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Abstract

Toll-like receptors (TLRs) activate a potent immunostimulatory response. There is clear evidence that overactivation of TLRs
leads to infectious and inflammatory diseases. Recent biochemical studies have shown that the membrane-bound form of
ST2 (ST2L), a member of the Toll-like/IL-1 receptor superfamily, negatively regulates MyD88-dependent TLR signaling
pathways by sequestrating the adapters MyD88 and Mal (TIRAP). Specifically, ST2L attenuates the recruitment of Mal and
MyD88 adapters to their receptors through its intracellular TIR domain. Thus, ST2L is a potent molecule that acts as a key
regulator of endotoxin tolerance and modulates innate immunity. So far, the inhibitory mechanism of ST2L at the molecular
level remains elusive. To develop a working hypothesis for the interactions between ST2L, TLRs (TLR1, 2, 4, and 6), and
adapter molecules (MyD88 and Mal), we constructed three-dimensional models of the TIR domains of TLR4, 6, Mal, and ST2L
based on homology modeling. Since the crystal structures of the TIR domains of TLR1, 2 as well as the NMR solution
structure of MyD88 are known, we utilized these structures in our analysis. The TIR domains of TLR1, 2, 4, 6, MyD88, Mal and
ST2L were subjected to molecular dynamics (MD) simulations in an explicit solvent environment. The refined structures
obtained from the MD simulations were subsequently used in molecular docking studies to probe for potential sites of
interactions. Through protein-protein docking analysis, models of the essential complexes involved in TLR2 and 4 signaling
and ST2L inhibiting processes were developed. Our results suggest that ST2L may exert its inhibitory effect by blocking the
molecular interface of Mal and MyD88 adapters mainly through its BB-loop region. Our predicted oligomeric signaling
models may provide a basis for the understanding of the assembly process of TIR domain interactions, which has thus far
proven to be difficult via in vivo studies.
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Introduction

Toll-like receptors (TLRs) are of interest to immunologists due

to their front-line role in the initiation of innate immunity against

invading pathogens [1]. TLRs play essential roles in the innate

immune response to microbial pathogens based on their ability to

recognize pathogen-associated molecular patterns (PAMPs) [2].

TLRs are type I transmembrane glycoproteins characterized by

the presence of an extracellular domain (ectodomain, ECD)

containing leucine-rich repeats (LRRs), which are primarily

responsible for mediating ligand recognition, followed by a single

transmembrane helix and an intracellular Toll-like/interleukin

(IL)-1 receptor (TIR) domain, which is responsible for mediating

downstream signaling [3]. So far, 10 and 12 functional TLRs have

been identified in humans and mice, respectively, with TLR1-9

being conserved in both species. Mouse TLR10 is not functional

due to retrovirus insertion, whereas TLR11, 12, and 13 have been

lost from the human genome [4,5]. The initial step in signal

transduction involves dimerization of two receptor chains, which is

induced by the binding of a specific ligand. Alternatively, in the

case of TLR7, 8 and 9, the receptor may be present in the cell as a

preformed yet inactive dimer, and ligand binding may cause

reorientation of the TIR domains [6]. In either case, the TLR-

TIR domain interaction serves as a nucleating act for recruitment

of downstream signaling adapter proteins. All TLRs utilize the

MyD88 signaling pathway with the exception of TLR3, which

exclusively uses the TRIF pathway, to induce the expression of

proinflammatory cytokine genes [7].

MyD88 (myeloid differentiation primary response gene 88), Mal

(MyD88 adapter-like; also known as TIRAP, TIR domain-

containing adapter protein), TRIF (TIR domain-containing

adapter inducing IFN-b; also known as TICAM1, TIR domain-

containing adapter molecule 1), TRAM (TRIF-related adapter

molecule; also known as TICAM-2), and SARM (sterile a- and

armadillo motif containing protein) are the five adapter proteins

containing TIR domains that function in TLR signaling [5,8].

These adapter proteins mediate TIR-TIR interactions between

TLR receptors as well as receptor-adapter and adapter-adapter

interactions, all of which are critical for signaling [9]. In general,

the intracellular TIR domain of adapter proteins is composed of

approximately 160 amino acid residues. The primary sequences of

TIR domains are characterized by three conserved sequence

boxes designated box 1, 2 and 3, as shown in Figure 1. Box 1 is

considered to be the signature sequence of the family, whereas
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boxes 2 and 3 contain functionally important residues involved in

signaling [10]. These processes result in the formation of a large

multimer complex, or ‘‘signaling platform’’, that propagates

downstream signaling, eventually leading to the expression of

several hundred primary immune response genes [11]. However,

the architecture of the TLR signaling complexes is poorly

understood currently due to a lack of reliable methods to study

such interactions as well as the inherent weaknesses of individual

inter- and intra-protein interactions in transitory complexes.

TLRs are double-edged swords, playing dual roles as physio-

logical and pathological mediators. The dysfunction of TLRs has

been implicated in a wide range of human diseases, including

infectious diseases, immunodeficiency, sepsis syndromes, autoim-

mune disorders, artherosclerosis, malignancy and asthma [12]. As

the immune system must constantly strike a balance between

activation and inhibition mechanisms in order to avoid detrimen-

tal and inappropriate inflammatory responses, TLR signaling

should therefore be under tight negative regulation. Although most

Figure 1. Structure-based sequence alignments of TIR domains. The JOY program was used to annotate the alignments for the TIR domains
of TLR1, 2, 4, 6, 10, Mal, MyD88, ST2L and IL1RAPL. Numbers on top of alignment sequences are alignment positions. Three short sequence motifs
(shaded in yellow color) called box 1–3 motifs are conserved among TIR domains. BB loop region of box 2 motif has been suggested to play a potent
role in TIR-TIR interactions. Key to JOY annotations is as follows: solvent inaccessible - UPPER CASE; solvent accessible - lower case; a-helix - dark grey
shaded; hydrogen bond to main chain amide - bold; hydrogen bond to main chain carbonyl - underline; positive w - italic.
doi:10.1371/journal.pone.0023989.g001

Inhibition of Toll-Like Receptors 2 and 4 by ST2L

PLoS ONE | www.plosone.org 2 August 2011 | Volume 6 | Issue 8 | e23989



members of the TLR/IL-1R superfamily are positive regulators of

signaling, there are relatively fewer members that act as negative

regulators in TLR signaling. So far, a number of negative

regulators that suppress TLR signaling pathways at multiple levels

have been identified [4].

ST2 is one of the potent negative regulators in TLR signaling.

ST2 (also known as T1, Fit-1, or DER4) is present in two main

forms (ST2L and sST2) and is encoded from a single ST2 gene by

mRNA splicing [13,14,15]. ST2L is a type I transmembrane protein

with three extracellular immunoglobulin-like domains and an

intracellular TIR domain. sST2 (the soluble form) is identical to

the extracellular region of ST2L except for an extra nine amino

acids at the C-terminus [13,14,15]. ST2L is mainly expressed by

cells of the major haematopoietic organs, whereas sST2 is present in

both haematopoietic and non-haematopoietic cells [15]. ST2L is

selectively expressed by TH2 cells, but not TH1 cells, and is

associated with TH2-cell functions [16,17,18]. Although ST2L can

drive activation of the MAPK (mitogen-activated protein kinase)

pathway, it does not activate NF-kB [19], instead downregulating

NF-kB activation in response to stimulation with IL-1 or LPS.

Macrophages from ST2-deficient mice (lacking both ST2L and

sST2) produce markedly more proinflammatory cytokines in

response to IL-1 and LPS, bacterial lipopeptides and CpG, but

not to the TLR3 ligand poly I:C [20], indicating that ST2L might

directly affect the MyD88-dependent pathway. Consistent with this,

overexpression of ST2L inhibits IL-1 receptor and TLR4-mediated

but not TLR3-mediated NF-kB activation as well as attenuates the

functions of MyD88 and Mal but not TRIF or IRAK [20].

Furthermore, ST2L co-precipitates with MyD88 and Mal but not

TRIF or IRAK, and a mutant form of ST2L with a mutated Pro

residue in box 2 of its TIR domain lacks suppressive activity.

Together, these findings indicate that ST2L suppresses IL-1 and

TLR signaling by sequestration of MyD88 and Mal through its TIR

domain. However, ST2-deficient mice are no more susceptible to

LPS shock than are wild-type mice, although they are unable to

develop LPS tolerance under both in vitro and in vivo conditions [20].

