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Abstract

A national HIV/AIDS and malaria parasitological survey was carried out in Tanzania in 2007–2008. In this study the
parasitological data were analyzed: i) to identify climatic/environmental, socio-economic and interventions factors
associated with child malaria risk and ii) to produce a contemporary, high spatial resolution parasitaemia risk map of the
country. Bayesian geostatistical models were fitted to assess the association between parasitaemia risk and its determinants.
Bayesian kriging was employed to predict malaria risk at unsampled locations across Tanzania and to obtain the uncertainty
associated with the predictions. Markov chain Monte Carlo (MCMC) simulation methods were employed for model fit and
prediction. Parasitaemia risk estimates were linked to population data and the number of infected children at province level
was calculated. Model validation indicated a high predictive ability of the geostatistical model, with 60.00% of the test
locations within the 95% credible interval. The results indicate that older children are significantly more likely to test positive
for malaria compared with younger children and living in urban areas and better-off households reduces the risk of
infection. However, none of the environmental and climatic proxies or the intervention measures were significantly
associated with the risk of parasitaemia. Low levels of malaria prevalence were estimated for Zanzibar island. The
population-adjusted prevalence ranges from 0:29% in Kaskazini province (Zanzibar island) to 18:65% in Mtwara region. The
pattern of predicted malaria risk is similar with the previous maps based on historical data, although the estimates are
lower. The predicted maps could be used by decision-makers to allocate resources and target interventions in the regions
with highest burden of malaria in order to reduce the disease transmission in the country.
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Introduction

Malaria is still a major public health problem in the United

Republic of Tanzania, as the leading cause of inpatient and

outpatient consultations. Ninety three percent of the population of

Tanzania live in areas where malaria is transmitted for at least one

month per year. Although Tanzania has been on the forefront in

promoting the use of insecticide treated nets (ITNs), there are still

between 60000 and 80000 malaria attributable deaths estimated

per year, mainly children under the age of five ([1]). The disease is

one of the main obstacles to the economical development of the

country. The malaria situation in Zanzibar, the group of islands off

the north-eastern coast of the Tanzania mainland, is a bit different

than the one on the mainland. Over the past decade Zanzibar has

reached very low levels of malaria endemicity due to rapidly

scaling up of current antimalarial interventions([2]), and it is now

one of the regions that is planning to eliminate the disease.

Planning and evaluating cost-effective strategies for the control

and even more, the elimination of malaria, requires contemporary,

high spatial resolution maps of the disease distribution as well as

reliable estimates of the number of infected people. These

measures will help tracking the progress and documenting

reduction in parasitaemia rates as a result of control. Some earlier

attempts to describe the situation of malaria transmission in

Tanzania were based on analysis of historical parasite prevalence

data ([3],[4]). However, historical field survey data were collected

in different seasons and at non-standardized and overlapping age

groups of the population. Therefore, accounting for seasonality

and adjusting for age become challenging when modeling malaria

survey data. The drawbacks of historical malaria survey data have

been discussed in more details and addressed previously ([5], [6]).

In addition, the estimated parasitaemia risk based on the analysis

of historical data may not reflect the current malaria situation

since they don’t take into account the effect of malaria

interventions which increased over the last decade. In addition,

a map of endemic malaria distribution in Tanzania (available on

MARA ([7]) website) was produced by [8] using spatially

interpolated weather station data to define climatic suitability for

malaria transmission.

From October 2007 to February 2008, the National Bureau of

Statistics (NBS) in collaboration with the Office of the Chief

Government Statistician (OCGS), Zanzibar implemented the

Tanzania HIV/AIDS and Malaria Indicator Survey (THMIS).
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The aims of this survey were to assess the prevalence of HIV

infection among Tanzanian adults and the prevalence of malaria

infection and anemia among children under five years old. Here

Bayesian geostatistical models based on environmental and

climatic risk factors were implemented to produce the first

contemporary, high spatial resolution parasitaemia risk map and

spatially explicit disease burden estimates for Tanzania by

analyzing the THMIS malaria data.

Materials and Methods

1.2 THMIS Data
Ethic statement. The survey protocol was submitted to and

approved by the National Institute for Medical Research (NIMR).

