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Abstract

The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem.
Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-
winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects
on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass
and lipid content of juvenile roach (Rutilus rutilus) was affected by the physiologically relatively small (2-5uC) changes of
winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC), under both natural and
experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the
potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass,
during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2uC) affected fish
biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained
only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid
analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation
induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting
organism response to climate change but also food-web interactions, such as resource availability and predation. However,
as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature,
this may not be a straightforward task.
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Introduction

In temperate freshwater systems, mean winter and spring water

temperatures have been increasing during the last decades, most

likely due to global warming (e.g. [1,2]), and the regional climate

projections by IPCC predict a further increase in mean annual air

temperatures of 2 to 5uC until 2100 [3]. Recent climate change

has led to a number of documented alterations of ecosystems

throughout the world [4]. Climate change can be expected to

affect organisms both directly, e.g., through temperature effects on

consumption and metabolism, and indirectly through effects on

trophic dynamics, such as resource availability and predation [4].

Research on all trophic levels, and interactions among them, is

needed to achieve a mechanistic understanding of and make

reliable predictions on the effects of climate change on ecosystem

dynamics. Specifically, there is need for research that disentangles

direct and indirect effects, e.g., temperature versus resource effects,

as knowledge of their interactions is largely lacking.

The advanced mechanistic understanding of trophic processes

and top-down effects in aquatic food-webs (e.g. [5,6]) makes them

ideal for studying climate change effects on various trophic levels

in ecosystems. Previous studies on the topic have focussed on the

dynamics of lower trophic levels, i.e., primary producers –

phytoplankton, and primary consumers - zooplankton [7–10].

However, less research has been conducted on the effects of

climate change on secondary consumers such as fish (see however

[11]). This is unfortunate as especially young-of-the-year fish may

strongly structure community and ecosystem processes in aquatic

systems [12].

In Northern America, Europe and in Polar regions, mean

temperatures are expected to increase more during winter than

other seasons [13-16], suggesting that climate change effects may

be strongest during winter. The winter period is of importance for

fish population dynamics due to increased mortality risk (e.g. [17]).

Among juvenile fish especially, a large part of the yearly mortality

occurs during this period [18,19], when their main food resource,
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zooplankton, occurs at low densities [20]. The abundance of

zooplankton will, thus, partly determine the degree of starvation

and thereby survival of juvenile fish during the winter period

[21,22].

Organisms use a number of strategies to survive the winter

period, including building up energy stores, predominantly in the

form of lipids, in autumn, as well as reducing activity during

winter. Both of these strategies are found in fish [23], but also in

other ectothermic animals such as invertebrates, reptiles, and

amphibians [24–27]. But whereas many species of reptiles and

amphibians hibernate during winter (e.g. [28–30], most fish

maintain some degree of activity [28] and, thus, continue to

consume resources during winter. Accumulation of energy stores

may also serve to increase reproductive performance in the

subsequent spring [23,31,32], and the rate at which energy stores

are depleted during winter thereby affects not only over-winter

survival, but also future reproductive output. The overwintering

success of an individual can therefore be divided into primary

success, i.e., survival, and secondary success, i.e., condition at the

end of the winter.

In fish, as in other ectothermic animals, ambient temperatures

influence lipid accumulation rates before winter [33], and

depletion rates during winter [34], since enzymatic processes

and basal metabolic rates generally increase with temperature.

Temperature will, thus, affect individual risk of starvation [34–36]

and thereby, potentially, population dynamics. For example,

Reading [37] found a negative impact of mild winters on common

toad (Bufo bufo) body weight and egg production, which was

attributed to a higher metabolism during winter. As food

consumption and assimilation rate are likely to drop with

decreasing temperatures, most organisms may be challenged at

the low temperatures during winter if intake- and/or assimilation

rates are below the level needed for metabolism [38]. Many

energetic models assume that consumption will drop to near zero

at low temperatures leading to obligate starvation [39,40].

However, this view has been seriously challenged by numerous

studies (e.g. [38,41]). Although not yet properly tested, it appears

reasonable to assume that the utilization rate of lipid stores is

affected not only by temperature, but also by food availability at

very low temperatures. Research efforts that assess the response of

juvenile fish to small low-temperature differences under different

resource conditions are therefore much needed.