This can be explained by the fact that ST2L is normally present

intracellularly in resting cells and is only expressed on the cell

surface after at least 4 hours of LPS stimulation. This amount of

time lag might be too much for the control of septic shock, but it is

sufficient to manifest endotoxin tolerance. Hence, ST2L performs

an effective negative-feedback function in selective TLR signaling,

including contributing to endotoxin tolerance and inhibiting TH1-

cell responses. Although the significance of ST2L has been widely

acknowledged, its inhibition mechanism remains unclear owing to a

lack of structural information.

In this study, we used homology modeling techniques to construct

three-dimensional models of the TIR domains of TLR4, 6, ST2L

and Mal. So far, the crystal structures of the TIR domains of human

TLR1, 2 as well as the NMR solution structure of MyD88 are

known. All of the structures were subjected to MD simulation

studies. Subsequently, the refined structures were used in protein-

protein docking studies. Models of the essential complexes involved

in TLR2 and 4 signaling and the ST2L inhibiting processes were

proposed based on the results of the protein-protein docking studies

in order to identify and quantify the residue-detailed structural

inhibition framework (Figures 2 and 3).

Materials and Methods

Template Identification, Sequence Alignment, and Model
Construction and Assessment

Amino acid sequences of the target proteins, human ST2L

(BAA82405), TLR4 (O00206), TLR6 (BAA78631), and Mal

(NP_683708), were obtained from the NCBI protein database

[21]. Due to their high homology, crystal structures of the TIR

domains of TLR1 (PDB ID: 1FYV), 2 (PDB ID: 1FYW) and 10

(PDB ID: 2J67; A) were used as common templates to build

structural models of the TIR domains of TLR4, TLR6 and Mal.

Due to the low sequence identity of ST2L with the three common

templates, we used IL-1RAPL (PDB ID: 1T3G; A) as a single

template to build the model of ST2L. Moreover, the overall

structure of ST2L is similar to the structure of the Type I IL-1

receptor. To generate three-dimensional (3D) models of the TIR

domains, we used a homology modeling approach as implemented

in the program MODELLER version 9v3 [22]. Alignment of each

target protein with the templates was generated using JOY

(Figure 1). This program annotates protein sequence alignments

with 3D structural features. Further, it helps to display 3D

structural information in a sequence alignment in order to

understand the conservation of amino acids in their specific local

environments [23]. We used this alignment in MODELLER 9v3

to build 20 models for each target, of which the best model was

selected based on stereochemical evaluations. The protein

stereochemical quality was checked by employing ProQ [24],

ModFOLD [25] and MetaMQAP [26].

Molecular Dynamic Simulation
MD simulation studies were carried out as previously described

[27]. MD simulations for all of the models were performed using

YASARA dynamics [28] with AMBER03 force field under periodic

boundary conditions following the explicit solvent method [29]. The

modeled and solved structures of the TIR domains of TLR1, 2, 4, 6,

Mal, MyD88 and ST2L were constructed around a complex with a

7.9 Å cutoff for Lennard-Jones forces and a direct space portion of

electrostatic forces, which were calculated using the Particle Mesh

Ewald method. The pKa values of the ionizable groups in the model

were predicted and assigned protonation states based on pH 7.0.

The cell was then filled with water, and the AMBER03 electrostatic

potential was evaluated for all water molecules; the ones with the

lowest or highest potential were turned into sodium or chloride

counter ions, respectively, until the cell was neutral. Short steepest

descent minimization of all atoms was performed to remove severe

bumps in the protein. A start-up simulation was then carried out for

5 picoseconds (ps) using multiple time steps of 1.25 femtoseconds

(fs) for intramolecular and 2 fs for intermolecular forces, with all

heavy protein atoms fixed such that the solvent molecules smoothly

covered the protein surface. Simulated annealing minimizations

were carried out at 298 K, and the velocities were scaled down

every 10 steps for a total time of 5 ps over 500 steps. All of the

systems except ST2L were equilibrated for 2 nanoseconds (ns),

whereas, ST2L was equilibrated for 4 ns. Finally, production run

was carried out for 5.5 ns by storing the coordinates of all the atoms

every 2.5 ps. The simulations were carried out using the AMBER03

force field at 298K and 0.9% NaCl [29]. Thus, the trajectory taken

from these 5.5 ns simulations consisted of 2200 frames. However,

the final snapshot obtained at the end of the simulations was

considered to show a representative structure of all of the models

that were further subjected to energy minimization and subse-

quently utilized for docking studies.

Protein-Protein Docking
Unrestrained pairwise protein docking included seven TIR domain

complexes: TLR4-TLR4 homodimer, TLR4-Mal tetramer, TLR4-

Mal-MyD88 hexamer, TLR2/1-MyD88 tetramer, TLR2/6-MyD88

tetramer, ST2L-Mal and ST2L-MyD88. The refined structures were

subjected to molecular docking studies. We used GRAMM-X [30]

and ZDOCK [31], which are the most widely accepted rigid-body

Inhibition of Toll-Like Receptors 2 and 4 by ST2L
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protein-protein docking programs, to predict and assess the

interactions in the above-mentioned complexes. These two programs

rank the 100 most probable predictions out of thousands of candidates

based on the geometry, hydrophobicity and electrostatic complemen-

tarity of the molecular surface. The final docked complexes were

selected from these top 100 predictions by implementing further

qualifications, including (i) residue conservation of the interaction sites;

(ii) N-terminal ends of the docked complexes should be oriented

towards the cell membrane; and (iii) knowledge from previously

published articles ([32], [33], [34], [35], [36] and [37]). This three-step

filtering method resulted in a unique solution. The GRAMM-X/

ZDOCK ranking of all optimal models is detailed in Table 1. The top-

ranked complex present between the two docking programs, which

are listed in Table 1, was considered as the final complex to be used for

the identification of potential interacting residues across the interfaces.

The buried surface interaction area of the docked models was

calculated using the protein interfaces, surfaces and assemblies service

(PISA) at the European Bioinformatics Institute [38]. The structural

superimpositions and molecular electrostatics were calculated using

Superpose v1.0 [39] and the nonlinear Poisson-Boltzmann equation

with the APBS tools plugin for Pymol.

Results

Molecular Modeling of TLR4, 6, Mal and ST2L TIR
Domains

In the secondary structure-aided alignments for homology

modeling, the average target-template sequence identities of the

TIR domains of TLR4, TLR6 and Mal with respect to multiple

templates (TIR domains of TLR1, 2 and 10) were 40.69%,

86.81% and 21.80%, respectively. Additionally, the sequence

identity of ST2L with the single template IL-1RAPL was 39.47%.

The final modeled structures of the TIR domains all exhibited a

typical TIR domain conformation, which is in agreement with the

secondary structure prediction made by JPred [40]. TIR domains

fold into a characteristic a/b structure with five-stranded parallel

b-sheets surrounded by five a-helices on each side [41]. The loops

that connect the secondary structure elements of the TIR domain

are more variable, which may confer specificity for homo- and

hetero-typic interactions between different TIR domains [35]. The

JOY [23] output also showed that the residues in the models were

in environments similar to those of the templates (Figure 1).

Evaluation of the models involved analysis of the geometry,

stereochemistry and energy distribution of the models. The

evaluation listed in Table 2 indicates high quality in terms of

overall packing for all of the models, which were subsequently used

for MD simulation studies.