Written informed consent was obtained from the parent or

guardian of the child. The statement explained the purpose of the

test, how the test would be administered, and advised the parent or

guardian that the results would be available as soon as the test was

completed. Finally, permission was requested for the test to be

carried out.

The THMIS was conducted over a four-month period, from

October 2007 until February 2008. A two-stage sampling

approach was used to select the surveyed population. In the first

stage were selected 475 clusters consisting of enumeration areas

defined for the 2002 Population and Housing Census. In

particular, 25 sample points were selected in Dar es Salaam, 18
in each of the other 20 regions in the mainland and 18 sample

points in each of the 5 regions in Zanzibar. The second stage of

selection involved the systematic sampling of households from the

clusters. A total of 9144 households throughout Tanzania were

sampled, 16 from each sampling point in Dar es Salaam, 18
households per cluster in the other regions in mainland and

Pemba and 36 households per sampling unit in Unguja. Further

details on the sampling approach can be found in [9]. In the

selected households men and female age 15–49 were interviewed

individually. Basic demographic information and data on the

health status of the person interviewed and other members of the

household were collected. In addition, information on the

characteristics of the household dwelling, such as source of water,

type of toilet facilities, materials used to construct the house and

possession of various durable goods were gathered. Based on the

household characteristics and household possessions a wealth

index was constructed. The THMIS assembled also information

on household coverage of malaria interventions such as IRS

activities and ownership/use of bednets or ITNs. In addition,

blood samples for anemia and malaria testing among children 6–

59 months were collected. Although there is a large amount of

information on HIV/AIDS knowledge and behavior and HIV

prevalence, the analysis of these data is not the focus of this paper.

The sampled clusters where parasitaemia prevalence data were

collected are shown Figure 1.

1.3 Environmental and climatic data
Transmission of malaria is environmentally driven, therefore

climatic and environmental proxies were used as parasitaemia

predictors. The following climatic and environmental factors were

used in the analysis: land surface temperature (LST), rainfall,

normalized difference vegetation index (NDVI), altitude and

distance to nearest permanent water body. The sources of these

data, as well as the spatial and temporal resolution are shown in

Table 1. Further details on the description of the climatic factors

are given in [10]. The environmental factors with available

temporal resolution (LST, rainfall and NDVI) were acquired for

the one year period previous to the survey and annual average of

each environmental covariate was calculated and extracted at each

data location.

1.4 Statistical modeling
At each location in S~(s1,s2, . . . ,sn)T let us consider the binary

outcome Yij which takes value 1 or 0 to indicate whether the child

j at location si was found parasitaemia positive. A logistic

regression model was used to relate the outcome to its predictors.

The multivariate logistic regression model is given by

logit(pij)~b0z
Xp

k~1
bkX

(k)
ij , ð1Þ

where pij is the risk of child j at location si of having parasitaemia,

Xij~(X
(1)
ij ,X

(2)
ij , . . . ,X

(p)
ij )T are the covariates and

b~(b0,b1,b2, . . . ,bp)T is the vector of regression coefficients,

including the intercept. Preliminary frequentist statistical analysis

was performed in Stata version 10.0 (Stata corporation, College

Station, TX) to identify the covariates significantly associated with

the parasitaemia prevalence and to check for possible nonlinear

trends of the relationship between explanatory variables and

response variable. To account for the nonlinear relationship

between malaria and demographic or environmental and climatic

covariates, the continuous variables were categorized, where the

cutoffs points were chosen based on outcome-covariate scatter

plots.

1.4.1 Bayesian geostatistical modeling. The model de-

scribed above does not consider the spatial relationship among the

parasitaemia survey locations. The standard way of incorporating

the geographical dependence in the model is by introducing

spatially correlated random effects wi at every sampled location si.