The aim of this study is to assess how differences in food

availability in combination with small temperature differences

affect secondary success, i.e., condition and total lipid content, of

juvenile roach (Rutilus rutilus) during winter under laboratory

conditions. The roach is a cyprinid species occurring in many lakes

throughout most of Europe and Asia, from cold-water northern

Scandinavian and Siberian- to warm-water Mediterranean lakes

[42]. It commonly dominates lake fish communities, and is of key

importance for structuring plankton communities in temperate

lakes [43,44]. Changes in the distribution and success of the roach

due to climate change may thus have strong effects on lake

dynamics. The laboratory results are compared with overwintering

success of roach in the field. We hypothesize that at similar

temperatures, fish without access to food will use a higher

percentage of their lipid deposits than fed fish, but that there will

be no effect of temperature on fish over-winter success when food

is available. In presence of food, fish at all temperatures will be

able to cover their metabolic demands, while unfed fish will use

their deposits faster at higher temperatures, due to an increase of

temperature-dependent metabolism. We further analyze a five-

year data set on zooplankton density and water temperature from

Lake Krankesjön to investigate if changes in zooplankton density,

i.e. food availability for roach, are correlated to changes in winter

temperature.

Materials and Methods

Capture of fish
Juvenile roach (Rutilus rutilus) from shallow Lake Krankesjön

(average depth = 0.7 m, maximum depth = 3 m) in southern

Sweden (55u429N; 13u299E; for lake description, see [12]) were

caught on December 15 2005 with a dip net (1*1 meter; mesh size:

0.5 cm). All fish used in the experiment were between 39 and 61

mm in total length (5164.0 mm, mean6SD) and were assumed to

belong to the 0+ cohort, consistent with length-age data from survey

fishing in the lake during autumn (J. Brodersen unpublished data).

A number of fish were used for measurement of length and wet

weight (n = 86) directly after capture. A subset (n = 50) of these 86

fish were used for measurement of initial dry weight and a subset

(n = 25) of these 50 fish were later used for initial lipid content. At

the end of the study period (23 March 2006), fish were caught in

the same area with electro fishing to compare development of the

above mentioned parameters in fish from the natural population

with development in experimental fish.

Experimental design and sampling
Fish were kept at three different temperatures: 0.5, 2.5 and

4.5uC, resembling range of winter temperatures in Lake

Krankesjön. Each temperature treatment consisted of six replicate

barrels (45 L) with 40 fish in each. To half of the barrels, food was

added, whereas the rest were kept without food. The fish in the

food treatments were fed ad libitum with ‘‘VitakraftH Koi Junior’’

pond fish food three times a day; excess food was removed. During

the course of the experiment we sampled 15 out of the 40 fish in

each barrel. Barrels were inspected every day for dead fish. During

the first 110 days of the experiment only eight fish died in all

barrels. However, between days 111and 113, eight fish died in the

4.5uC, treatments without food alone. This rapid increase in

mortality led us to terminate the experiment.

Sampling of experimental fish took place once a week. One fish

from each barrel was captured, weighed to the nearest 0.01 g (wet

weight) and total length (LT) measured to the nearest 0.1 mm. Fish

were then freeze dried to determine dry weight to the nearest

0.001 g. Condition of fish was calculated as Fultons Condition

Index (K = M LT
-3, where M is dry weight) based on dry weights. In

many cases, condition is closely related to fish length due to

allometric changes with fish size, and measures of condition should

then be adjusted for fish length (e.g. [45]). The size range of fish

used in this study was, however, relatively small and condition was

not related to fish length (linear regression; F = 0.317; p = 0.574).

We did therefore not adjust condition for fish length. Fish from

every second sampling occasion, i.e. from every second week, were

used for analysis of lipid content (see below).

In this study we used a repeated measures design with sampling

of few fish at several time steps rather than having a large sample

size but only end point values as common in other studies (e.g.

[34]). This enabled us to detect differenced in lipid content and

condition throughout the experimental period.

The study complies with the current laws in Sweden; ethical

concerns on care and use of experimental animals were followed

under permission (M14-04) from the Malmö/Lund Ethical

Committee.