Structure Refinement and Stability Evaluation
The available TIR domain structure coordinates taken from the

PDB (TLR1, TLR2 and MyD88) along with the constructed

models (TLR4, TLR6, Mal and ST2L) were subjected to MD

simulation in order to assess the stability of the models. Figure 4

shows the backbone RMSD plot for the protein Ca-atoms with

reference to the initial structure and as a function of time. The plot

shows that all of the models reached equilibrium state only after

Figure 2. Models of ST2L inhibiting the TLR2 signaling pathway. Pictorial representation of ST2L inhibiting MyD88-dependent TLR2 (TLR2/1
and TLR2/6) signaling pathways. ST2L heterodimerizes with MyD88, thereby preventing the engagement of adapter protein MyD88 into the post-
receptor signaling complexes (TLR2/1-MyD88 tetramer and TLR2/6-MyD88 tetramer) and thus exhibiting its inhibitory effect. Full-length structures of
TLR2, 1 and 6 are colored in sky blue, tan and light green, respectively. The TIR domains of ST2L and MyD88 are colored in hot pink and gold,
respectively. The available TLR2/1 and TLR2/6 ECD structure coordinates along with their respective ligands were taken from the PDB (2Z80 and
3A79). The red color dotted line along with the bar represents inhibition symbol.
doi:10.1371/journal.pone.0023989.g002
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2 ns of simulation and remained constant until the end of the

dynamics, except in the case of ST2L, which reached an

equilibrium state only after 4.5 ns of simulation. We then took

the final snapshots of all the structures and subjected them to

energy minimization. It is of worthwhile to note that these

simulations are the longest explicit solvent MD simulations ever

carried out on these TIR domains. Superimposition of the initial

structure with the final refined structure of the TIR domains in

Figure 3. Models of ST2L inhibiting the TLR4 signaling pathway. Pictorial representation of ST2L inhibiting MyD88-dependent TLR4 signaling
pathway. ST2L heterodimerizes with Mal and MyD88 by occupying their receptor-adapter and adapter-adapter interacting sites, thereby preventing
the engagement of signaling adapters, Mal and MyD88, into the post-receptor signaling complex (TLR4-Mal-MyD88 hexamer) and thus exhibiting its
inhibitory effect. Full-length structure of TLR4 is colored in orchid. The TIR domains of ST2L, Mal and MyD88 are colored in hot pink, coral and gold,
respectively. The available TLR4 ECD structure coordinates along with its ligand was taken from the PDB (3FXI). The red color dotted line along with
the bar represents inhibition symbol.
doi:10.1371/journal.pone.0023989.g003

Table 1. Ranking of the selected docked complex.

COMPLEX ZDOCK GRAMM-X

TLR4 dimer 2 1

TLR4 dimer-Mal 7 5

TLR4-Mal tetramer 12 8

TLR4-Mal tetramer-MyD88 14 35

TLR4-Mal-MyD88 hexamer 21 39

TLR2/1 dimer-MyD88 6 32

TLR2/1-MyD88 tetramer 15 28

TLR2/6 dimer-MyD88 6 32

TLR2/6-MyD88 tetramer 26 37

ST2L-Mal 64 21

ST2L-MyD88 44 10

doi:10.1371/journal.pone.0023989.t001

Table 2. Model evaluation of TIR domains.

MODEL ProQ_LG/MX ModFOLD_Q/P MetaMQAP_GDT/RMSD

TLR1 6.055/0.370 0.5874/0.0249 83.540/1.598

TLR2 4.240/0.239 0.4512/0.0689 66.779/2.696

TLR4 5.608/0.362 0.6281/0.0212 82.877/1.791

TLR6 4.436/0.487 0.5984/0.0236 86.111/1.257

Mal 2.885/0.389 0.4639/0.0608 57.667/3.956

MyD88 7.319/0.518 0.5398/0.0343 82.624/1.784

ST2L 3.321/0.320 0.5287/0.0367 65.644/2.998

Note: ProQ_LG: .1.5 fairly good; .2.5 very good; .4 extremely good.
ProQ_MX: .0.1 fairly good; .0.5 very good; .0.8 extremely good.
ModFOLD_Q: .0.5 medium confidence; .0.75 high confidence. ModFOLD_P:
,0.05 medium confidence; ,0.01 high confidence. MetaMQAP_GDT/RMSD: an
ideal model has a GDT score over 59 and a RMSD around 2.0 Å.
doi:10.1371/journal.pone.0023989.t002
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each case (shown in Figure 5) revealed the following structural

rearrangements: (i) within BB and CD loops and aD-helix region

of TLR1 with a RMSD of 1.7 Å; (ii) within CD and DD loops of

TLR2 with a RMSD of 1.8 Å; (iii) within all loop regions of TLR4

with a RMSD of 1.8 Å; (iv) within BB, CD and EE loop regions of

TLR6 with a RMSD of 1.7 Å; (v) major variations within BB and

CD loop regions and minor variations between other loops of Mal

with a RMSD of 2.5 Å; (vi) within all loops and helices of MyD88

with a RMSD of 3.8 Å; (vii) and within all regions (helices, sheets

and loops) of ST2L with a RMSD of 3.96 Å.

Docking Benchmark
To assess the accuracy of the docking methods used in our

study, we unrestrainedly inputted the TIR domain of human

TLR10 (hTLR10), for which the dimeric crystal structure is

already known as the most recent and well-accepted benchmark

for TIR-TIR interactions. Docking experiments were carried out

on the unbound structures (hTLR10 monomer), and the results

were evaluated by comparison to the solved dimeric structure

(PDB ID: 2J67). The native state of hTLR10 was present in the

top 10 solutions of the two docking programs; it was ranked first by

GRAMM-X and second ranked by ZDOCK. These results

indicate that the docking methods we employed were reliable, and

thus we utilized them in our subsequent docking studies.

Pairwise Docking of TIR Domains
TIR domains are able to interact homo- or hetero-typically with

each other. To demonstrate how ST2L inhibits the Mal/MyD88-

dependent TLR2 and 4 signaling pathways, an understanding of

the interaction mode of the TLR2 and 4 signaling complexes

without ST2L is indispensible. The specificities of TIR-TIR

interactions between adapters as well as between adapters and

receptors define the formation of various complexes that initiate

TLR signaling pathways. However, little is known about the

mechanisms of heteromeric interactions between the TIR

domains. We thus performed unrestrained rigid body docking

for all of the TIR complexes, except the TLR2/6-MyD88

tetramer. The highest ranked model by GRAMM-X/ZDOCK

was accepted as the optimal model, since it was ranked best on

average. In all of the resulting docking models, we evaluated the

interacting residues and interface surface areas. We also evaluated

the experimentally validated amino acids and residues involved in

interchain H-bonds as well as the charged residues present in the

interfacial region, which are depicted in Tables 3, 4, 5, 6 and 7.

TLR4-TLR4 homodimer. A key concept in TLR signaling is

stimulus-induced dimerization of the receptor ECDs, which causes

a conformational rearrangement that is transmitted across the

membrane, resulting in reorientation or homodimerization of the

receptor TIR domains [42]. The TLR4 dimer complex obtained

from the docking solutions is axially symmetric, similar to the

dimeric crystal structure of hTLR10 [43]. It has an extensive and

highly attuned interaction surface area. The TLR4 dimer displays

two-fold symmetry with a buried surface interaction area of

967 Å2, which is in the typical range of physiological interaction

surfaces. The surface area buried at the dimer interface of the

TLR4 homodimer has contributions of 966 Å2 and 969 Å2 from

each of the two protomers. Out of 146 residues, 30 residues are

found in the interface region from each TLR4 monomer chain.

Major contributions to the dimer interface are made by residues

of the BB-loops and the aC-helices. The dimer interface is made

up of a hydrophobic core surrounded by H-bond network. The

hydrophobic core is mainly constituted of six residues of the BB-

loop (Y709, F712, P714, G715, V716 and A717). Apart from

contributing to the dimer contact, these residues also play a

Figure 4. Molecular dynamic trajectory-based analysis of TIR domain model refinement. RMSD of Ca-atoms with respect to their initial
structure shows the stable nature of the TIR domain model after the initial equilibration time.
doi:10.1371/journal.pone.0023989.g004
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Figure 5. Superimposition of initial structure with the final snapshot obtained from MD simulation studies. Differences between the
final snapshots of (A) TLR1 (tan), (B) TLR2 (sky blue), (C) TLR4 (orchid), (D) MyD88 (gold), (E) TLR6 (light green), (F) ST2L (hot pink) and (G) Mal (coral)
and their respective initial structures are colored in khaki. Structural variations are mainly observed in the loop regions. TIR domains are shown with
the BB loop colored in red facing the viewer.
doi:10.1371/journal.pone.0023989.g005

Table 3. List of interfacing residues between the TLR2/1 heterodimer complex and MyD88.

