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Abstract

Background: The biogenesis of membrane proteins is more complex than that of water-soluble proteins, and recombinant
expression of membrane proteins in functional form and in amounts high enough for structural and functional studies is
often problematic. To better engineer cells towards efficient protein production, we set out to understand and compare the
cellular consequences of the overproduction of both classes of proteins in Lactococcus lactis, employing a combined
proteomics and transcriptomics approach.

Methodology and Findings: Highly overproduced and poorly expressed membrane proteins both resulted in severe
growth defects, whereas amplified levels of a soluble substrate receptor had no effect. In addition, membrane protein
overproduction evoked a general stress response (upregulation of various chaperones and proteases), which is probably
due to accumulation of misfolded protein. Notably, upon the expression of membrane proteins a cell envelope stress
response, controlled by the two-component regulatory CesSR system, was observed.

Conclusions: The physiological response of L. lactis to the overproduction of several membrane proteins was determined
and compared to that of a soluble protein, thus offering better understanding of the bottlenecks related to membrane
protein production and valuable knowledge for subsequent strain engineering.
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Introduction

Membrane proteins are involved in many essential cellular

processes such as transport of nutrients, sensing of environmental

changes, energy transduction and scaffolding of cell structure. Due

to their important roles in various diseases these proteins are

clinically important as potential drug targets. To date, 60% of all

available pharmaceutical drugs target membrane proteins [1].

Even though 20 to 30% of all genes encode integral membrane

proteins (IMPs) [2], the structures of relatively few of these proteins

have been elucidated at high resolution. Expression hosts such as

Escherichia coli, yeast (Pichia pastoris and Saccharomyces cerevisiae) or

higher eukaryotic cells (mammalian and insect cells) are often used

for membrane protein production [3,4]. However, the production

of proteins in a functional state and in sufficient yields for

structural analysis is often a problem. Emerging systems like cell-

free protein expression offer interesting possibilities but producing

the protein in the native state is still a bottleneck [5]. Over the past

decade, the Gram-positive bacterium Lactococcus lactis has emerged

as an alternative host for membrane protein production [6–12]. L.

lactis is amenable to genetic manipulation and well-tunable

promoter systems are available [9,13,14]. The organism shows a

limited proteolytic activity and, as a Gram-positive bacterium,

contains a single membrane with a high fraction of glycolipids.

The easier targeting of proteins to the single (cytoplasmic)

membrane, compared to Gram-negative bacteria, facilitates

activator/inhibitor studies of expressed proteins [12,15]. In

addition, the limited number of endogenous transporters simplifies

complementation studies.

The choice of host cells for production of recombinant

membrane protein depends on various factors, such as gene

source (codon bias, tRNA levels), protein complexity and the

requirements for a particular folding environment, post-transla-

tional modifications, and others. Production of proteins can often

be improved by trial-and-error approaches to screen for the best

promoter, inducer levels and growth media [16,17] or by

screening a wide variety of homologues [18,19]. Alternatively,

production levels can be increased by selecting strains with
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improved protein production potential [20–22] or by screening for

stable variants of a given protein [23]. To understand and

ultimately alleviate the bottlenecks in membrane protein produc-

tion, one needs to comprehend the response of the host cells, as

has been done for yeast [24] and E. coli [25]. This knowledge leads

to a better understanding of the cellular bottlenecks affecting the

production of membrane proteins and hints towards strategies to

engineer strains [26,27].

Here, we used transcriptomics and proteomics approaches to

determine the response of L. lactis to the production of membrane

proteins. We evaluated the effects of (over)expression of diverse

proteins, including the osmoregulatory ABC transporter OpuA,

the plant sucrose transporter StSUT1 and the human c-secretase

component PS1D9; these proteins display different levels of

expression and compromise growth to different extents. We

evaluated the expression of these membrane proteins against the

water-soluble substrate receptor OpuAC. (Over)expression of the

diverse membrane proteins elicited a similar response in L. lactis,

which was distinct from the stress evoked by the production of

OpuAC.

Results

Recombinant protein production and cell growth
The genes of the following proteins were cloned in the

lactococcal nisin-inducible gene expression plasmid pNZ8048

[28] and introduced in Lactococcus lactis NZ9000: the ABC

transporter OpuA from L. lactis, the sucrose transporter StSUT1

from Solanum tuberosum, the human PS1D9, a presenilin variant

missing exon 9, and the soluble glycine betaine-binding protein

OpuAC from L. lactis. Each of the proteins was engineered to

contain a C-terminal hexa-histidine tag, facilitating their detection

by immunoblotting. L. lactis NZ9000 containing the empty vector

pNZ8048 was used as a control. All the physiological and omics

analyses were carried out on biological triplicates, and the cells

were grown in pH-controlled bioreactors. The cells were induced

in the mid-exponential phase of growth (OD600<0.5) with 10 ng/

mL of nisin A. The growth rate (mmax) of the cells prior to induction

was 0.7560.01. The addition of the inducer had an effect on

growth, as determined in control cells carrying the empty vector

and for OpuAC producing cells (the mmax values were 0.6060.06

and 0.5960.02, respectively). A stronger effect on cell growth was

observed in cells producing OpuA (mmax = 0.4460.04 hr21) and

StSUT1 (mmax = 0.3560.01 hr21), while growth of cells producing

PS1D9 (mmax = 0.1960.03 hr21) was affected most severely

(Figure 1A).

To determine protein production levels, membrane fractions

extracted from these cells, harvested 2 h after induction, were

analyzed by SDS-PAGE. Analysis of the Coomassie-stained gel

(Figure 1B) and the immunoblot (Figure 1C) showed very high

levels of OpuA. Similar to previous studies [29], the levels of the

individual subunits of OpuA (OpuAA and OpuABC) were

estimated to be .10% of total membrane protein (i.e. ,15 mg/

L of cell culture). In contrast, the production levels of the

eukaryotic membrane proteins PS1D9 and StSUT1 were at least

an order of magnitude lower. Both these proteins were only

detectable on the immunoblot (Figure 1C). OpuAC, the soluble

substrate-binding protein of OpuA, was also overexpressed and

detected in the cytoplasmic fraction only (Figure 1C).

To rule out a possible bottleneck at the level of transcription of

the PS1D9 and StSUT1 genes, RT-qPCR was performed to

determine the mRNA levels of PS1D9, StSut1 and opuA. We

observed that 64 min after induction the fold increase of the

PS1D9 and StSut1 mRNAs was comparable to that of the opuA

transcript (data not shown), thus indicating that transcription is not

a limiting factor for the production of the two eukaryotic proteins.