Lipid analysis
The extraction and measurement of the total lipid content of the

fish was carried out with a modified version of the Bligh & Dyer

Food and Temperature Effects on Fish Overwintering
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[46] method. Samples were freeze-dried for 3 days, their dry-

weight determined and homogenized with a teflon pestle tissue

grinder after cutting up the sample into small pieces. Thereafter,

we added 7.5 ml of a modified Bligh & Dyer solution

(dichloromethane/methanol/water in proportions 1:2:0.8) and

after sonication samples were left overnight for extraction. After

extraction, we added dichloromethane (2 ml) and Milli-Q water

(2 ml) in order to reach the new proportions of 2:2:1.8 and get a

two phase solution suitable for separation. The organic phase was

separated by centrifugation and, after 3 washes of the sample with

dichloromethane, the solvent was evaporated under flow of

nitrogen (20uC) in pre-weighed tubes. Total lipid content was

measured by weighing the tubes after evaporation and expressed

as percentage of total fish dry-weight.

Zooplankton and temperature monitoring
Zooplankton was sampled in Lake Krankesjön every second

week from November to mid-April for five consecutive years,

2003–2008. Samples were taken at a fixed position at the deepest

part of the lake. Ten liters of water were taken from the upper

water column with a 1.2 m long Plexiglas tube with a diameter of

36 mm, filtered through a 45 mm net and preserved in Lugol’s

solution for further analysis in the laboratory. Zooplankton were

counted on genus level with the exception of copepods, which

were separated into cyclopoid and calanoid copepods. A subset of

individual zooplankton from each taxon found in the sample were

measured to nearest 0.05 mm and individual biomass were

estimated from known taxa-specific length-weight relationships

[47]. Total biomass was calculated by multiplying mean biomass

with density for each taxon. Temperature was monitored at the

outlet of Lake Krankesjön with an Onset StowAway Tidbit

temperature logger every four hours from December 2003 to April

2008.

Data analysis
For analyses of the development in body condition (K), and lipid

content, we used deviations from the average among fish caught at

the beginning of the experiment. The use of K in the following is,

hence, referring to relative K. The development in K and lipid

content was analyzed with repeated measures analysis in SPSS,

with food availability and temperature as factors. The intercept

was forced to zero as all values were relative to initial values. If

significant, analyses were carried out for food and no-food

treatments separately, with Tukey’s post hoc test for between

temperature effects.

Seasonal patterns in zooplankton density (Z) and temperature

(T) from November to mid-April pooled over all years were

analyzed with quadratic polynomial regression (ln Z = c + bt + at2

for zooplankton density and T = c + bt + at2 for temperature,

where t is day of winter and a, b, and c are constants). Since both

temperature and zooplankton density values are lowest during

mid-winter and data were only analyzed over winter months,

quadratic polynomial regression with a positive quadrant was

used. Average residuals for each year were used as an estimate of

yearly deviations of the average seasonal patterns in temperature

and zooplankton biomass.

Results

Fish overwintering success
Condition factor (K) was significantly affected by both

temperature (rmANOVA; F = 10.4; p = 0.002) and food availabil-

ity (rmANOVA; F = 390.7; p,0.001), and there was a significant

temperature*food interaction (rmANOVA; F = 16.4; p,0.001). K

decreased during the experimental period for fish in all treatments

without food (Fig. 1), and there was a significant effect of

temperature (rmANOVA; F = 309.8; p,0.001). Post hoc tests

revealed that K in the 4.5uC treatment progressed significantly

different from both the 0.5uC (Tukey HSD; p = 0.023) and the

2.5uC treatment (Tukey HSD; p = 0.011), whereas there was no

difference between the 0.5uC and the 2.5uC treatments (Tukey

HSD; p = 0.769). Thus, without food, K decreased at a faster rate

in the warmest temperature (Fig. 2). At the end of the experiment,

average K values in the 4.5uC treatment approached those of fish

that died during the experiment (Fig. 1). Since mortality primarily

occurred in the 4.5uC treatment towards the end of the

experiment, the K value of dead fish (average K 6

S.D. = 20.067 6 0.025) could be seen as a critical value. Linear

regression analyses suggest that this value will be reached after 108

days at 4.5uC; 160 days at 2.5uC and 155 days at 0.5uC. For each

temperature, food had a significant effect on condition develop-

ment (p,0.001 for all).