NO. COMPLEX INTERACTING RESIDUES

1 TLR2-MyD88 TLR2 (A) N638, I639, C640, Y641, D642, E656, N657, V660, Q661, E664, N665, F666, N667, P668, P669,
F670, K671, C673, R677, D678, I680, P681, N688, D691, K695, K783

MyD88 (C) C168, P169, S170, I172, S194, D195, R196, D197, V198, S206, I207, A208, S209, E210, L211,
K214, D226, Q229, S230, E232, C233, F235, K238, F239, L241, S242, L243, S244, P245

2 TLR1-MyD88 TLR1 (B) F637, H638, F640, G645, S648, K652, C667, H669, E670, R671, N672, F673, P675, G676, S678,
I679, V680, E681, N682, I683, C686, Q703, S704, E705, C707, H708, L711

MyD88 (D) R217, R218, S244, P245, G246, A247, K250, F270, I271, T272, C274, R288, A292, S294, L295, P296

3 TLR2-TLR1 TLR2 (A) K709, C713, E716, L717, F725, P746, Q747, R748, C750, K751, R753

TLR1 (B) Q632, N634, L635, Q636, F637, E660, Q665, I666, R671, N672, F673, V674, P675, N682, T685,
C686, K689

Note: Biologically important residues are in bold, charged residues are underlined and residues involved in the formation of H-bond are in italic.
doi:10.1371/journal.pone.0023989.t003
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significant role in stabilizing the observed conformation of the BB

loop, consisting of residues L707-A717. Four residues (C747, I748,

Y751 and A754) from the aC-helix, one residue (Y680) from the

AA-loop, and three residues (I718, A719 and A720) from the aB-

helix also contribute to the hydrophobic interactions. Ten

hydrogen bonds are present in the dimer interface (Figure S1A).

This includes two and three hydrogen bonds among TLR4 chains

A and B. TLR4 chain A S682 forms two hydrogen bonds with

TLR4 chain B residues A717 and A720. Likewise, TLR4 chain B

S682 forms two hydrogen bonds with TLR4 chain A residues

A717 and A720. Additionally, TLR4 chain A Y751 forms three

hydrogen bonds with TLR4 chain B residues Q739, H740 and

F741, thereby forming a Y-Q-Y-H-Y-F chain of hydrogen bonds.

Similarly, TLR4 chain B residue Y751 forms three hydrogen

bonds with TLR4 chain A residues Q739, H740 and F741,

thereby connecting the two aC-helices at the very center of the

dimer. The hydrophilic residues of TLR4 chain A form hydrogen

bonds and ionic interactions with TLR4 chain B, which surrounds

and supports the hydrophobic core of the dimerization interface.

Our TLR4 dimer model is consistent with the mutagenesis study

reported by Ronni et al [44].

TLR4-Mal tetramer. Cytoplasmic adapter proteins couple

ligand-receptor interactions to intracellular signaling events. The

TLR4-docked homodimer complex creates two specific symmetry-

related binding sites at the homodimer interface to facilitate the

binding of downstream signaling adapter proteins. Previous in vitro

binding experiments demonstrated that MyD88-TIR does not

directly bind to the cytosolic TIR domain of TLR4, whereas Mal-

TIR does [45]. Of the MyD88-dependent pathways involving

TLR2, 4, 5, 7 and 9, only the TLR2 and 4 pathways require Mal

for efficient signal transduction, indicating a role for Mal as a

bridging adapter.

The 200 docking solutions provided by GRAMM-X and Z-

Dock for Mal are located at the TLR4 dimer interface, indicating

that the dimer formation presents two specific scaffolds for binding

of the adapter molecules. The interaction surfaces provided by the

TLR4 dimer interface are at either side of the structure rather

than at the top, since that region would be sterically hindered by

the membrane. Docking studies were carried out using the TLR4

dimer complex and Mal monomer. Two TLR4 dimer-Mal docked

complexes with similar geometries but opposite orientations

(flipped 180u to each other) were extracted from the docked

solutions. Since two specific symmetric scaffolds are provided at

the TLR4 homodimer interface, we superimposed these two

docked complexes to obtain the final receptor-adapter tetrameric

complex (TLR4-Mal tetramer – Figure 6).

Table 4. List of interfacing residues between the TLR2/6 heterodimer complex and MyD88.

NO. COMPLEX INTERACTING RESIDUES

1 TLR2-MyD88 TLR2 (A) S636, R637, N638, I639, C640, Y641, D642, E656, N657, V660, Q661, E664, N665, F666, N667,
P668, P669, F670, K671, C673, R677, D678, I680, P681, K683, N688, D691, K695, K783

MyD88 (C) C166, Y167, C168, P169, S170, I172, S194, D195, R196, D197, V198, S206, I207, A208, S209,
E210, L211, K214, D226, Q229, S230, E232, C233, F235, K238, F239, L241, S242, L243, S244, P245

2 TLR6-MyD88 TLR6 (B) F642, H643, Y648, E650, S653, K657, H674, E675, R676, N677, F678, V679, P680, G681, K682,
S683, I684, V685, E686, Q708, S709, E710, C712, H713, L716

MyD88 (D) E213, R217, R218, S244, P245, G246, A247, H248, Q249, K250, R251, L252, I253, P254, F270, I271,
T272, C274, R288, L289, A292, L293, L295, P296

3 TLR2-TLR6 TLR2 (A) E716, L717, P746, Q747, R748, C750, K751

TLR6 (B) Q641, F642, E665, Q670, I671, R676, N677, V679, N690, C691, E693, K694

Note: Biologically important residues are in bold, charged residues are underlined and residues involved in the formation of H-bond are in italic.
doi:10.1371/journal.pone.0023989.t004

Table 5. List of interfacing residues in the TLR4-Mal-MyD88 hexamer complex.

NO. COMPLEX INTERACTING RESIDUES

1 TLR4 dimer TLR4 Y680, S681, S682, Q683, E685, R689, H708, Y709, F712, P714, G715, V716, A717, I718, A719,
A720, N721, Q739, H740, F741, Q743, S744, R745, C747, I748, Y751, E752, A754, Q755

2 TLR4-Mal TLR4 (A) I713, G715, V716, A717, A719, A720, H724, E725, H728, K729, Y751, E752, I753, A754, Q755,
T756, W757, Q758, F759, L760, S761, S762

Mal (C) R81, W82, S83, K84, D85, T124, P125, G126, G127, A128, V130, S131, E132, C134, Q135, S138,
S139, L165, T166, E167, A168, P169, E221, G222, E223

3 Mal-MyD88 Mal (C) A74, S75, D76, S77, G78, K84, D85, Y86, D87, V104, S105, E108, G109, S110, T111, A112, S113,
L114, H141, R215, K217

MyD88 (E) H156, M157, P158, E159, R160, K190, S194, D195, R196, D197, W205, S206, I207, A208, R215

4 TLR4-Mal TLR4 (B) S682, Q683, E685, D686, R689, Q739, H740, Q743, Y751, Q772, T777

Mal (C) S83, D85, Y86, L120, R121, D122, A123, T124, P125, E132, Q135

5 TLR4-MyD88 TLR4 (A) Q739, K773, E775, Y794, E796, S800

MyD88 (E) H156, R180, E183, R188, K190

Note: Biologically important residues are in bold, charged residues are underlined and residues involved in the formation of H-bond are in italic.
doi:10.1371/journal.pone.0023989.t005
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The buried surface at the interface of the TLR4 dimer-Mal

complex constitutes 1154 Å2 from the TLR4 dimer and 1161 Å2

from Mal. There are 10 residues from TLR4 chain A and 23

residues from chain B that make contact with 37 residues from

Mal chain C. Similarly, 23 residues from TLR4 chain A and 10

residues from chain B make contact with 37 residues from Mal

chain D. Previous studies have shown that P125H mutation of

Mal results in decreased interactions between Mal and TLR4.

However, this mutation does not have any effect on the

interactions between Mal and MyD88 [46]. In line with these

observations, our docked complex also shows that Mal P125 is at

the interface region between TLR4 and Mal, thereby demon-

strating a potent role for this residue in receptor-adapter

interactions. At the interface of the TLR4 dimer-Mal complex,

eight hydrogen bonds are present, donated by seven residues

from each TLR4 chain and six residues from each Mal chain

(Figure S1B). Two salt bridges are formed between TLR4 H724

(chains A and B) and Mal E132 (chains C and D) as well as TLR4

H740 (chains A and B) and Mal D85 (chains C and D).

Additionally, another important ionic interaction between TLR4

H740 (chains A and B) and Mal D85 (chains C and D) has been

observed.