Using the geostatistical design described in [11] the underlying

spatial process was modeled by the residuals via a multivariate

Normal distribution with mean 0 and the covariance matrix S,

w~(w1, . . . ,wn)T*MVN(0,S). The covariance matrix is defined

as a function which represents the decay in correlation between

pairs of locations with distance. For this analysis, an exponential

correlation function was chosen, that is Sij~s2exp({dij=r),
where r describes how fast the spatial correlation declines with

distance between locations i and j and s2 represents the variance

of the spatial process. Measurement error or microscale variations

are modeled by the independent and normally distributed random

effects ei*N(0,t2), where t2 is interpreted as a nugget effect. The

model in (1) can be written

logit(pij)~b0z
Xp

k~1
bkX

(k)
ij zwizei, ð2Þ

This type of hierarchical models are usually fitted within a

Bayesian framework because it allows flexible modeling and

inference and avoids the computational problems met in

likelihood-based fitting. The trade-off for the flexibility of a fully

Bayesian approach is the complexity of the model fit. This step is

carried out via the implementation of Markov chain Monte Carlo

methods. To complete the specification of the Bayesian hierar-

chical model, prior distributions need to be assigned to the model

parameters h~(b,s,r). Further, Bayesian inference is based on

the posterior distribution, that is the conditional distribution over

parameters given observed data. Non-informative Normal prior

distributions were specified for the intercept and the regression

coefficients, p(b)~N(0,1000). The spatial correlation parameters

s and r were assigned an inverse gamma and a gamma prior

distribution, respectively, p(s)~IG(a1,b1) and p(r)~G(a2,b2).
Non-informative inverse gamma prior distribution was chosen for
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the non-spatial variance, p(t2)~IG(a3,b3). The values of the

parameters a1,b1,a2,b2,a3,b3 were chosen such that the mean of

the corresponding distribution is 1 and the variance 100. A two

chain sampler of 100000 iterations was run with a burn-in of

10000 iterations and the convergence was assessed by examining

the ergodic averages of selected parameters.

Separate geostatistical models were fitted for mainland

Tanzania and the two islands covering Zanzibar (Pemba and

Unguja). In particular, for each region we fitted Bayesian

geostatistical models to assess the effects of interventions after

adjusting for climatic and environmental factors and to estimate

the disease burden at high spatial resolution. Model A includes as

covariates the demographic variables, socio-economic status and

malaria interventions, model B includes only the environmental

and climatic proxies and model C includes the demographic

variables, socio-economic status, malaria interventions and envi-

ronmental/climatic factors. For each model, a burn-in of 5000

iterations was run. Convergence was assessed by inspection of the

ergodic averages for all parameters and was achieved after 100000
iterations for all models. Samples obtained from MCMC are not

independent but autocorrelated, therefore a thinning of 10
iterations was used when extracting samples from the posterior

distribution. Disease burden estimates were obtained using

Bayesian kriging and employing only environmental predictors

(model B) because malaria intervention data and wealth index

information are not available for the whole country. In particular,

predictions were made at 122017 locations covering mainland

Tanzania, 204 locations covering Unguja and 125 locations

covering Pemba. The Bayesian kriging was implemented using

software written by the authors in Fortran 95 (Compaq Visual

Fortran Professional 6.6.0) using standard numerical libraries

(NAG, The Numerical Algorithms Group Ltd.). The number of

children infected with malaria parasites were obtained by

combining the number of children with the parasitaemia risk at

each of the 122346 locations. The population data were acquired

from the International Data Base of the U.S. Census Bureau,

Population Division for the year 2006. Although these data are

outdated and maybe underestimate the total population in the

country, they represent the only source of population data at such

small spatial resolution.

To validate model B, which was used to predict parasitaemia

risk, model fit was carried out on a randomly selected subset of 299

locations (training set). The remaining 75 locations (test points),

comprising a simple random sample, were used for validation. To

assess the predictive performance of the model, 11 credible

intervals of the posterior predictive distribution at the test locations

with probability coverage equal to 5%, 10%, 20%, 30%, 40%,

50%, 60%,70%, 80%, 90% and 100%, respectively were

calculated and the percentages of test locations with observed

parasitaemia prevalence falling in these intervals were computed.

Results

A total of 6360 children under 5 years old at 465 geo-located

clusters had P. falciparum parasitaemia results from blood film

examination. The prevalence of asymptotic malaria among

children in Tanzania was estimated from the pooled data at

13:0% (95% CI: 12:1%–13:8%). In mainland the parasitaemia risk

at cluster level ranged from 0:0% to 83:3% with a mean of 15:0%.