Temperature also had a significant effect on the progression of K

(rmANOVA; F = 20.4; p = 0.001) in treatments with food (Fig. 1).

The progression of K in the 0.5uC treatment was significantly

different from both the 2.5uC (Tukey HSD; p = 0.004) and the

4.5uC treatment (Tukey HSD; p = 0.010), which were not

significantly different from each other (Tukey HSD; p = 0.69).

More specifically, K at 0.5uC was found to decrease during the

experimental period (rmANOVA; test of within-subject contrasts;

F = 29.5; p = 0.032), whereas there was no change in K over time in

the two warmer treatments (2.5uC: F = 0.181; p = 0.712; 4.5uC:

F = 0.008; p = 0.937; Fig. 1). However, the rate of decrease at

0.5uC was lower than any of the treatments without food (Fig. 2).

A linear regression analysis showed that the critical K value would

not be reached until after 324 days.

In the field population, condition was lower (K = 20.033) at the

end of the study period than at the beginning (t-test; t73 = 7.57;

p,0.001). The average K in the natural population at the end of

the experiment was lower than that of fed experimental fish, but

higher than that of unfed fish (Fig. 1 & 2).

Food availability had a significant (rmANOVA; F = 10.2;

p = 0.009) effect on the change in lipid content of fish, whereas

neither temperature (rmANOVA; F = 0.40; p = 0.681) nor the

food*temperature interaction (rmANOVA; F = 0.90; p = 0.897)

had any effect (Fig. 3). However, for unfed fish it appeared that

lipid levels dropped to a relatively constant level and remained

there throughout the experiment (Fig. 3), even before any

mortality occurred in this treatment. Since the average relative

lipid content of dead fish (average 6 S.D = -0.03860.028) was

higher than the average end values for live fish without access to

food, it did not appear that there was a critical value for lipid

content (Fig. 3). Also in the natural population, the lipid content

was found to be lower at the end of the study period than at the

beginning (t-test; t48 = 4.43; p,0.001; Fig. 3).

Lake temperature and zooplankton dynamics
Variation in lake water temperature occurred both within and

between years (Fig. 4a). In most years, water temperature dropped

to below 2uC in mid-November (between November 14 and 19)

except for the winter 2006/07, where lake temperatures below

2uC were not recorded until February 9. Temperature followed a

quadratic polynomial pattern from November to mid-April

(T = 7.5–0.15 t + 0.0009t2; r2 = 0.44; p,0.001) and yearly average

deviation from this pattern ranged from -0.76 to +2.2uC. Hence,

despite large within year variations, there were remarkable

differences between years in winter water temperatures.

Food and Temperature Effects on Fish Overwintering
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Zooplankton biomass and dynamics during winter, i.e., from

November to April, varied considerably between years. For

example, the highest zooplankton biomass (1087 mgl21 on

March 23, 2006) was more than three orders of magnitude

higher than the lowest detected zooplankton biomass (0.3 mgl21

on March 1, 2005). However, zooplankton biomass was

generally low between early December and mid-February and

the dynamics followed a quadratic polynomial pattern (ln Z = 4.5

-0.06t + 0.0004t2; r2 = 0.29; p,0.001) when including data from

all years (Fig. 4b) and the average deviation from this pattern

ranged between 54.2 mgl21 below and 228.6 mgl21 above the

average.

Average deviation in zooplankton biomass during a winter was

not dependent on the average deviation in lake temperature (linear

regression, B = -0.016; F = 0.002; p = 0.968), i.e., years with low or

high temperature were in general not associated with high or low

densities of zooplankton.

Discussion

Here, we have empirically shown that even small temperature

differences (62uC) may have significant effects on fish over-winter

success, measured as change in body condition, both in the

presence and absence of food. However, our results also clearly

show that temperature is only of minor importance when food

availability is not taken into account. Hence, increase in water

temperatures during winter in the range predicted due to climate

change may have consequences for fish survival. The effect may be

influenced by the corresponding response of the food source, in

this case the zooplankton community. Our field data from Lake

Krankesjön did not suggest a winter density-temperature relation-

ship for zooplankton. Only in very cold waters, where water

temperature is close to freezing during longer periods in winter,

may an increased temperature have a positive effect on the fish

community, but then only if food is available.