Strains and constructs for ‘‘Omics’’ analyses
To probe the basis for the difference in the production levels of

the four proteins under study, we determined the physiological

response of L. lactis to the protein synthesis burden by performing a

combined proteomic and transcriptomic analysis. Contrary to

PS1D9 and StSUT1, which have no known activity in L. lactis

and/or of which the substrates are not present in our experimental

setup, a high level of OpuA results in the accumulation of glycine

betaine, thus producing an effect in itself. At high concentrations,

glycine betaine can have a favorable effect on the stability/folding

of proteins. To avoid such an effect, we expressed a point-mutated

version of OpuA, OpuA(H223A), in which the histidine residue at

position 223, essential for the ATPase activity [30], was replaced

by alanine.

OpuA is easily produced by L. lactis NZ9000 and is therefore

expected to request a considerable amount of resources for

transcription as well as for translation and membrane targeting/

insertion. To account for the putatively significant transcription

burden of the genes encoding OpuA and OpuA(H223A), we also

made pNZopuAmRNA in which the AUG codons at positions 1

(start of opuAA), 1224 (start of opuABC), and 1344 (potential internal

start site), were substituted by UAA stop codons. This plasmid was

used in all subsequent experiments as a control for the production

of OpuA(H223A). Figure 2A shows that OpuA and OpuA

(H223A) were synthesized at comparable levels in L. lactis and that

no OpuA was formed in L. lactis NZ9000/pNZopuAmRNA.

Whole-cell 14C-glycine betaine transport assays, using L. lactis

Opu401 (a NZ9000 derivative lacking the chromosomal opuA gene

[31]) carrying the proper expression plasmids, confirmed that

wildtype OpuA was functionally expressed and that

OpuA(H223A) was inactive (Figure 2B). Induced expression of

wildtype OpuA and OpuA(H223A) had similar negative effects on

the growth of L. lactis (Figure 2C). Growth of the mRNA control

strain L. lactis NZ9000 (pNZopuAmRNA) was only slightly

inhibited upon induction with nisin A, and similar to that of the

of empty vector control strain L. lactis NZ9000 (pNZ8048). These

data suggest that the nisin A-induced increase of transcription does

not, per se, have a major impact on the physiology of L. lactis.

Growth of the producer organism is inhibited only when either the

functional or the inactive form of OpuA is produced at high levels.

Thus, to characterize the response of L. lactis to membrane

protein production burden, proteomics and transcriptomics studies

were performed with the L. lactis NZ9000 strains carrying

pNZOpuA(H223A), pNZPS1D9, pNZStSUT1 or pNZOpuAC.

L. lactis NZ9000 (pNZopuAmRNA) was used as a dedicated control

for L. lactis NZ9000 (pNZOpuA(H223A)), whereas L. lactis

NZ9000 (pNZ8048) was used for the same purpose in the three

other situations.

Transcription and Translation Kinetics/Dynamics
To optimize the sampling for the proteomics and transcrip-

tomics studies, we determined the time-dependent profiles of

transcription of opuA and a number of genes involved in the stress

response (Figure 2D), in addition to the profile of synthesis of the

OpuA protein (Figure 2E). Figure 2D shows that transcripts for the

individual subunits of OpuA (OpuAA and OpuABC) can be

readily detected after induction, rising quickly and reaching a

plateau about 15 min after induction. The transcripts levels of cesR

and dnaK, indicators of a specific and a general stress response in L.

lactis, respectively (see below and accompanying paper [32]), were

determined in parallel. The kinetics of formation of these
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transcripts was similar to that of opuA. Expression of the branched

chain amino acid permease gene bcaP, which was used as a

control, remained indeed constant throughout the growth curve

[Brouwer et al., manuscript in preparation]. Although increased

transcript levels could be detected after one min of induction, it

took longer to observe the overproduced proteins by Western

blotting (Figure 2E). OpuABC was detected after 4 to 8 min of

induction and increased gradually over a period of 120 min.

Therefore, sampling for transcriptomics was dense (0, 2, 8, 16, 32

and 64 min after induction), but less frequent for proteomics,

(0 min, 16 min (onset of detectable OpuA) and 64 min (high

accumulation of OpuA)). Time points later than 64 min were not

examined as many indirect physiological phenomena were

expected to obscure the (initial) response to the overproduction

of the membrane proteins.

Time-resolved stress response and experimental
approach

L. lactis was grown in pH-regulated bioreactors. Cell samples

were collected in methanol at 240uC to immediately quench

further synthesis or breakdown of mRNA. For the proteomic

studies, translation in harvested cells was stopped immediately by

adding 100 mg/mL of chloramphenicol. Transcriptome data from

biological triplicates was acquired by hybridizing the dual dye-

labelled cDNA, obtained by reverse transcription of purified

mRNA, onto SuperAmine glass slides spotted with duplicates of

around 2500 ORF amplicons from L. lactis subsp. cremoris MG1363

[33]. Principal component analysis (PCA) of the transcriptome

data showed that the cells reacted immediately to the induction of

the production of OpuA(H223A), using NZ9000 (pNZopuAm

RNA) as the reference, and significant differential expression of

genes was observed already after 8 min. The PCA analysis also

showed that the changes gradually increased up to 64 min after

induction (Figure 3A). After preliminary analysis of the transcrip-

tome data, the 64 min time point seemed to be most relevant and,

for pragmatic reasons, was therefore selected for the transcrip-

tomics analysis in the experiments comparing L. lactis strains

NZ9000 (pNZPS1D9), NZ9000 (pNZStSUT1) and NZ9000

(pNZOpuAC).

The soluble proteome of control cells [strains NZ9000

(pNZ8048) or NZ9000 (pNZopuAmRNA)] and of cells overpro-

ducing membrane protein was analyzed by two-dimensional

differential in gel electrophoresis (2D-DIGE), in combination with

nanoLC-MS/MS (see Materials and Methods). Upon

OpuA(H223A) overproduction, the PCA analysis on the spot

volumes of proteins, that were matched across all the 2D gel

images, revealed no significant differences for the time points 0

and 16 min. Differences between the induced L. lactis NZ9000

(pNZopuAmRNA) and NZ9000 (pNZOpuA(H223A)) cultures

became significant only after 64 min. The soluble proteomes were

then distinct from each other and from the earlier time points

(Figure 3B) and were further analyzed.