87:4% of clusters had malaria risk below 40:0%. The malaria risk

in Zanzibar island was much lower, varying from 0:0% to 10:7%
in Pemba and 0:0% to 14:3% in Unguja. In terms of malaria

Figure 1. Observed parasitaemia prevalence in children less
than 5 years old from the THMIS carried out 465 locations.
doi:10.1371/journal.pone.0023966.g001

Table 1. Spatial databases used in the analysis.

Factor Spatial Temporal Source

Resolution Resolution

LST 1 km2 8 days MODIS

http://lpdaac.usgs.gov/modis/myd11c1v4.asp

Rainfall 8 km2 10 days ADDS

http://earlywarning.usgs.gov/adds/

NDVI 1 km2 16 days MODIS

http://lpdaac.usgs.gov/modis/mod13q1v4.asp

Altitude 1 km2 N.A. USGS-DEM

Permanent water bodies 1 km2 N.A. Health Mapper

http://eros.usgs.gov/products/elevation/dem.html

doi:10.1371/journal.pone.0023966.t001
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intervention coverage, there is a big discrepancy between

mainland and Zanzibar islands. In particular, 61:3% of households

in mainland and 93:3% of households in Zanzibar had at least one

bednet used for sleeping (p-valuev0:0001). The difference is even

bigger when it comes to IRS coverage. In mainland, only 1:2% of

household had walls sprayed with insecticide, while in Zanzibar

island the proportion was 95:7% (p-valuev0:0001).

The estimates of the effect of demographic, wealth index,

malaria interventions and environmental/climatic factors on

parasitaemia risk obtained from the bivariate and multivariate

non-spatial models in mainland Tanzania are presented in Table 2.

The bivariate analyses indicates that in mainland all predictors

except malaria interventions were statistical significantly associated

with the parasitaemia risk at 5% significance level. In particular,

children living in urban areas had significantly lower risk of

parasitaemia compared with children in rural areas. A positive

relationship with age indicated that the older the child the higher

the risk of malaria. As it was expected, the wealth index was

negatively associated with the parasitaemia risk, suggesting that

children belonging to better-off households had less risk of

acquiring malaria. Both malaria intervention variables included

in this analysis (bednet ownership and IRS) showed a non-

protective effect, although none of them were statistically

significant. Altitude was negatively associated with the parasitae-

mia risk, indicating that children at above 1500 meters had lower

odds of malaria. Surprisingly, the odds of malaria for children

living further away from water bodies were higher than the odds of

children closer to permanent sources of water. The results also

Table 2. Association of parasitaemia risk with demographic variables, socio-economic status, malaria interventions and
environmental/climatic factors in mainland Tanzania resulting from the bivariate and multivariate non-spatial models.

Variable Bivariate Multivariate

non-spatial model non-spatial model

OR 95% CI OR 95% CI

Residence (Rural) 1.0 1.0

Urban 0.23 (0.17,0.33) 0.50 (0.34,0.74)

Age (v~12 months) 1.0 1.0

13{24 1.70 (1.25,2.33) 1.75 (1.27,2.42)

25{36 2.26 (1.67,3.07) 2.49 (1.81,3.42)

37{48 2.28 (1.68,3.11) 2.49 (1.80,3.43)

49{60 2.63 (1.94,3.56) 2.94 (2.14,4.05)

Wealth index (Most poor) 1.0 1.0

Very poor 0.99 (0.81,1.22) 0.89 (0.71,1.10)

Poor 0.87 (0.71,1.07) 0.81 (0.65,1.02)

Less poor 0.52 (0.40,0.66) 0.55 (0.42,0.72)

Least poor 0.15 (0.10,0.24) 0.28 (0.17,0.45)

Having bednet (No) 1.0 1.0

Yes 1.12 (0.96,1.32) 1.03 (0.86,1.23)

IRS (No) 1.0 1.0

Yes 1.19 (0.61,2.32) 1.03 (0.50,2.15)