-0.08

-0.06

-0.04

-0.02

0.00

0 20 40 60 80 100
Time (days)

0.5C
2.5C
4.5C
Field
Dead

 

Figure 1. Standardized development of condition (K) for unfed (top panel) and fed fish (lower panel) at three different
experimental temperatures. Values at day 0 are based on fish caught in the field and data for field caught fish at day 98 are indicated by arrows.
Punctured horizontal lines indicate average (6 S.E.) standardized dry-weight condition of fish that died during the experiment. Error bars indicate S.E.
and bold error bars indicate S.E. for fish caught in the field at day 0 and day 98.
doi:10.1371/journal.pone.0024022.g001
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In our laboratory experiment, we found no significant difference

in condition or lipid content between the 2.5uC and the 4.5uC
treatment where food was available. Differences are not expected

at the higher range winter temperatures, as most temperate fish do

not grow at any temperature found during winter, e.g., for roach

below 12uC [48]. However, in a situation where food is limiting,

the increased winter temperature will most likely have negative

impacts on fish condition, dependent upon the amount temper-

ature increases. For example, at low food levels, a two degree

increase from 2.5uC to 4.5uC has a larger effect than an increase

from 0.5uC to 2.5uC. Our results thus suggest that climate

warming is likely to have different effects on fish over-wintering

success depending on local temperature regimes. If local winter

temperatures are originally very close to 0uC, a few degrees

warming may be beneficial for the fish, but if local winter

temperatures are originally above 2uC, a further increase of water

temperature during winter may have a negative impact on fish

over-wintering success. Together, these notions indicate that the

effect on climatic winter warming on the fish community depends

on the food supply, and that the potential benefits from increased

winter temperature are much smaller than the potential risks. This

may not only apply to fish, but also to other non-hibernating

ectothermic organisms living in water, such as molluscs,

arthropods and crustaceans, when winter temperatures are below

the minimum temperature that allows somatic growth. However,

before generalizing the results to other species, it should be taken

into account that fish, as other ectothermic organisms, have

different temperature optima and different adaptations to low

temperatures [49,50]. Roach may be better at coping with low

temperatures than e.g. more warm-water adapted species such as

many North American centrarchids, European tench (Tinca tinca)

or crucian carp (Carassius carassius). For these more warm-water

adapted species, food availability may not have a large influence at

our lowest temperatures, although the general conclusions of this

study should still apply at their higher temperature ranges. On the

other hand, cold-water adapted fish such as salmonids, especially

Arctic charr (Salvelinus alpinus) can be hypothesized to be even more

vulnerable to higher winter temperatures (e.g. [51]).

Food availability had an impact on condition development even

at the lowest temperature treatment (0.5uC), which is in line with

observations of roach feeding during winter in similar ecosystems

[52]. This illustrates that food intake is important for overwinter

success, i.e., decreasing depletion rates of lipid reserves, even at

temperatures very close to freezing. This further supports past

research questioning the obligate starvation at very low temper-

atures due to minimum food intake [41], although the reduction in

fish condition at 0.5uC when food was available is noteworthy. We

hypothesized that temperature would not affect fish condition

when food was available, as fish at all temperatures would be able

to adapt their food intake to their metabolic demands. However,

these results indicate that fish may not assimilate food at rates that

correspond to their metabolic rates at this temperature. Irrespec-

tive of the cause, the drop in condition may have effects on

individual fish and on fish communities. It is unlikely that this will

lead to death by starvation during winter as it would take almost a

year to reach the critical value for K.

Previous studies have suggested critical or threshold lipid levels

for fish, below which overwinter survival will be affected [34,53].