Membrane proteomes extracted from control cells (strains

NZ9000 (pNZ8048) or NZ9000 (pNZopuAmRNA)) and from cells

overproducing membrane protein, collected after 64 min of

induction, were analyzed by 2D-liquid chromatography, separat-

ing iTRAQ-labelled peptides by strong cation exchange (SCX)

Figure 1. Characterization of membrane protein production in
L. lactis NZ9000. Cells were grown in a pH-controlled bioreactor to
OD600<0.5 and induced with 10 ng/mL of nisin A. (A) Growth prior and
after induction with nisin A (indicated by arrow) of cells producing
recombinant OpuA (filled triangles), PS1D9 (open triangles), StSUT1
(closed squares) and OpuAC (open squares). Cells harboring the empty
vector pNZ8048, induced (open circles) and uninduced (closed circles)
were used as control. (B & C) Protein production in L. lactis NZ9000. The
nisin A-induced cells were harvested 2 h after induction. Protein
production was analyzed on SDS-PAGE gels stained with Coomasie
brilliant blue (B) and on an immunoblot using an anti-His tag antibody

(C). 25 mg of cytosolic/membrane fractions were loaded onto the gel,
except for the OpuA-expressing cells (5 mg of cell lysate to prevent
saturation of the immunoblot signal). (2), Empty vector control: L. lactis
NZ9000 (pNZ8048). Relevant protein bands are indicated by arrow
heads.
doi:10.1371/journal.pone.0024060.g001
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and reverse phase nano-liquid chromatography (RP-nLC).

Proteins were identified by MALDI-MS/MSMS of the peptides.

To improve the identification and quantification of low abundant

membrane proteins, the membrane fractions were extracted with

urea/K-EDTA and subsequently with cholate to remove the

majority of aspecifically-bound cytosolic proteins (for more detail,

see Text S1 and Figure S1). Nevertheless, highly abundant soluble

cytosolic proteins (glycolytic enzymes, ribosomal proteins) could

still be detected in the membrane proteome fraction and these

were included in the proteome dataset. The significant differen-

tially expressed proteins and all identified proteins (raw data) are

listed in Table S1.

The physiological response of L. lactis to membrane
protein overproduction

The physiological response of L. lactis to recombinant protein

overproduction was determined by analyzing the changes in the

transcriptome and the proteome in biological triplicates and by

comparing these datasets (Table S1). The level at which the target

genes/proteins were overexpressed/overproduced is depicted in

Figure 4A. Only opuA/OpuA are endogenous and can, de facto, be

said to be up- or downregulated. As the other target genes are not

present in the control strain, the obtained ratios serve only as

qualitative controls for the production of the target proteins in

each experiment. Only native L. lactis genes were represented on

the DNA microarray slides and therefore only data on the

overexpression of opuA was obtained in this way. That the

expression fold change was negative only signifies that the mRNA

control strain NZ9000 (pNZopuAmRNA) overexpressed the opuA

transcript to a higher extent than NZ9000 (pNZOpuA(H223A))

due to the lack of additional burden of overproducing the OpuA

protein. A global quantification of the statistically significant

observations is presented in Table 1. More changes were observed

at the level of the transcriptome than at the proteomic level, which

is commonly observed in omics studies [34,35]. The correlation

between the transcriptome and proteome datasets are represented

as Venn diagrams and the Pearson coefficients are given in

Figure 3C, showing that for about ,25% to 40% of the identified

differentially expressed proteins the corresponding genes in the

transcriptome were identified to be differentially regulated. The

Venn diagrams presented in Figure 3D & 3E show the overlap

between the different transcriptome (Figure 3D) and proteome

(Figure 3E) datasets. The clustering of strains overproducing the

three membrane proteins was also observed in the proteome data.

The total number of genes/proteins that were significantly

differentially expressed upon membrane protein overproduction is

given in Table 1. The stress response was most pronounced for

cells overproducing OpuA(H223A), which can be explained by the

fact that this protein is produced to much higher levels than

PS1D9 or StSUT1. We also note (see Fig. 1A) that growth of L.

lactis was inhibited upon induction of the synthesis of

OpuA(H223A), PS1D9 and StSUT1, and that a large part of

the response may reflect adaptation to the lower growth rate. The

most notable differences in the physiological response of L. lactis

upon production of the membrane proteins OpuA(H223A),

PS1D9 and StSUT1 and the soluble protein OpuAC are discussed

in the sections below:

1) Cell envelope stress response and protein

translocation. A number of genes/proteins that were upregu-

lated in response to the overproduction of proteins, such as ftsH,

oxaA2, ppiB, pacL and telA, form part of the CesSR regulon

controlled by the two-component system specified by cesSR. The

genes cesS (kinD; llmg_1649) and cesR (llrD; llmg_1648) are both also

upregulated under the protein production stress applied,

orchestrating a cell envelope stress response [36,37] (Figure 4B).

Some of these proteins, notably FtsH and OxaA2, are known to

play crucial roles in membrane protein biogenesis [38]. Their

upregulation may increase the capacity to remove misfolded

protein (FtsH, a membrane-bound cell division protease), while

allowing a more efficient insertion or folding of proteins into the

membrane (OxaA2). The differential expression of all of these

genes was seen with all three overproduced membrane proteins

but not for OpuAC (Table S2), indicating that the integral

membrane proteins induce a CesSR response.

2) General stress response. The proteome and transcri-

ptome data show that, specially for OpuA and PS1D9,

recombinant membrane protein production in L. lactis also

evoked a more general stress response, including the upregu-

lation of hrcA-grpE-dnaK, dnaJ, groES-groEL, clpP, clpB, clpE and clpC

(Figure 4D; in most cases the corresponding proteins were

upregulated similarly). StSUT1, on the other hand, only evoked

a change (upregulation) in the levels of hrcA, clpB and clpE (and in

most cases the corresponding proteins). This response is a clear

indication that the pool of mis-folded proteins is increased.

Possibly, some of the produced protein molecules might not have

correctly assembled in the membrane, e.g. due to an overload of

the membrane targeting and/or the translocation machinery. The

identification of OpuAA, the nucleotide-binding subunit of the

ABC transporter OpuA, in the soluble proteome is consistent with

a somewhat higher production of OpuAA, from the first gene of

the operon, as compared to OpuABC. Possibly, the surplus

OpuAA cannot associate with the membrane component and ends

up in the cytoplasm (Table S1). Contrary to what was observed

with the membrane proteins, in case of OpuAC overproduction

none of the genes/proteins concerned with the general stress were

differentially regulated (except for clpE at the transcriptome level;

Table S2).