The major contributions to the tetramer interface are made by

residues of the BB-loops and aC-helices of TLR4 as well as by the

residues of the BB-loops and aB-helices of Mal. Strong

hydrophobic interactions are observed between hydrophobic

residues from both components of the receptor-adapter complex.

Apart from contributing to the receptor-adapter interaction, these

hydrophobic residues also play a significant role in stabilizing the

observed conformation of the TLR4 and Mal BB loops. Moreover,

strong electrostatic interactions are present between charged

residues from both components of the complex. The interface

region of Mal is composed of eight negatively charged and three

positively charged residues (Figure S2B, highlighted in blue dotted

circles). In the case of the TLR4 dimer complex, four negatively

and five positively charged residues are exposed (Figure S2A,

highlighted in blue dotted circles). These data suggest that the

predominant interactions between Mal and the TLR4 dimer are

based on electrostatic interactions.

TLR4-Mal-MyD88 hexamer. MyD88 is a universal,

cytosolic adapter protein composed of an N-terminal death

domain (DD), C-terminal TIR domain, and a short connecting

linker. The TIR domain of MyD88 has pivotal functions in the

formation of signal initiation complexes involving the cytosolic

domains of TLRs. MyD88 has been reported to be involved in

signaling pathways initiated by all TLRs, with the exception of

TLR3 and late signaling by TLR4 [1]. MyD88 serves as an

essential ‘‘signaling adapter’’ that transmits signals from ligand-

activated TLRs to downstream factors to initiate kinase-dependent

signaling cascades, whereas Mal functions as a ‘‘sorting adapter’’

that recruits MyD88 to the plasma membrane via its PIP2-binding

domain. Recently, Ohnishi et al. revealed the solution structure of

MyD88-TIR using NMR spectroscopy (PDB ID: 2Z5V) [34]. We

have used the same NMR solution structure of MyD88-TIR in our

studies. Although full-length MyD88 forms a dimer, the isolated

TIR domain was shown to exist as a monomer in solution state,

which appears to be mediated via homomeric interactions within

its death domain. Therefore, the reported MyD88 dimerization is

likely mediated by DD+ID and not by the TIR domain.

Docking studies were carried out using the TLR4-Mal tetramer

complex and MyD88 monomer. Similar docking procedure of the

TLR4-Mal tetramer complex was employed to obtain the final

hexameric complex (TLR4-Mal-MyD88), as shown in Figure 6.

The buried surface at the interface of the TLR4-Mal-MyD88

hexameric complex constitutes 649 Å2 from the TLR4 dimer-Mal

C complex and 658 Å2 from MyD88. In the docked complex, six

residues from TLR4 chain A and 21 residues from Mal chain C

make contact with 20 residues from MyD88 chain F. Similarly, six

residues from TLR4 chain B and 21 residues from Mal chain D

make contact with 20 residues from MyD88 chain E. Previous

reports showed that Y86 mutation of Mal significantly alters the

affinity of Mal for MyD88 [34,47]. Furthermore, another recent

study showed the importance of the R196 residue via mutation to

cysteine in new primary immune-deficiency (MyD88 deficiency)

patients. This mutation resulted in a significant decrease in the

direct interaction between MyD88-TIR and Mal-TIR [34,48].

These observations are consistent with our docked hexameric

model, wherein Y86, R196 and D197 are present in the adapter-

Table 6. List of interfacing residues between the ST2L-Mal complex.

NO. COMPLEX INTERACTING RESIDUES

1 ST2L-Mal ST2L L376, Y377, H402, P406, D407, E410, N411, K412, C413, G414, Y415, T416, L417, G421, R422, D423, M424, L425,
P426, T433, T436, N437, K440, R532, P538

Mal A74, S75, S77, G78, S80, R81, S83, K84, D85, Y86, L114, R115, F117, L120, R121, D122, A123, T124, P125, Q135,
H141

Note: Biologically important residues are in bold, charged residues are underlined and residues involved in the formation of H-bond are in italic.
doi:10.1371/journal.pone.0023989.t006

Table 7. List of interfacing residues between ST2L-MyD88 complex.

NO. COMPLEX INTERACTING RESIDUES

1 ST2L-MyD88 ST2L P384, R385, N386, Y387, K388, E398, H402, Q403, P406, D407, E410, N411, Y420, G421, R422, D423,
M424, L425, P426

MyD88 H156, M157, Q176, R180, E183, Q184, D195, R196, D197, V198, L199, P200, G201, T202, C203, W205,
S206

Note: Biologically important residues are in bold, charged residues are underlined and residues involved in the formation of H-bond are in italic.
doi:10.1371/journal.pone.0023989.t007
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adapter molecular interface, further supporting the validity of our

hexamer model.

It is interesting to note that binding of Mal does not induce any

conformational changes in the TLR4 TIR dimer (receptor).

However, binding of MyD88 induces conformational changes in

both the receptor-receptor and receptor-adapter complexes, as

evidenced by altered interactions (such as interfacing residues,

hydrogen bonds (Figure S1C), salt bridges and buried surface area)

in the final hexamer complex, which is in agreement with previous

reports, thereby strengthening our final docking model. In the

hexamer complex, two hydrogen bonds are present in the TLR4

dimer interface (AB). Four hydrogen bonds are present at the

interface of the TLR4-Mal (AC) complex. One salt bridge is

formed between TLR4 H724 (chain A) and Mal E132 (chain C).

Since the hexamer is symmetrical, the same type of hydrogen

bonds and salt bridge are formed in the other TLR4-Mal (BD)

complex. A single hydrogen bond is present among TLR4 chains

A and B and Mal chains D and C, respectively. Similarly a salt

bridge is formed among TLR4 chains A and B (H740) and Mal

chains D and C (D85). Residue K217 of Mal chains C and D

forms both a hydrogen bond and salt bridge with E159 of MyD88

chains E and F, thus stabilizing the adapter-adapter interactions.

There is a double hydrogen bond formed among TLR4 chains A

and B and MyD88 chains E and F, respectively. A single salt

bridge is formed among TLR4 E796 (chains A and B) and MyD88

R188 (chains E and F). The residues that participate in salt bridge

formation also contribute to ionic interactions in the hexamer

interface. Moreover, the predominant interactions in this hexamer

Figure 6. Interactions in the TLR4-Mal-MyD88 hexamer interface region. The TIR domains of TLR4, Mal and MyD88 are represented as
ribbon models. TLR4 receptor chains A and B are shown in orchid color. Mal (C and D) and MyD88 (E and F) adapter chains are shown in coral and
gold colors, respectively. The important structural motifs that contribute to the hexamer interface include BB-loop and aC-helices of TLR4, BB-loop
and aB-helices of Mal and BB-loop of MyD88. The interacting residues in the hexamer residual interface region are highlighted in boxes. Side chains of
the amino acids contributing to hydrogen bond formation are represented as a stick model with the residue names and numbers shown next to
them. Black dotted lines represent the hydrogen bonds.
doi:10.1371/journal.pone.0023989.g006
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complex are based on electrostatic interactions. Electrostatic

potential studies have shown that the two basic patches present

in the MyD88 molecule (Figure S2D, highlighted in blue dotted

circles) interact largely with the negatively charged surface of the

Mal molecule (Figure S2C, highlighted in blue dotted circles).

However, there is also a slight interaction of the MyD88 basic

patch with the negatively charged surface of TLR4 (Figure S2C,

highlighted in blue dotted circles). The major contributions to the

hexamer interface are made by the BB-loop residues and aC-

helices of TLR4, BB-loop residues and aB-helices of Mal, and BB-

loop residues of MyD88. Remarkably, both the modeling and

electrostatic studies predict that the ‘BB’ loop structures of all three

molecules (TLR4, Mal and MyD88) are critical determinants of

binding specificity for receptor-receptor, receptor-adapter and

adapter-adapter interactions.

TLR2-1/6 heterodimer. TLR2 is believed to function as a

heterodimer, possibly with TLR1 or 6, in the recognition of

foreign pathogens [49]. Tao et al. reported the crystal structure of

the TIR domain of human TLR2 homomultimers (PDB ID:

1O77) [50]. This study suggested that the DD loop and BB loop

may form points of contact between two molecules and that the

asymmetric AB dimer may reflect the natural heterodimeric

TLR2:TLRx signaling complex, where x corresponds to TLR1 or

6. Furthermore, another group utilized computational docking

models to guide alanine-scanning mutagenesis and demonstrated

that the DD-loop region of TLR2 and BB-loop region of TLR1

participate in TLR2/1 heterodimerization [51]. Based on these

previous studies [50,51], we hypothesized that the DD loop of

TLR2 might interact with the BB loop region of TLR1 or 6.