In our study the minimum lipid levels reached in fish did not

indicate a threshold level regarding survival, as mortality was low,

and surviving fish reached levels lower than the few fish that died

during the experiment. Minimum levels were reached early in all

unfed treatments, around day 40 (Fig. 3), and remained at this

level during the remainder of the experiment without significantly

affecting survival in these treatments, while condition factors

decreased continuously throughout the experiment. This implies

that fish used other energy sources than lipids in the unfed

treatments, e.g., white muscle protein or glycogen [54]. Lipid

levels in fish in the field decreased during the experimental period;

however they did not approach the low levels found in the unfed

treatments. Although starvation-induced mortality in our study

was low, the different effects on condition and lipid levels caused

by temperature regime and food availability may still impact

populations in the field. The regression models did not predict

significant starvation-induced mortality in the field fish. However,

different environmental condition during the growth season in

other years may create different before-winter sizes of fish (e.g.

[55]). In fact, from survey data from the lake, we see years with

both a significantly higher and significantly lower average size of

0+ roach during autumn (J. Brodersen unpublished data), which

Figure 2. Average rate of change, calculated from regression coefficients, in relative body condition (dK day21) for fed (filled
circles) and unfed fish (open circles) at three different experimental temperatures. Filled square indicate fish in Lake Krankesjön, where
the average winter temperature during the study period was 2.51uC and shaded area indicate the potential range for rate of change at different
temperatures dependent on food supply. Error bars indicate standard error on regression coefficients.
doi:10.1371/journal.pone.0024022.g002

Food and Temperature Effects on Fish Overwintering
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could lead to starvation mortality in years where 0+ roach are

relatively small. Many animals are able to compensate for periods

of food deprivation by subsequently increasing growth rates above

those of non-deprived animals [56,57]. However, this compensa-

tory growth comes with a cost, e.g., increased predation caused by

risk-taking behaviour or increased delayed mortality [11,58].

Thus, these sub-lethal climate and food induced differences in fish

condition and lipids may have profound effects on fish population

dynamics and food web interactions in the field.

Our analysis of five years of zooplankton and temperature data

from Lake Krankesjön showed that there was no correlation

between lake temperature and zooplankton biomass during winter

despite high among year variation. Although this does not exclude

that zooplankton biomass during winter will be affected by climate

change (see e.g., [59]), it indicates that the zooplankton response is

complex and not directly coupled to temperature, and that it

makes sense to treat temperature and food availability as two

independent explanatory variables for fish over-wintering success.

This further illustrates the importance of increased knowledge on

how zooplankton winter biomass will develop under different

climate change scenarios. At present, most focus has been on the

effects on zooplankton spring phenology. Here zooplankton

Figure 3. Standardized development of lipid content for unfed (top panel) and fed fish (lower panel) at three different
experimental temperatures. Values at day 0 are based on fish caught in the field and data for field caught fish at day 98 is indicated by arrows.
The average proportional lipid content of fish caught on day 0 was 0.1435. All lipid contents are given as deviations from this value. Punctured
horizontal lines indicate average (6 S.E.) standardized lipid content of fish that died during the experiment. Error bars indicate S.E. and bold error bars
indicate S.E. for fish caught in the field at day 0 and day 98.
doi:10.1371/journal.pone.0024022.g003

Food and Temperature Effects on Fish Overwintering
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biomass is thought to increase earlier in spring with the increase of

winter and spring mean temperatures [10,60-62], although also

mismatch scenarios, where spring phenology of zooplankton does

not follow temperature changes, have been suggested [7,63].