3) Protein synthesis. A severe effect on the cell’s transla-

tional machinery was observed upon production of all 4

recombinant proteins, as was the case for ribosomal proteins,

both at the level of the transcriptome and the proteome (Figure 4E

& Table S2). Translation and the tRNA synthetase proteins/genes

show more mixed effects, which were not specific for any of the

samples (Figure 4E & Table S2). Almost all of the differentially-

regulated ribosomal proteins were observed in the membrane

proteome (despite the urea/EDTA and cholate treatment) but not

in the soluble proteome, which is consistent with an interaction of

ribosomes with the SEC translocon and a coupled translation and

membrane targeting/insertion process.

Figure 2. Transcript, protein and activity levels. (A) The recombinant production of proteins in L. lactis NZ9000 was analyzed on immunoblot,
using an anti-His tag antibody (‘‘2‘‘ indicates uninduced cells and ‘‘+’’ cells induced with 10 ng/mL of nisin A at OD600<0.5). Cells were harvested
after 2 h of nisin A induction. (B) Transport activity of parental OpuA (triangles) and OpuA(H223A) (squares) was analyzed in L. lactis Opu401 cells. The
nisin concentration for induction was 0.1 ng/mL and the uninduced cells, carrying the pNZ8048 (circles), were used as a control. (C) Growth of L. lactis
NZ9000, expressing parental OpuA (filled triangles), OpuA(H223A) (filled squares) and opuAmRNA (empty triangles). Cells harboring pNZ8048 (empty
vector), induced (open circles) and uninduced (closed circles) were used as control. (D) Time-resolved transcript profiling of opuAA (filled triangles),
opuABC (empty triangles), cesR (filled squares), dnaK (empty squares) and bcaP (empty circles) after induction, as analyzed by RT-qPCR. (E) Time-
resolved production of parental OpuA protein by L. lactis NZ9000 cells, as analyzed on immunoblot with an anti-histidine tag antibody.
doi:10.1371/journal.pone.0024060.g002
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4) Amino acid biosynthesis. The levels of transcripts

encoding for enzymes involved in amino acid biosynthesis,

especially for methionine (MetC) and cysteine (CysD/K), were

downregulated, but these effect were not seen at the proteome

level (Figure 5A). In addition, the transcripts for the cytosolic

peptidases (PepC, PepF and PepXP) were increased upon

recombinant protein expression. The expression of most of these

genes is controlled by a global nitrogen metabolism regulator,

CodY, whose repressing effect is relieved when the intracellular

concentration of branched-chain amino acids becomes limiting

[39]. Thus, the differential regulation of the peptidase genes is

consistent with a limitation in (branched-chain) amino acids in

OpuA(H223A)-producing cells (see also [17]). Notably, the genes

for the di-peptide and oligo-peptide transporters (dpp, dtpT and

opp), which are also regulated by CodY, were downregulated upon

overexpression of the membrane proteins but they were

upregulated upon OpuAC overproduction (Figure 5A & Table

S2). This suggests that for membrane proteins the possible CodY-

mediated upregulation may be overruled by the specific cell

envelope stress response described above.

5) Nucleotide metabolism. A sharp downregulation of

genes involved in the synthesis of nucleotides (purines and

pyrimidines) via the de novo and salvage pathways was observed

in all samples. Furthermore, genes encoding proteins involved in

synthesis of deoxy-ribonucleotides (nrdI, nrdE, nrdF and llmg_0281)

were downregulated, but most of these changes were not observed

at the protein level (Figure 5B). The responses of nucleotide

metabolism to a variety of environmental stresses has been

Figure 3. Analysis of proteome and transcriptome data. Principal component analysis (PCA) of transcriptome (A) and proteome data obtained
from 2D gel spot maps (B) of cells producing OpuA (H223A) (full triangles) and compared with the opuAmRNA control (open diamonds). The 2D gels
were analyzed and spot volumes were extracted using Decyder 6.5 (GE Healthcare, Uppsala, Sweden). Transcriptome PCA (full squares) was obtained
from the ratio data of the two populations of cells. (C) Overlap in the transcriptome (yellow) and proteome data (blue). The number of overlapping
genes/proteins are indicated in the overlap of both circles and the associated Pearson correlation coefficients are given. Overlap of significant
differences in the transcriptome (D) and proteome (E) datasets obtained for OpuA(H223A) (Green), PS1D9 (purple), StSUT1 (pink).
doi:10.1371/journal.pone.0024060.g003
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observed previously and is most likely not specific for membrane

protein production. Most likely, it relates to the reduced growth

rate of L. lactis, which has previously been coupled to a

downregulation of pyr and pur genes [40–42]. Contrary to what

was observed for the membrane proteins, production of OpuAC

did not lead to differential regulation of the genes/proteins

concerned with nuclotide metabolism (except for pbuX at the

transcriptome level).

6) Carbon and energy metabolism. The levels of

transcripts encoding glycolytic enzymes and pyruvate-dissipating

enzymes were decreased in the OpuA(H223A), PS1D9 and

StSUT1 producing cells. Similar observations were made at the

proteome level (Figure 5C). Like for nucleotide metabolism, the

trends correlate with the decrease in growth rate and may reflect

the lower need for metabolic energy. The transcript levels for the

subunits of F1F0-ATPase (atpA, atpB, atpD and atpH) were higher in

cells overproducing OpuA(H223A), even though AtpD and AtpA

were downregulated at the protein level. In strains overproducing

PS1D9 or StSUT1, AtpD and AtpH were downregulated at the

protein level (Figure 5D). Except for pdhD at transcriptome level,

none of the genes were differentially regulated in OpuAC

producing cells (Table S2).

7) Cell envelope biosynthesis. Proteins and transcript levels

for the enzymes involved in the biosynthesis of the peptidoglycan

layer were upregulated, independent of the overproduced protein.

With respect to lipid synthesis the cells do not seem stressed,

because an increase in cardiolipin at the expense of phospha-

tidylglycerol is often linked to stress conditions and/or a reduced

growth rate [43], however the transcriptomic and proteomic

changes point towards an increase in the concentration of

phosphatidylglycerol and a decrease in cardiolipin upon over-

expression of OpuA(H223A), PS1D9 and StSUT1 (Figure 5E).

Downregulation of the fatty acid synthesis genes (the acc and fab

genes) was observed at the transcript level upon overproduction of

OpuA(H223A), PS1D9 and StSUT1 but not for OpuAC. The

three genes that are differentially expressed in the OpuAC

producing cells, i.e., accA, fabG and fabZ, are in fact upregulated.