The refined crystal structures of the TIR domains of TLR1

(PDB ID: 1FYV) and 2 (PDB ID: 1FYW) were used in our studies.

Since the crystal structure of the observed asymmetric AB dimer of

human TLR2 TIR domain is consistent with several biological

observations, we focused on this same asymmetric AB dimer in our

analysis. We superimposed the refined structure of TLR1 with

molecule B of the asymmetric AB dimer as well as the refined

structure of TLR2 with molecule A, producing the final TLR2/1

heterodimer complex. The same procedure was followed to

produce the final TLR2/6 heterodimer complex. These two

complexes (TLR1-2 and TLR2-6) were energy minimized using

AMBER03 force field and subsequently subjected to protein-

protein docking studies to probe for the interaction sites of

MyD88.

The surface area buried at the dimer interface of the TLR2/1

heterodimer has contributions of 490 Å2 and 499 Å2 from each of

the two protomers. Likewise, TLR2/6 heterodimer has contribu-

tions of 338 Å2 and 293 Å2 from each of the two protomers. The

interactions between these two TLR2 heterodimer structures

(TLR2/1 and TLR2/6) mainly involve the BB loops of TLR1 or 6

and DD loop of TLR2. A large network of hydrogen bonds (shown

in Figure S3A and B) present in the two heterodimer complexes

(TLR2/1 and TLR2/6) mediates these heterodimer interfaces.

A recent study by Kenny et al. [52] demonstrated that TLR2

heterodimerizes with TLR1 or 6 to allow for Mal-independent

recruitment of MyD88. At high ligand concentrations, TLR2

activation can occur in the absence of Mal due to greater coupling

of TLR1 or 6 to the complex, which allows for sufficient MyD88

recruitment. On the other hand, at low ligand concentrations, this

coupling might be less effective and therefore require Mal to

stabilize MyD88 in the complex. Therefore, direct interactions

between the TIR domains of MyD88 and TLR2-1/6 may mediate

signal transduction as discussed before. We also extended the same

hypothesis to obtain the receptor-adapter docked complex of

TLR2 signaling (Mal-independent recruitment of MyD88). Our

model of the receptor dimer (TLR2-1/6) docking to the adapter

(MyD88) provides additional residual information on TLR2

signaling.

TLR2/1-MyD88 tetramer. Previous studies have shown

that the conserved Pro in box 2 of the TIR domain (TLR1

P675 or TLR2 P681) is necessary for signaling. Moreover, P681

mutation abrogates the TLR2 TIR domain-MyD88 interaction

[45,51]. Based on these previous reports, we hypothesized that the

BB loop side of the TLR1 and 2 TIR domains might interact with

MyD88. To test our hypothesis, we performed computer-assisted

docking studies of the TLR2/1-MyD88 complex. We filtered out

the final TLR2/1-MyD88 docked complex based on our

hypothesis. The docking solutions provided by the docking

programs for MyD88 are located at the sides of the TLR2/1

heterodimer interface (BB loop region).

The buried surface area at the interface of the TLR1-MyD88

complex constitutes 660 Å2 from the TLR1 and 769 Å2 from

MyD88 molecule C. Similarly, the interface area of the TLR2-

MyD88 complex constitutes 988 Å2 from TLR2 and 903 Å2 from

MyD88 molecule D. Twenty-six residues from TLR2 chain B

make contact with 28 residues from MyD88 chain D. Similarly, 27

residues from TLR1 chain A make contact with 21 residues from

MyD88 chain C. Major contributions to the TLR2-MyD88

interface are made by the BB loop residues and aC-helix of TLR2

and by the beginning of the BB loop and aB-helix residues of

MyD88. At the TLR1-MyD88 interface, major contributions are

made by the BB loop and aC-helix residues of TLR1 and by the

CD loop, bD and aE-helix residues of MyD88. A large network of

hydrogen bonds and salt bridges present between the TLR1-

MyD88 and TLR2-MyD88 complexes mediates this TLR2/1-

MyD88 interface (Figure 7). Six hydrogen bonds are present at the

interface of the TLR2-MyD88 complex and four hydrogen bonds

at the interface of the TLR1-MyD88 complex, as shown in Figure

S3A. Electrostatic and hydrophobic interactions are also present in

both components of the complex. Two salt bridges are formed

between TLR2 K783 and MyD88 E232 and between TLR2

K695 and MyD88 E210 in the TLR2-MyD88 complex. Residue

K783 of TLR2 also plays a potent role in hydrogen bond

formation, further stabilizing the docked complex. Similarly, two

salt bridges are formed between TLR1 H708 and MyD88 P296

and between TLR1 E705 and MyD88 R251 in the TLR1-MyD88

complex. Therefore, our final docked TLR2/1-MyD88 complex is

in agreement with the possibility offered by Brown et al. [45].

TLR2/6-MyD88 tetramer. TLR1 and 6 TIR domains

share 93.8% sequence similarity and 86.8% sequence identity.

Since both of these TIR domains share high sequence identity and

similarity, we hypothesized that the TLR2/6-MyD88 complex

could be similar to the TLR2/1-MyD88 complex. Hence, from

the docking solutions, we focused on the TLR2-MyD88 complex,

which has the same orientation as the TLR2/1-MyD88 complex.

Previous mutagenesis studies showed that the co-varying amino

acids F637, H638, N672 and P675 in TLR1 are functionally

linked to MyD88 binding [45]. Therefore, using sequence

alignment, we found that the corresponding residues F637,

H638, N672 and P675 in TLR1 were identical to F642, H643,

N677 and P680 residues in TLR6. Thus, we performed restrained

docking by forcing these residues in TLR6 to bind with MyD88

and obtained the TLR6-MyD88 complex. Consequently, we

superimposed the TLR2-MyD88 and TLR6-MyD88 complexes

and obtained the final TLR2/6-MyD88 tetramer complex.

The buried surface area at the interface of the TLR6-MyD88

complex constitutes 745 Å2 from the TLR6 and 814 Å2 from

MyD88 molecule C. Similarly, the interface area of the TLR2-

MyD88 complex constitutes 1024 Å2 from TLR2 and 941 Å2

Inhibition of Toll-Like Receptors 2 and 4 by ST2L
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from MyD88 molecule D. The TLR2-MyD88 interface residues

are the same as those in the TLR2/1-MyD88 complex. Twenty-

five residues from TLR6 chain A make contact with 24 residues

from MyD88 chain C. Major contributions to the TLR6-MyD88

interface are made by the BB loop and aC-helix residues of TLR6

and by the CD loop, bD and aE-helix residues of MyD88

(Figure 8). Seven hydrogen bonds are present at the interface of

the TLR6-MyD88 complex, as shown in Figure S3B. E650 of

TLR6 forms two hydrogen bonds with residues S244 and A247 of

MyD88. Strong electrostatic and hydrophobic interactions are also

present in the complex. Two salt bridges are formed between

TLR6 H713 and MyD88 P296 and between TLR6 E710 and

MyD88 R251 in the TLR6-MyD88 complex. Residues H713 and

E710 of TLR6 form both hydrogen bonds and salt bridges, further

stabilizing the complex.

Docking Studies of Inhibitory Complexes
ST2L seems to exert a negative regulatory function on TLR2

and 4-mediated NF-kB activation through sequestration of the

TLR proximal signaling adapter proteins MyD88 and Mal.

Furthermore, a mutant ST2L, in which Pro in box 2 (BB loop

residue) of the TIR domain is mutated to His, lacks suppressive

Figure 7. Interactions in the TLR2/1-MyD88 tetramer interface region. The TIR domains of TLR1, 2 and MyD88 are represented as ribbon
models. TLR2 and 1 receptor chains A and B are shown in sky blue and tan colors, respectively. MyD88 (C and D) adapter chains are shown in gold
color. The important structural motifs that contribute to the TLR1-MyD88 interface include BB-loop and aC-helix of TLR1 and CD loop, bD and aE-
helix of MyD88. At the TLR2-MyD88 interface, the important structural motifs include BB-loop and aC-helix of TLR2 and beginning of BB-loop and aB-
helix of MyD88. The interacting residues in the tetramer residual interface region are highlighted in boxes. Side chains of the amino acids contributing
to hydrogen bond formation are represented as a stick model with the residue names and numbers shown next to them. Black dotted lines represent
the hydrogen bonds.
doi:10.1371/journal.pone.0023989.g007
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activity and is impaired in its ability to interact with the two

adapter proteins [20].

