observed in previously samples from

Figure 1. Sequence length distribution of the human contam-
inant sequences obtained from DNA extracted from bone
samples of a Myotragus balearicus and an ancient lynx, and the
putatively endogenous sequences from a Neolithic human and
a Neandertal specimen obtained by 454-FLX pyrosequencing.
The contaminant reads in Myotragus are possibly fragmented by the
bleach treatment; nevertheless, a large overlapping in the distribution
length can be observed among samples.
doi:10.1371/journal.pone.0024161.g001

Figure 2. Nucleotide base frequencies at the 59 end of the Myotragus human contaminants, treated with a depurinating agent,
bleach. The base composition is plotted as a function of distance from the 59-end. Despite the small sample size (N = 337 reads), the pattern matches
that previously described in ancient endogenous sequences, including Neandertals.
doi:10.1371/journal.pone.0024161.g002
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colder environments [12,26–28]. We note that the non-human

samples show considerable human contaminant DNA content

(0.35% in Myotragus and 1.4% in the lynx), that in both cases

outnumber the endogenous sequences, demonstrating in particular

the difficulties of working with ancient human specimens,

especially those without a detailed handling history. Given this it

is clear how analysis of remains that were recently excavated under

controlled conditions confers significant benefits. Nevertheless

despite this limitation, the given the potential of high-throughput

DNA sequencing platforms, it should still be possible to retrieve

ancient human genomes from temperate environments.

The sequence size distribution analyses demonstrate that

endogenous and contaminant sequences can display different

distributions (Figure 1) - the length distributions are significantly

different (Kruskal-Wallis test 1095.29, 3 d.f., P,2.2610216).

Obviously, the pattern of size reduction could be related to factors

such as the age of the sample or contamination ratios. Thus our

data confirms the previous observation that ancient DNA is in

general fragmented to smaller lengths than contaminants [4] is

confirmed. Despite this, however, we believe that the length of a

particular set of sequences is not a helpful authentication criterion

per se, due to the wide overlapping of the length distributions in

different samples.

The human sequences from the Neolithic and Neandertal

sample, as well as the caprine and carnivorous sequences from the

Myotragus and the lynx, respectively, show the purine-associated

fragmentation pattern previously described as a feature of

endogenous Neandertal sequences (that is, an elevated level of

purines directly prior to the sequence breakpoint, as well as

increase of thymines at the 59 end of sequences and of adenines at

the 39 ends of sequences). We further note that the depurination-

based pattern is always stronger at the 59 end, likely because a

number of sequences without the adaptor at the 39 end were

discarded during the analysis.

The data further suggests that contaminant molecules in

samples that have been bleached appear to be fragmented

following depurination processes, to yield a damage profile that

is identical to that exhibited by truly ancient sequences. Until this

Figure 4. Nucleotide base frequencies at the 59 end of the human contaminants present in the prehistoric Iberian lynx. The base
composition is plotted as a function of distance from the 59-end (N = 5.078 reads).
doi:10.1371/journal.pone.0024161.g004

Figure 3. Entropy at the 59 end of the Myotragus, the human contaminants in the lynx, the Neolithic and the Neandertal reads,
estimated using Shannon equation and 100 bootstraps. It can be seen that in Myotragus and Neolithic the entropy drops at the breaking
point, indicating that sequences are not randomly fragmented, while in lynx and Neandertal, the entropy is stable (in the latter this is due to the small
sample size of the Neandertal reads available).
doi:10.1371/journal.pone.0024161.g003
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observation is confirmed or refuted in other samples, we strongly

recommended not to bleach human bones that are subsequently to

be shotgun-sequenced, because the resulting contaminant se-

quences will likely imitate the ancient ones in their fragmentation

patterns.

In the unbleached samples the human contaminant sequences

show nucleotide frequency distributions at the sequences break-

points that are different to the depurination-based pattern

observed in endogenous sequences, [20]. We speculate that this

complex pattern could be the result of the contaminant sequences

being fragmented by bacterial enzymes. Further research in this

issue is needed, especially in the comparison between recent and

old (.10 years) contaminants in a given sample with a known

handling story. If entropy parameters are considered, the

contaminants do not show a decrease in entropy at the breaking

point, in contrast to the known endogenous sequences (with the

exception of the Neandertal data, likely due to the small size of the

data). Thus, we recommend consideration of entropy as a measure

for helping determine whether a given high-throughput sequence

dataset derives from contaminant or endogenous sequences.

In conclusion, our results demonstrate that samples preserved

under a range of different environmental and taphonomic

conditions, over different thermal ages, consistently produce the

previously described [17] depurination pattern. Thus, fragmenta-

tion patterns are not exclusive of Neandertals or other Late

Pleistocene samples, and can be applied as a measure of authenticity

across all ancient high-throughput sequencing datasets with

increased confidence. The results also confirm that contaminant

molecules show neither a simple depurination-associated pattern,

nor random nucleotide frequencies along the sequences’ lengths, as

previously suggested. Furthermore, our results suggest that both sets

of sequences (endogenous and contaminants) are not easily

distinguishable based on the nucleotide pattern prior to break

alone. However, the combination of different statistical tools,

including the measure of the entropy at the reads’ ends and the

distribution lengths, can help to authenticate shotgun sequencing

results in the future. Further research on different types of samples

(both contaminated and uncontaminated) is needed, since the

understanding of the fragmentation patterns is crucial for the

human palaeogenomics field.

Figure 5. Nucleotide base frequencies at the 59 end of the human Neolithic sequences. The base composition is plotted as a function of
distance from the 59-end. The depurination-based pattern can be seen, despite the small sample size (N = 1,117 reads).
doi:10.1371/journal.pone.0024161.g005

Figure 6. Purine and pyrimidine frequencies at the 59 and 39 end of the Neandertal sequences. A–G and C–T have been grouped because
of the low number of sequences available (N = 503). Nevertheless, the purine-associated fragmentation pattern can be seen.
doi:10.1371/journal.pone.0024161.g006
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