8) Membrane transport. The inorganic ion transporters

showed mostly mixed effects upon overexpression of the different

membrane proteins and only a subgroup showed consistent effects

within a category (Figure 5F). The vitamin transporters (CbiO3,

CbiO2, RibU, NiaX, QueT) showed a general downregulation

upon overexpression of the membrane proteins. The copper

ATPases (CopAB) and the multidrug transporters (all ABC type

transporters and about half of the major facilitator superfamily)

were upregulated in the strains overproducing OpuA(H223A),

PS1D9 and StSUT1 but not OpuAC, which might reflect a

growth-related effect. Three transporters showed a specific effect

in the proteome analysis: the iron (FhuC and FhuD), the

manganese (MtsA, MtsB and MtsC) and the magnesium (MgtA-

type) transporters like PacL were upregulated upon PS1D9 or

StSUT overproduction, downregulated in the strain producing

OpuA(H223A) and not differently expressed in the OpuAC

overproducer.

Discussion

The major hurdle in the structural analysis of membrane

proteins is their overproduction in a functional state. Producing

membrane proteins requires coordination of several processes,

such as transcription, translation, targeting, membrane insertion,

folding, and, in many cases, post-translational modifications. A

thorough analysis of the host cell response to and mechanistic

information about membrane protein biogenesis will aid in the

design of strategies to optimize the recombinant production of

these proteins. Here, we report on the physiological response of L.

lactis NZ9000 to apparent stress(es) evoked by the synthesis of a

number of integral membrane proteins, using a water-soluble,

cytosolically expressed protein as a reference. We show that,

although OpuA is expressed to much higher levels than PS1D9

and StSUT1, the response of the cells to the stress of producing

these proteins is very similar, which was not anticipated. At this

point, we do not know whether a lower expression is due to a

lower growth rate or a lower growth rate is caused by the

expression of the particular protein. As the amount of PS1D9 and

StSUT1 synthesized is very low, it is unlikely that the growth

inhibition is due to diversion of nutrients towards the synthesis of

recombinant protein. What, then, causes the inhibition of growth?

In E. coli and B. subtilis downregulation of genes involved in

transcription and translation, incl. tRNA synthetases, similar to

what is observed here in L. lactis, is invoked by the synthesis of

ppGpp via the ribosome-associated RelA protein. The accumu-

lation of ppGpp acts as an alarmone, repressing the transcription

of various genes essential for cell growth. This phenomenon is

called the stringent stress response [44,45]. The stringent stress

response in L. lactis has been identified in for instance acid-stressed

cells [46,47] and might play a role here.

The production of recombinant membrane protein was

accompanied by a general stress response, as the heat shock

proteins DnaK, GroeEL, DnaJ and GrpE were highly upregulated

in case OpuA and PS1D9. The expression of these genes is

controlled by HrcA, a regulatory protein that binds to the CIRCE

sequence present in the upstream region of these genes [48,49]. In

addition, the protease ClpE and the chaperones ClpB, ClpE and

ClpX, whose expression is regulated by CtsR [50], were also

upregulated. The response was observed for a broad range of

stresses such as acid, heat and osmotic challenges [41,51]. The

response is triggered by the accumulation of misfolded protein,

Figure 4. Quantification of mRNA and protein differences in cells producing recombinant membrane proteins. The depicted values are
averaged fold changes obtained from biological replicates. ‘‘T’’ stands for transcriptome data and ‘‘P’’ for membrane proteome (iTRAQ) data, except
when a yellow bordered square is depicted, in which case data was obtained by 2D DIGE. Only statistically significant p-values are indicated. The color
scheme is a measure of the depicted fold changes (green for upregulation and red for downregulation; the color intensity is proportional to the fold
change). Proteins/genes that were either significantly not differentially regulated or not identified are indicated in black.
doi:10.1371/journal.pone.0024060.g004

Table 1. Number of up- and downregulated genes/proteins
in L. lactis strains.

Strain comparison

Micro-
arrays 2D DIGE iTRAQ

Up Down Up Down Up Down

pNZopuA(mRNA) versus
pNZOpuA(H223A)

164 209 12 9 7 92

pNZ8048 versus pNZPS1D9 154 167 8 19 10 23

pNZ8048 versus pNZStSUT1 145 143 4 12 31 44

L. lactis NZ9000, carrying the indicated plasmids, was grown as described in
Materials and Methods and numbers of differentially expressed genes and
proteins were determined.
doi:10.1371/journal.pone.0024060.t001
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Figure 5. Quantification of mRNA and protein differences in cells producing recombinant proteins. For details on headings, statistics
and color scheme, see legend to Figure 4.
doi:10.1371/journal.pone.0024060.g005
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suggesting that not all OpuA(H223A) and PS1D9 (and possibly

also StSUT1) is correctly folded. Alternatively, it might be that the

stress results from an increased population of generic unfolded

proteins, due to depletion of the folding machinery by the

overproduced recombinant proteins. Notably, none of the proteins

concerned with general stress were differentially regulated in case

of OpuAC overexpression.

Arguably the most important finding of our work is the CesSR-

mediated response, resulting in the differential regulation of a wide

variety of genes, many of which have a (putative) central role in

maintaining cell envelope integrity and various membrane

functions, such as LmrA (a multidrug resistance ABC transporter),

RmaB (a transcriptional regulator of the MarR family), SpxB

(transcriptional regulator), OxaA2 (membrane insertase/foldase)

or FtsH (AAA-type ATP-dependent membrane-bound metallo-

protease) (Figure 4B). CesSR is a two-component regulatory

system (TCS) that orchestrates a cell envelope stress response [36].

Although it is not known what is actually sensed by CesS, the

histidine-kinase and sensor component of the system, the system

responds to the presence of bacteriocins [36] and lysozyme [37].

We show here that CesSR also responds to stress evoked by the

overproduction of a variety of membrane proteins, and of a

secretory protein. This may occur via the association of misfolded

hydrophobic protein with the cytoplasmic membrane. In fact, by

using GFP as a quality control indicator of correctly folded

protein, we have observed that misfolded membrane proteins in L.

lactis do not end up in electron-dense inclusion bodies (as

frequently observed in E. coli) but, rather, are associated with the

membrane lipid fraction of the cell [22]. An important role for

FtsH seems obvious under those circumstances. Most genes from

the CesSR regulon code putative membrane proteins or proteins

acting on the cytoplasmic membrane, clearly indicating the

specificity of this response. The influence of CesSR and members

of this regulon on membrane protein production is described in

the accompanying paper [32].