Altitude (v~1500 m) 1.0 1.0

1500 0.28 (0.21,0.37) 0.43 (0.30,0.61)

Distance to nearest water body (v~700 m) 1.0 1.0

700{2500 1.41 (1.09,1.83) 1.43 (1.09,1.89)

2500 1.63 (1.27,2.09) 1.67 (1.28,2.18)

Rainfall (v15 mm) 1.0 1.0

15{20 2.69 (1.92,3.76) 1.86 (1.30,2.65)

20 4.46 (3.24,6.14) 2.80 (1.99,3.94)

NDVI (v0:4) 1.0 1.0

0:4{0:6 4.15 (3.25,5.29) 2.70 (2.07,3.51)

0:6 4.42 (3.23,6.05) 2.68 (1.83,3.94)

Day temperature (v26:00C) 1.0 1.0

26:0{29:0 2.76 (2.01,3.80) 2.15 (1.53,3.03)

29:0 1.76 (1.30,2.39) 1.65 (1.15,2.38)

Night temperature (v16:00C) 1.0 1.0

16:0{20:0 2.12 (1.74,2.59) 1.67 (1.27,2.20)

20:0 1.58 (1.21,2.07) 1.52 (1.08,2.12)

doi:10.1371/journal.pone.0023966.t002
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suggest that the malaria odds are increasing with an increase in

rainfall, vegetation index, day and night temperature. In Pemba,

the relationship between parasitaemia and age and wealth index is

not monotone, as in mainland. In addition, we observe a

protective effect of bednets, which is not significant. Bivariate

analysis suggested that in Unguja none of the covariates under

study were significantly associated with parasitaemia prevalence.

Table 3 presents the effect of residence, age, wealth index,

malaria interventions and environmental/climatic factors on

parasitaemia risk in mainland. These estimates were obtained by

fitting Bayesian geostatistical models described in section 2.3.1.

After taking into account the spatial correlation, residence (living

in urban area has a protective effect), age (older children are more

likely than younger children to test positive for malaria) and wealth

index (living in better-off households has a protective effect)

remained significantly associated with malaria. This was not the

case for the environmental and climatic proxies. When all

covariates were included in the model, only residence, age, wealth

index (less poor, least poor) remained statistically significant

associated with parasitaemia risk in mainland Tanzania (Table 3).

Posterior estimates of the spatial parameters (spatial variance

and decay parameter) and the non-spatial variance are presented

Table 3. Association of parasitaemia risk with demographic variables, socio-economic status, malaria interventions and
environmental/climatic factors in mainland Tanzania resulting from the Bayesian geostatistical models.

Variable Geostatistical Geostatistical Geostatistical

model A* model B** model C***

OR 95% BCI OR 95% BCI OR 95% BCI

Residence (Rural) 1.0 1.0

Urban 0.36 (0.20,0.62) 0.42 (0.24,0.74)

Age (v~12 months) 1.0 1.0

13{24 1.89 (1.34,2.68) 1.88 (1.33,2.69)

25{36 2.64 (1.88,3.74) 2.64 (1.87,3.74)

37{48 2.63 (1.87,3.72) 2.64 (1.87,3.75)

49{60 3.41 (2.43,4.83) 3.44 (2.43,4.88)

Wealth index (Most poor) 1.0 1.0

Very poor 1.07 (0.83,1.37) 1.07 (0.83,1.37)

Poor 0.95 (0.73,1.24) 0.95 (0.73,1.24)

Less poor 0.69 (0.50,0.95) 0.70 (0.51,0.96)

Least poor 0.34 (0.20,0.59) 0.37 (0.20,0.63)

Having bednet (No) 1.0 1.0

Yes 0.95 (0.77,1.16) 0.92 (0.75,1.13)

IRS (No) 1.0 1.0

Yes 1.42 (0.42,4.28) 1.17 (0.33,3.63)

Altitude (v~1500 m) 1.0 1.0

1500 0.53 (0.25,1.04) 0.51 (0.25,1.02)

Distance to nearest water body (v~700 m) 1.0 1.0

700{2500 1.34 (0.82,2.24) 1.35 (0.82,2.23)

2500 1.39 (0.84,2.50) 1.40 (0.86,2.28)