ST2L-Mal. ST2L heterodimerizes with Mal, preventing

interaction of Mal with the receptor TIR domain and MyD88.

The ST2L-Mal docked complex has a buried surface interaction area

of 770 Å2. Twenty-one residues from Mal and 25 residues from

ST2L are present at the interface region of the docked inhibitory

complex (Figure 9A). The Mal BB-loop together with the beginning

of the bA and bB residues interact with the ST2L AB and BB loops,

respectively. The binding mode of the ST2L-Mal complex is similar

to the dimeric crystal structure of human TLR10 [43], in which the

BB-loop is a main component of the interactions. The inhibitory

complex is further stabilized by the formation of hydrogen bonds and

a salt bridge. Three hydrogen bonds are present at the heterodimer

interface (Figure S4A). Residues G414 and N437 of ST2L form

hydrogen bonds with residues S75 and R121 of Mal, respectively.

Furthermore, Mal D85 forms both a hydrogen bond and salt bridge

with ST2L R422. Most importantly, the BB loop residues of ST2L

interact with Mal critical residues Y86 (critical for MyD88

interaction) and P125 (critical for receptor interaction) at the

interface of the inhibitory docked complex, preventing binding of

MyD88 and the receptor TIR domain with Mal.

Figure 8. Interactions in the TLR2/6-MyD88 tetramer interface region. The TIR domains of TLR2, 6 and MyD88 are represented as ribbon
models. TLR2 and 6 receptor chains A and B are shown in sky blue and light green colors, respectively. MyD88 (C and D) adapter chains are shown in
gold color. Major structural motifs that contribute to the TLR6-MyD88 interface include BB-loop and aC-helix of TLR6 and CD loop, bD and aE-helix of
MyD88. At the TLR2-MyD88 interface, the important structural motifs include BB-loop and aC-helix of TLR2 and beginning of BB-loop and aB-helix of
MyD88. The interacting residues in the tetramer residual interface region are highlighted in boxes. Side chains of the amino acids contributing to
hydrogen bond formation are represented as a stick model with the residue names and numbers shown next to them. Black dotted lines represent
the hydrogen bonds.
doi:10.1371/journal.pone.0023989.g008
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ST2L-MyD88. ST2L heterodimerizes with MyD88 in a

similar manner as does the ST2L-Mal inhibitory complex. This

docked inhibitory complex has a buried surface interaction area of

663 Å2. Seventeen residues from MyD88 and 20 residues from

ST2L are present at the interface region of the docked inhibitory

complex (Figure 9B). In this inhibitory complex, major interactions

occur between the BB loops of both ST2L and MyD88. Other

regions present at the interface area include the AA loop and aA-

helix residues of ST2L and the beginning of the aA-helix residues

of MyD88. It is interesting to note that the BB loop residues of

ST2L interact with MyD88 critical residues R196 and D197

(critical for Mal interaction) at the interface of the inhibitory

docked complex, preventing binding of Mal with MyD88. The

inhibitory complex is further stabilized by the formation of

hydrogen bonds and salt bridges. Five hydrogen bonds are present

at the heterodimer interface (Figure S4B). Residues Q403, E410

and G421 of ST2L form hydrogen bonds with residues M157,

H156 and R196 of MyD88, respectively. Furthermore, MyD88

D197 forms a double hydrogen bond with residues R385 and

N386 of ST2L. Two strong salt bridges are formed between ST2L

R385 and MyD88 D197 and between ST2L E410 and MyD88

H156.

Moreover, electrostatic potential studies on both inhibitory

complexes revealed that the basic patches present in the adapter

molecules (MyD88 and Mal - Figure S5B and D, highlighted in

blue dotted circles) interact with the negatively charged surface of

an inhibitor ST2L molecule (Figure S5A and C, highlighted in

blue dotted circles), thereby suggesting that the predominant

interactions are based on electrostatic interactions.

Discussion

To date, the structures of the TIR domains of human TLR1

[41], TLR2 [50], TLR10 [43], IL-1RAPL [53], MyD88 [34],

bacteria Paracoccus denitrificans [54] and plant Arabidopsis thaliana

[55] have been determined. The TIR domains of the signaling

receptors and adapters mediate the initial events that occur after

activation of TLR ECDs by pathogen recognition and thus

Figure 9. Interactions in the inhibitory interface region. (A) The TIR domains of ST2L and Mal are represented as ribbon models. ST2L and Mal
chains are shown in hot pink and coral colors, respectively. The important structural motifs that contribute to the ST2L-Mal inhibitory interface
include BB-loop and the beginning of bA and bB of Mal and AB and BB loops of ST2L. (B) The TIR domains of ST2L and MyD88 are represented as
ribbon models. ST2L and MyD88 chains are shown in hot pink and gold colors, respectively. The important structural motifs that contribute to the
ST2L-MyD88 inhibitory interface include BB-loops of both MyD88 and ST2L. Other structural motifs present at the interface area include AA-loop and
aA-helix of ST2L and the beginning of aA-helix of MyD88. The interacting residues in the inhibitory residual interface region are highlighted in boxes.
Side chains of the amino acids contributing to hydrogen bond formation are represented as a stick model with the residue names and numbers
shown next to them. Black dotted lines represent the hydrogen bonds.
doi:10.1371/journal.pone.0023989.g009
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represent a focal point for the regulation of TLR signaling

pathways. The hetero-oligomerization of the TIR domains of the

receptor and adapter brings about the activation of the

transcription factor NF-kB, which regulates the synthesis of pro-

inflammatory cytokines. Most TIR domain structures solved by X-

ray crystallography or NMR are monomeric and do not provide

insights into the arrangement adopted by TIRs in the activated

receptor. However, recent studies have revealed the dimer crystal

structures of the TIR domain of human TLR10 and bacterial TIR

domain. The crystal structure of the human TLR10 TIR domain

was revealed to be a homodimer, the formation of which is

mediated by residues from the BB-loop and aC-helix [43]. On the

other hand, the bacterial TIR domain structure shows a unique

dimerization interface involving the DD-loop and EE-loop

residues, leaving the BB-loop highly exposed [54].

Previous studies have indicated the importance of three short

sequence motifs called box 1–3 motifs, (F/Y)DA, RDXXPG and

FW, which are conserved between TIR domains. Of these, box 2

motif, which resides in the so-called BB loop region, has been

suggested to play a potent role in TIR-TIR interactions and

specificities [41,56,57]. Several structural and mutational studies

have pointed to the BB-, DD- and EE-loop regions as mediators of

the homo- or heterodimerization function of TIR domains in

bacteria and mammals [41,43,54]. However, neither the homo-

typic nor heterotypic interactions between the TIR domains of

receptors and adapters are understood well. To this end, we have

derived a working hypothesis for TLR2 and 4 signaling and ST2L

inhibition (Figures 2 and 3) using molecular modeling studies.

Dunne et al. [35] previously attempted to model the interactions

of Mal and MyD88 with TLR2 and TLR4 using monomeric

receptors and adapters in the modeling process. However, it was

previously shown that receptor activation leads to ligand-induced

dimerization [4]. Therefore, this monomer to monomer model

may not fully reflect the physiological interactions. Miguel et al.

[32] generated a structural model of the TLR4 TIR dimer and

used molecular docking studies to probe for the potential sites of

interaction between the receptor dimer and adapter molecules

(Mal and TRAM). Furthermore, Gong et al. [58] generated TLR4

and 7 signaling complexes, wherein they docked the structures of

the receptor homodimer to the MyD88 homodimer to create a

receptor-adapter complex. However, the functional relevance of

these MyD88 homomeric interactions remains obscure since the

formation of a homodimer between these TIR domains has not

been observed in solution. Additionally, it has been reported that

isolated MyD88 TIR is monomeric in solution, although the full-

length molecule is dimerized by homotypic DD interactions

[34,36].

Our human TLR4 dimer model is supported by several reports

[32,43,56] in which the TLR4 dimer interactions are mainly

mediated by BB-loops and aC-helices. This receptor TIR

dimerization generates two new scaffolds with identical surface

areas that can bind specifically to Mal adapter proteins.