In conclusion: By using a combined proteomic and transcriptomic

approach we were able to determine the physiological response of

L. lactis to membrane protein overproduction (Figure 6). Intrigu-

ingly, the extent of the stress responses was not proportional to the

production levels and/or activity of the overproduced protein. The

observations on the general and cell envelope stress are also in

agreement with a recent study in which the human ABC chloride

channel CFTR was expressed in L. lactis [52]. In addition, we

monitored the effect of overexpression of OpuAC, the glycine

betaine-binding domain of OpuA, as a water-soluble cytoplasmic

protein, but did not observe the general and cell envelope stress

response. Overproduction of various other cytoplasmic proteins

also did not trigger a CesSR response (Anne de Jong, personal

communication). Several of the other responses, i.e. of energy,

nucleotide and amino acid metabolism and of protein synthesis,

seem to occur under a variety of stresses and are not related to the

production of membrane proteins per sé [17,41,53,54]. Our work

points to a specific response in L. lactis towards membrane protein

production, of which the CesSR-mediated one seems most

relevant for producing well folded protein (see the accompanying

paper [32], in which knowledge on the players in the CesSR

response was used to engineer L. lactis to produce more membrane

protein).

In contrast to E. coli, overproduction of membrane/secretory

proteins in L. lactis does not elicit a major change in the expression

of the Sec protein translocation machinery. On the basis of

comparisons with published studies on L. lactis physiology and

Figure 6. Consequences of recombinant (membrane) protein production in L. lactis. Schematic representation of the major consequences
of expressing recombinant (membrane) proteins in L. lactis.
doi:10.1371/journal.pone.0024060.g006
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stress response [17,41,53,54], we conclude that many differences

in the expression of genes in for instance carbon, energy and

nucleotide metabolism are due to the decreased growth rate.

Under these conditions, the cell may divert nutrients towards the

synthesis of recombinant proteins and/or have too limited a

capacity to import amino acids in case of nitrogen metabolism.

Finally, it is evident that upon membrane protein production the

cell is sensing various changes that elicit a response in the

transcription machinery, which is not reflected in the proteome.

The proteome may thus be a better indicator for design and

engineering of cells with the aim to overcome expression

bottlenecks.

Materials and Methods

Bacterial strains and growth conditions
Lactococcus lactis NZ9000 [28] derivatives were grown at 30uC in

M17 broth (Difco, Detroit, MI, USA) containing 1% glucose (w/v)

and 5 mg/ml chloramphenicol (GM17-Cm5). L. lactis Opu401 is a

derivative of L. lactis NZ9000 in which the chromosomal opuA

genes have been deleted by double cross-over recombination [31].

Plasmid construction
DNA manipulations were done according to standard proce-

dures. Plasmids and primer sequences used in this study are listed

in Table 2 and Table S3, respectively. The opuA mutants, either

specifying an inactive version of OpuA or a non-translatable

transcript, were constructed by site-directed mutagenesis on

pNZOpuA [55]. Ligation-Independent Cloning of PS1D9 and

StSUT1 in pREcLIC and the subsequent conversion of the

plasmids into lactococcal expression vectors by Vector Backbone

Exchange (VBEx) were performed as described [11]. All proteins

were produced with a C-terminal his-tag for rapid screening of

expression. Preparation of electrocompetent cells and electro-

transformation into L. lactis was performed as described [56].

Protein production and immunodetection
For protein (over)production, cells were grown until OD600<0.5

and induced with 1023 volume of filtered culture supernatant of

the nisin-A producing strain L. lactis NZ9700, containing 10 mg/

mL of nisin A. Cells were allowed to grow for the required amount

of time and harvested by centrifugation. Sample volumes were

normalized on the basis of OD so that an equivalent amount of

whole-cell protein was taken for all samples. Cells were washed

once with 100 mM potassium phosphate (KPi), pH 7.0, and

resuspended in 1 ml of ice-cold 100 mM KPi, pH 7.0, 10%

glycerol (w/v), 1 mM MgSO4, 1 mM PMSF and trace amounts of

DNAse I. After the addition of 300 mg of glass beads (,100 mm

diameter), cells were lysed by three rounds of bead beating in a

Fastprep machine for 20 seconds (speed 6.0) with cooling intervals

of 5 min on ice in between. Unbroken cells and cell debris were

removed by centrifugation at 16,1006 g for 30 min and

membrane fragments were collected by centrifugation at

267,0006 g for 20 min. Protein samples were resolved on 12.5%

SDS-PAGE gels and detected by immunodetection with an anti-

histidine tag primary monoclonal antibody (GE Healthcare,

Uppsala, Sweden). Chemiluminescence detection was done using

the Western-light kit with CSPD (Tropix Inc, Bedford, MA, USA)

as the substrate and imaging with the LAS-3000 imaging system

(Fujifilm, Minatoku, Tokyo, Japan).

Reverse transcriptase-quantitative-PCR
An equivalent of 10 OD600 units [OD600*V (ml)] of L. lactis cells

were harvested by centrifugation and cell pellets were kept at

280uC until further processing. Cells were washed with DEPC

treated T10E1 buffer and resuspended in 500 ml T10E1 (10 mM

Tris-HCl pH 8.0, 1 mM Na2-EDTA) and transferred to 2 ml

screw-cap tubes. To this cell suspension, 50 ml 10% SDS (w/v),

500 ml phenol/chloroform, 500 mg glass beads (50–105 mm of

diameter) and 175 ml macaloid suspension (Bentone MA, High-

tstown, NJ) were added. All reagents used for RNA work were

Table 2. Bacterial strains and plasmids used in this study.

Descriptiona
Mol Wt
(kDa)

No. of
TMDsb

% membrane segment to
extramembranous loops Source

Strains

L. lactis MG1363 L. lactis subsp. cremoris, plasmid-free derivative of NCDO712 [67]

L. lactis NZ9000 L. lactis MG1363DpepN::nisRK [28]

L. lactis Opu401 L. lactis NZ9000DopuAABC [31]

Plasmids

pNZ8048 Cmr; Expression vector with nisin A-inducible promoter PnisA [68]

pNZOpuA pNZ8048 containing opuAA and opuABC 107.8 7 15.3 [55]

pNZOpuA(H223A) pNZOpuA derivative; specifying OpuA with the His at position
223 replaced by Ala

107.8 7 15.3 This work

pNZopuA(mRNA) pNZOpuA derivative carrying opuA with ATG codons at positions
1, 1224 and 1344 replaced by TAA; the numbering refers to the
position of nucleotide in the gene sequence

This work

pNZPS1D9 pNZcLIC derivative specifying PS1D9 with a hexa-histidine tag
on the C-terminus

49.3 9 45.2 This work

pNZStSUT1 pNZcLIC derivative specifying StSUT1 with a hexa-histidine
tag on the C-terminus

54.8 12 51.16 This work

pNZOpuAC pNZ8048 containing opuAC 28.9 0 0 [29]

aCmr, chloramphenicol resistance.
bTMD’s: Transmembrane domains.
doi:10.1371/journal.pone.0024060.t002
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treated with diethylpyrocarbonate, (DEPC) Sigma-Aldrich, St.