Although an early zooplankton peak may save some fish from

starvation, it is of little importance if fish reach critical K-levels

prior to the zooplankton increase. This is illustrated by the

prediction from the linear regressions obtained in our study, where

fish at 4.5uC without access to food would reach a critical

condition around April 1, whereas for fish at lower temperatures

this would not happen until mid-May. Although the lake

temperature data suggests that winters with 108 days of

temperatures of 4.5uC may be rare, there is still reason to believe

that fish may end up suffering from the higher winter

temperatures. First of all, temperatures above 4.5uC during

seasonal cooling and warming of lakes may increase the rate of

condition loss if sufficient food is not available. Secondly, fish may

in some years have a lower condition when entering the winter

period due to environmental conditions during the growth season

(e.g. [55]), which may lead to a shorter time to reach critical

condition levels. Furthermore, other lakes may have longer winter

periods, and in deep lakes fish may stay close to the bottom [64] at

temperatures closest to our warmest treatment. Fish from the field

population were still far from the critical K value at the end of

March. This could be explained by relatively normal tempera-

tures, but higher than average zooplankton densities. In the five

year data set, there was potential for up to a 2uC higher average

temperature coinciding with lower winter zooplankton density,

Figure 4. Seasonal development of (A) winter temperatures (6C) and (B) Ln zooplankton biomass (mgl21) in Lake Krankesjön during
five consecutive winters. Fat line in both figures refers to predicted values from quadratic polynomial regression analysis.
doi:10.1371/journal.pone.0024022.g004
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which would lead to a faster decrease in body condition, and could

result in fish reaching critical K-levels.

Whereas our laboratory experiment included only treatments

with either excess food or no food, fish will under natural

conditions most often experience resource availabilities in between

these extremes. The data on zooplankton biomass in the lake does

suggest, however, that food availability for zooplanktivorous fish

may range between very low to excess food availability. This is best

exemplified by the extremes in zooplankton biomass in March

with zooplankton biomass only just above detection level (0.3 mg

l21) in one year and very high zooplankton biomass (1087 mg l21)

in another. To further increase our understanding of when food

availability becomes limiting under field conditions during winter

(e.g. [18]), there is a need for studies quantifying critical resource

densities for zooplankton feeding fish at winter conditions.

In our experiment, we kept all treatments at constant

temperatures to limit the number of independent variables. Under

natural conditions, however, characteristics in the cooling and

warming before, during and at the end of winter may have

significant impacts on overwintering success of fish. Natural

variation in cooling and warming includes, beside timing, rate of

change on a seasonal scale, and frequency amplitude and rate of

change on a short-term, within-season scale. The variation in the

latter, i.e. the within-winter stability of temperature, is affected by

ice cover. Lake Krankesjön freezes in most winters, but the

duration of the ice cover is variable. Other lakes that have more

consistent ice cover may show little between-year variation in

temperature, but higher variation in duration of low temperatures.

However, even in such lakes, fish may experience temperature

differences corresponding to the ones explored in our experiment

depending on within lake habitat availability. Here, lake

morphometry will likely play an important role for the fish’s

response to low temperature and variable food availability. The

thermal habitat of lakes is predicted to change with climate change

[59], more so in shallow than in deep lakes [65]. In deep lakes,

water temperatures close to the bottom will be close to 4uC, which

corresponds to the warmest treatment in our experiment, and prey

fish, such as most cyprinids, usually aggregate at greater depths

(e.g., [64]). Fish would here be able to migrate to lower

temperatures higher in the water column, which would decrease

metabolism and, hence, be beneficial in case of food scarcity, but

could be connected to a higher predation risk. Corresponding

habitat change as a consequence of climate warming has for

instance been shown for brown trout in streams [66]. In shallow

lakes, such as Lake Krankesjön, the water temperatures can be

expected to be rather uniform throughout the lake and under ice-

cover close to 0uC. Fish may therefore not be able to select water

temperature in order to regulate their metabolism according to the

food availability. Instead they may increase their feeding rate, by

choosing a habitat with more available food, but often with the

trade-off of accepting a higher predation risk [45,67]. Alternative-

ly, fish may choose to decrease their intake rates during winter and

thereby increase their risk of starvation mortality at the benefit of a

lower predation risk [68]. In any case, it should be kept in mind

that fish may show both individual and species-specific differences

in behavioral adaptations for coping with the winter period

[45,69]. Such behavioral differences have potential ecosystem

effects through changed feeding rate on lower trophic levels [70]

and vulnerability to predation [68].

In conclusion, our results show that the effects of even small

temperature differences may be crucial for fish over-winter success

and, further, that temperature alone has little power in predicting

effects when food abundance is not taken into account. To fully

understand the effects of this under field conditions, more work is

needed to explore the complex relationship between climate

change and zooplankton dynamics, and thus to determine the

likelihood and under which conditions that climate change may

affect fish populations during winter. We hence suggest that future

studies should pay attention to the effects of climate change on

over-winter zooplankton biomass and subsequent effects on fish

populations.
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