Furthermore, our docked TLR4-Mal tetramer complex generates

two symmetry-related, high affinity binding sites for the second

adapter molecule, MyD88 TIR with contributions from the

receptor and adapter TIRs, an idea that is supported by our high

resolution docking studies as shown in Figure S6. Our TLR4-Mal-

MyD88 hexamer model is the first report to show binding of

MyD88 to the TLR4-Mal tetramer complex by suggesting that

there is a sequential assembly process that occurs for the

downstream receptor-adapter interactions. First, ligands bind to

the receptor ECDs, inducing the formation of M-shaped dimers.

This causes the juxtamembrane sequences at the C-termini of the

ECDs to come into close proximity, which promotes formation of

a receptor TIR dimer in the cytoplasmic region. This receptor

TIR dimer then preferentially incorporates two Mal and then two

MyD88 TIR domains into the post-receptor signaling complex. In

fact, our docked hexamer complex is consistent with the recently

solved structure of the myddosome [59] as well as hypotheses

proposed by several studies [36,60], wherein they predicted that if

each receptor TIR dimer binds to two MyD88 TIR domains, the

myddosome should be able to engage with multiple activated

receptor dimers. The assembly and stoichiometry of these large

and transient oligomeric complexes is difficult to study in vivo.

Thus, our hexamer model, which is in agreement with several

experimental studies, provides a basis for future structural and

functional studies of TLR4 receptor-adapter TIR complexes.

Previous reports [50,51] have suggested that the DD loop side of

TLR2 might interact with the BB loop region of TLR1 or 6. Based

on this hypothesis, we carried out docking studies and extracted

the TLR2/1 and TLR2/6 complexes. TIR heterodimer interac-

tions are maintained mainly by the DD loop of TLR2 and BB loop

regions of TLR1 or 6, which are highly conserved among different

TIRs. A previous study indicated that Mal is dispensable in TLR2

signaling at high ligand concentrations, with MyD88 probably

coupling to the TLR2 receptor complex at sufficient levels to allow

for activation [52]. This alternate Mal-independent pathway could

contribute to signaling as discussed in several studies [37,45,52]. In

contrast to the intensively studied TLR2/1 heterodimerization,

structural information about the TLR2/6 heterodimerization is

lacking. Since both the TLR1 and 6 TIR domains share high

sequence identity and similarity, we predicted that the TLR2/6-

MyD88 complex is similar to the TLR2/1-MyD88 complex and

thus proposed functionally important TLR6 TIR residues with

respect to MyD88 binding. Therefore, our models of the receptor

dimer (TLR2/1 and TLR2/6) docked to the MyD88 adapters

provide additional information for structural interpretation.

Based on the crystal structures and mutational data, several

structural models of heteromeric TIR-TIR interactions have been

proposed that suggest the importance of the so-called BB loop

[37,61]. Consequently, in our current studies, we modeled the

complexes of the TLR4-Mal-MyD88 hexamer and the TLR2/1-

MyD88 and TLR2/6-MyD88 tetramers based on heteromeric

TIR-TIR interactions, which means that they are likely more

physiologically relevant. This observation suggests that MyD88

binds simultaneously and possibly cooperatively with the receptor

TIR scaffold. Moreover, our TLR4-Mal-MyD88 hexamer model

suggests that the initial binding of Mal to the receptor TIR

domains contributes to the formation of symmetry-related sites for

the binding of the second adapter molecule, MyD88. Structural

insights from these studies may aid our understanding of the

molecular mechanisms by which TIR domain receptors and

adapters interact and participate in signaling.

Our model predictions of inhibitory docked complexes (ST2L-

Mal and ST2L-MyD88) revealed that ST2L heterodimerizes with

Mal and MyD88 by occupying their receptor-adapter and

adapter-adapter interacting sites, thus preventing the engagement

of signaling adapter proteins (Mal and MyD88) into the post-

receptor signaling complex. Moreover, our final docked complexes

(TLR4-Mal-MyD88 hexamer, TLR2/1-MyD88 tetramer and

TLR2/6-MyD88 tetramer) showed the importance of BB-loop

residues that are involved in receptor-receptor, receptor-adapter

and adapter-adapter interactions. Detailed structural analysis of

our final ST2L-MyD88 inhibitory complex revealed major

interactions between the BB loops and aA-helices of both the

ST2L and MyD88 TIR domains. Additionally, our final docked

ST2L-Mal inhibitory complex revealed major interactions be-

tween the BB loops of both the ST2L and Mal TIR domains. In
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both the modeled inhibitory complexes, the BB-loop of ST2L

plays a key role in binding, which is in agreement with the

suggestions of previous studies [20,62]. All these observations

highlight the strong molecular affinity of ST2L as an inhibitor.

In summary, our work depicts a residue-detailed structural

framework of ST2L inhibiting the TLR2/1, TLR2/6 and TLR4

signaling pathways. Furthermore, our modeling complexes also

provide structural insights into the TIR domain architecture of the

TLR2 and 4 downstream signaling pathways. Our studies can be

utilized to identify TIR domain surfaces that mediate functional

TIR-TIR interactions as a basis of rational design of therapeutics

that specifically target TLR signaling.

Supporting Information

Figure S1 Intermolecular H-bonding in the TLR4
receptor-adapter interface region. (A) The residues contrib-

uting to hydrogen bond formation in the TLR4 dimer interface

are shown. A and B chains represent TLR4 TIR receptors. (B)

The residues contributing to hydrogen bond formation in the

TLR4-Mal tetramer interface are shown. A, B chains represent

TLR4 TIR receptors and C, D chains represent Mal adapters. (C)

The residues contributing to hydrogen bond formation in the

TLR4-Mal-MyD88 hexamer interface are shown. A, B chains

represent TLR4 TIR receptors, C, D chains represent Mal

adapters and E, F represent MyD88 adapters. Black dotted lines

represent the hydrogen bonds.

(TIF)

Figure S2 Surface charge distribution of the TIR
domains of TLR4, Mal and MyD88. Electrostatic surface

potential representations of the TIR domains of TLR4, Mal and

MyD88 with blue-colored regions indicating positively charged

basic patches and red-colored regions indicating negatively charged

acidic patches. (A) TLR4 dimer, (B) Mal, (C) TLR4-Mal tetramer

and (D) MyD88 TIR domain models. The blue color dotted circles

represent the areas which are involved in the interactions between

the receptor (TLR4) and adapter (Mal and MyD88) molecules.

(TIF)

Figure S3 Intermolecular H-bonding in the interface
region of TLR2/1-MyD88 and TLR2/6-MyD88 complex-
es. (A) The residues contributing to hydrogen bond formation in

the TLR2/1-MyD88 tetramer interface region are shown. A and

B chains represent TLR2 and TLR1 TIR receptors. (B) The

residues contributing to hydrogen bond formation in the TLR2/6-

MyD88 tetramer interface region are shown. A and B chains

represent TLR2 and TLR6 TIR receptors. Black dotted lines

represent the hydrogen bonds.

(TIF)

Figure S4 Intermolecular H-bonding in the interface
region of inhibitory complexes. (A) The residues contributing

to hydrogen bond formation in the ST2L-Mal interface region are

shown. A and B chains represent ST2L and Mal TIRs. (B) The

residues contributing to hydrogen bond formation in the ST2L-

Mal interface region are shown. A and B chains represent ST2L

and Mal TIRs. Black dotted lines represent the hydrogen bonds.

(TIF)

Figure S5 Surface charge distribution of the TIR
domains of ST2L, Mal and MyD88. Electrostatic surface

potential representations of the TIR domains of ST2L, Mal and

MyD88 with blue-colored regions indicating positively charged

basic patches and red-colored regions indicating negatively

charged acidic patches. A and C, ST2L. B, MyD88. D, Mal

TIR domain models. The blue color dotted circles represent the

areas which are involved in the interactions between the inhibitor

(ST2L) and adapter (Mal and MyD88) molecules.

(TIF)

Figure S6 Symmetry-related binding sites for MyD88.
Electrostatic surface potential representations of the TIR domains

of the TLR4-Mal tetramer complex showing two symmetry-

related binding sites for MyD88. The two dotted arrow lines show

the identical scaffolds in the TLR4-Mal tetramer complex for

binding of the second adapter molecule, MyD88.

(TIF)
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