Louis, MO). The macaloid suspension was prepared as follows: 2 g

Macaloid was added to 100 ml T10E1, boiled for 5 min, then

cooled to room temperature and sonicated for short periods of

time until a gel was formed; the gel was spun down in a

microcentrifuge and resuspended in 50 ml T10E1 (pH 8.0). Cells

were disrupted by bead-beating twice for 45 sec in a Mini-

BeadBeater (Biospec Products, Bartlesville, OK) with a 1-min

cooling interval on ice. The cell lysate was cleared by

centrifugation and 500 ml supernatant was extracted with 500 ml

phenol/chloroform, and subsequently with 500 ml chloroform.

Total RNA was isolated from the water phase using the High Pure

RNA Isolation Kit (Roche Molecular Biochemicals, Mannheim,

Germany), according to the manufacturer’s protocol. RNA quality

was verified with an Agilent Bioanalyzer 2100 using RNA 6000

LabChips (Agilent Technologies Netherlands BV, Amstelveen, the

Netherlands) and RNA concentration was determined spectro-

photometrically with a Nanodrop ND1000 (NanoDrop Technol-

ogies, Wilmington, DE). Copy DNA (cDNA) was synthesized using

Superscript III Reverse Transcriptase (Invitrogen, Carlsbad, CA)

and the quantification was done with Maxima SYBR Green

qPCR Master Mix (Fermentas, Burlington, Canada), according to

the suppliers instructurions and using an optical iCyler (BioRad,

Hercules, California, USA). The forward and reverse primers used

for the qPCR were spaced 100 bp apart, around the 59 regions of

the transcripts (Table S3). All reactions were done with identical

amounts of RNA to allow comparison of different time points. The

data was analyzed as described previously [57].

Glycine betaine transport assay
Whole-cell glycine betaine transport was measured essentially as

described before [58]. Cells were grown in GM17 to an

OD600<0.5 and induced for 1 h with 100 ng/L nisin A (final

concentration), harvested (at OD600<1.0) and washed with

50 mM K-HEPES pH 7.3, concentrated to OD600<50 and kept

on ice until use. For the transport assay, the cells were diluted to

OD600 of 5.0 into 50 mM K-HEPES pH 7.3 plus 650 mM

sucrose and 10 mM glucose and pre-energized for 5 min by

incubation at 30uC; the sucrose imposes hyperosmotic conditions

which activates the transporer [31]. The assay was started by the

addition of 14C-glycine betaine to a final concentration of 15 mM;

the transport reaction was stopped at given times by the addition

of 2 ml of ice cold stop buffer (650 mM sucrose in 50 mM K-

HEPES pH 7.3), followed by filtration through 450 nm pore size

nitrocellulose filters. The filters were washed twice with 2 ml of

stop buffer and subsequently transferred into vials containing 2 ml

of scintillation fluid. The radio activity was measured using a

TriCarb-2800 TR liquid scintillation analyzer (PerkinElmer,

Massachusetts, USA).

Preparation of cell samples for transcriptomics and
proteomics

To assure true biological replicates (triplicates), L. lactis cells

transformed with appropriate plasmids were streaked onto GM17-

Cm5 agar plates and single colonies were used to start pre-

inoculums in GM17-Cm5 medium. After 8–10 h of growth of the

pre-inoculums, several dilutions were prepared, ranging from 1022

to 1026 fold, to obtain an overnight culture growing exponentially

(i.e., OD600 = 0.2–0.4). This culture was used to inoculate 2.5 L of

fresh GM17-Cm5 medium (1/100 dilution). The culture was

stirred at 200 rpm and the pH was maintained at 6.8 by automatic

addition of 4 M KOH. Cells were grown until OD600<0.5 and

then induced with nisin A (10 ng/mL).

For mRNA isolation, an equivalent of 10 OD600 units

(OD600*V (ml)) of L. lactis cells was harvested at the various time

points. In case of OpuA(H223A) and its control (OpuAmRNA),

cells were harvested 0, 2, 8, 16, 32 and 64 min after the addition of

inducer. In case of PS1D9, StSUT1 and OpuAC and the

corresponding control (pNZ8048), only the cells from the

64 min time point were used. Cells were quenched in 240uC
cold methanol (the relative final volume of the sample being 60%)

to inhibit further mRNA synthesis and degradation. After all

samples had been obtained and kept at 240uC, cells were

centrifuged for 3 min at 12,0006g and a temperature of 4uC. The

pellets were resuspended in ice-cold 500 ml T10E1, transferred to

2 ml screw-cap tubes, immediately frozen in liquid nitrogen and

kept at 280uC until further processing.

For the proteome analyses of cells expressing OpuA(H223A)

and OpuAmRNA, one liter of culture sample was rapidly

withdrawn at 0, 16 and 64 min after the addition of inducer; for

the analyses of cells expressing PS1D9, StSUT1 or OpuAC or

carrying the control plasmid pNZ8048, only the 64 min time point

was used. To inhibit protein synthesis, chloramphenicol (100 mg/

ml, final concentration) was added immediately upon sampling.

Cells were harvested by centrifugation at 82816 g for 15 min at

4uC. The cell pellet was washed once with ice-cold 100 mM Kpi,

pH 7.0, resuspended in 5 ml of the same buffer, frozen in liquid

nitrogen and stored at 280uC.

Proteome analysis
Cells were lysed by three passes through a pre-cooled small

French Press cell (Thermo IEC, Waltham, MA, USA) at 12,500

psi. Whole cells and cell debris were removed by centrifugation at

7,6506 g for 15 min and membrane fragments were collected by

subsequent centrifugation at 267,0006 g for 30 min. The super-

natant containing the soluble proteome was aliquoted to 500 ml,

frozen in liquid nitrogen and stored at 280uC. The pellet fraction

containing the membrane proteome was resuspended in 100 mM

KPi, pH 7.0, plus 20% glycerol (w/v) and aliquoted to 500 ml,

frozen in liquid nitrogen and stored at 280uC. Prior to proteome

analyses, the protein concentration of the samples was determined

using the 2D-quant kit (GE Healthcare, Uppsala, Sweden).

2D gel electrophoresis and protein identification
The soluble proteome analysis was analyzed by two-dimension-

al differential in gel electrophoresis (2D DIGE) as described before

[17]. For identification, protein spots of interest (average intensity

ratio greater than 1.5, or lower than 21.5, and a p-value,0.01)

were picked into a 96-well plate using the Ettan spot picker (GE

Healthcare, Uppsala, Sweden) equipped with a 2 mm diameter

picker head. The identification of proteins from 2D gel plugs was

performed as indicated in Text S2.

Membrane protein extraction
To remove the majority of soluble protein contaminants from

the membranes, the membrane vesicles were centrifuged at

272,0006 g for 20 min at 4uC, and the membranes were

resuspended in 50 mM KPi pH 7.0 (buffer A) to a final

concentration of 10 mg/ml (based on protein concentration

determination using Bradford reagent, with bovine serum albumin

as calibration standard) in a volume of 200–500 ml (initial volume)

and kept on ice. An equal volume of buffer A supplemented with

10 M urea plus 10 mM K-EDTA pH 8.0 was added slowly, while

being stirred and the solution was incubated on ice for 20 min.

The ‘stripped’ membrane vesicles were collected by centrifugation

at 272,0006g for 1 h at 4uC and resuspended in the initial volume

with buffer A. An equal volume of buffer A supplemented with
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12% cholic acid (w/v) was added slowly to the membrane vesicles,

while being stirred and the solution was incubated for 20 min on

ice. The membrane vesicles were collected by centrifugation at

272,0006 g for 1 h at 4uC and resuspended in the initial volume

with buffer A. Protein concentrations were on average around

1 mg/ml after the two extraction steps.

Membrane proteome identification
The extracted membrane vesicles were digested with trypsin,

the obtained peptides were labeled with iTRAQ reagents, the

labeled peptide mixtures were separated by strong cation exchange

(SCX) and reverse phase nano-liquid chromatography (RP-nLC)

and subsequently identified/quantified by MALDI-MS/MSMS

according to published methods [52]. A detailed description of the

experimental setup and conditions is presented in the Text S1.

The cut-offs that were used to define whether the observed

differences in protein levels are significant were kept more strict

than the cut-offs defined by [52], that is, differences in relative

protein ratios were considered to be significant if both ratios of the

biological replicates had a p-value below 0.01 and an average

intensity fold change greater than 1.5, or lower than 21.5.

DNA-microarray experiments
Total RNA isolation and cDNA synthesis was performed as

described above for the RT-qPCR, except that amino allyl-modified

dUTP’s were used in the nucleotide mix for cDNA synthesis.

Indirect Cy-3/Cy-5 labelling of cDNA was performed according to

supplier’s instructions (Amersham Biosciences, Piscataway, NJ).

Hybridisation of Cy-labelled cDNA was performed during 16 h at

45uC in a microarray hybridisation incubator ISO20 (Grant Boekel,

Cambridgeshire, UK) in Ambion Slidehyb #1 hybridisation buffer

(Ambion Biosystems, Foster City, CA). SuperAmine glass slides

(ArrayIt, Sunnyvale, CA) spotted with duplicates of around 2500

ORF amplicons of L. lactis subsp. cremoris MG1363 [33] were used.

Slides were scanned using a GenePix Autoloader 4200AL scanner

(Molecular Devices Corporation, Sunnyvale, CA). DNA microarray

data from biological replicates were obtained through dye-swaps, to

discard possible differences between the Cy-3 and Cy-5 labeling

reactions. Slide images were analyzed using ArrayPro 4.5 (Media

Cybernetics, Silver Spring, MD) and the data processed and

normalized using MicroPrep [59,60]. The expression ratios were

calculated from measurements of at least 4 spots. Differential

expression tests were performed with the Cyber-T implementation

of a variant of the t-test [61]. Only values with an associated p-value

lower than 0.01 and an average fold change greater than 1.5, or

lower than 21.5 were considered significant.

Overall data analysis
For analysis, proteins were grouped in functional categories using

either the COG (Clusters of orthologous genes [62,63]) or KEGG

(Kyoto encyclopedia of genes and genomes [64,65]) annotation.

The NCBI website was used to run protein blast searches against the

non-redundant database of L. lactis subsp. cremoris MG1363 (taxid:

416870). The Venn diagrams were made using information

obtained with Venncy (version 1.0), which was kindly provided by

Bas van Breukelen (University Utrecht, The Netherlands). The

PCA and the diagrams of the mRNA and protein ratios were

redrawn in Excel (Microsoft, Redmond, WA) using Genesis [66].

Supporting Information

Text S1 Extraction of membrane vesicles and determi-
nation of membrane proteome.
(DOC)

Text S2 Protein identification from 2D gel plugs.
(DOC)

Figure S1 Small-scale analysis of the extraction of
membrane vesicles. (A) SDS-PAGE analysis of membrane

vesicles. Samples treated with buffer, after urea/K-EDTA

extraction and urea/K-EDTA plus subsequent cholate extraction

were compared. The pellet fraction (p) contains the membrane

vesicles and the supernatant (s) contains the proteins that were

extracted from the membrane vesicles. (B) Immunoblot analysis of

the membrane vesicles containing the overproduced membrane

protein complex Opp. Detection was done against the ATPase

(OppD), the transmembrane domain (OppC) and the lipid

anchored substrate-binding protein (OppA). (C) List of identified

and quantified proteins in the extracted membrane vesicles.

Concentrations of the proteins were determined relative to the

concentrations detected in the membrane vesicles before extrac-

tion (start) using iTRAQ-labeled peptides. The proteins in each

column were sorted by the iTRAQ-ratio, which means that

proteins in the top of the column are enriched in this extraction

step relative to the start-material, and proteins at the bottom of the

list are depleted upon extraction of the membrane vesicles. Protein

IDs that contain at least one transmembrane segment (based on

TMHMM predictions) are indicated by a green color, while all

other proteins are colored red.

(TIF)

Table S1 Transcriptome/Proteome analysis of L. lactis
NZ9000 overproducing membrane proteins. Spreadsheet

with all data (raw/filtered) from the transcriptomics and

proteomics analysis of membrane protein production presented

in this study.

(XLSX)

Table S2 Transcriptome/Proteome analysis of L. lactis
NZ9000 overproducing water-soluble substrate receptor
OpuAC. Spreadsheet with the transcriptomics and soluble

proteome data (raw/filtered) for the cells overexpressing OpuAC.

(XLS)

Table S3 Oligonucleotides used in this study.
(XLSX)
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