Rainfall (v15 mm) 1.0 1.0

15{20 0.76 (0.36,1.60) 0.97 (0.48,1.90)

20 1.28 (0.47,2.99) 1.43 (0.63,3.14)

NDVI (v0:4) 1.0 1.0

0:4{0:6 1.79 (1.13,2.91) 1.47 (0.88,2.45)

0:6 1.90 (0.89,3.89) 1.40 (0.67,2.98)

Day temperature (v26:00C) 1.0 1.0

26:0{29:0 2.09 (1.14,3.87) 2.01 (1.13,3.60)

29:0 0.94 (0.49,1.82) 1.07 (0.56,2.03)

Night temperature (v16:00C) 1.0 1.0

16:0{20:0 1.46 (0.83,2.63) 1.47 (0.81,2.73)

20:0 1.20 (0.58,2.42) 1.31 (0.61,2.81)

*The model includes only the demographic variables, socio-economic status and malaria interventions as predictors.
**The model includes only the environmental and climatic proxies as predictors.
***The model includes the demographic variables, socio-economic status, malaria interventions and environmental/climatic factors as predictors.
doi:10.1371/journal.pone.0023966.t003
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in Table 4. In all three areas the spatial variance was significantly

larger than the non-spatial variance. The estimates of the range

parameter suggest a strong spatial correlation in mainland and a

weak spatial correlation in Pemba and Unguja.

Figure 2 shows the prediction performance of model B via

proportion of test locations with malaria prevalence falling into

credible intervals of coverage ranging from 5% to 100%. Based on

these results we can state that the model is fairly accurate, with

4%, 53% and 85.33% of the test locations within the 5%, 90%

and 100% credible interval respectivelly.

The map of predicted parasitaemia risk for the United Republic

of Tanzania is shown in Figure 3. The risk of malaria varies from

0:1% to 38:9%, with a median of 4:9%. High levels of prevalence

(w20%) were predicted in the north of the country, the area

around Lake Victroia (regions Kagera, Mara and Shinyanga) as

well as in the south of the country (provinces Pwani, Lindi,

Mtwara and Ruvuma). Low levels of parasitaemia risk (v5%) are

observed in the central part of the country, north-east and south-

west and the island of Zanzibar. The lower (2.5%) and upper

(97.5%) percentiles of the posterior distribution corresponding to

the predicted malaria risk are depicted in Figure 4.

Figure 5 shows the predicted number of children with malaria

parasites in the United Republic of Tanzania. The estimates of

number of children v5 with malaria parasites at the regional level

are presented in Table 5. We observe that both before and after

adjusting for population distribution, Kaskazini region in Unguja

had the lowest risk of malaria and Mtwara region in mainland had

the highest risk.

Discussion

The parasitaemia survey of the 2007–08 THMIS was designed

to provide an estimate of the malaria prevalence among children

under five and to measure malaria prevention and treatment

outcomes including possession and use of ITNs and IRS activities

in the United Republic of Tanzania. Parasitaemia data of this

survey were modeled within a spatial context to identify predictors

significantly associated with malaria and to produce the 2008

malaria risk map as well as the map of infected children under five

in the United Republic of Tanzania. The geostatistical model had

a high predictive ability as shown by the high percentage of test

locations with observed parasitaemia prevalence falling in the

Table 4. Posterior estimates of spatial parameters.

Spatial parameter Tanzania Pemba Unguja

Median 95% BCIa Median 95% BCIa Median 95% BCIa

s2 1.74 (0.63, 148.4) 3.23 (0.48, 40.5) 2.89 (0.41,
95.68)

t2 0.59 (0.22, 0.98) 1.47 (0.28,
21.65)

1.49 (0.29, 31.5)

rangeb 206.25 (124.53,
370.79)

1.05 (0.52,
21.22)

0.67 (0.34,
17.41)

a: Bayesian confidence intervals.
b: Based on the decay parameter r, the range parameter 3=r (in km) is calculated.
doi:10.1371/journal.pone.0023966.t004

Figure 2. Percentage of test locations with observed malaria prevalence falling within the 5%, 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90% and 100% credible intervals of the posterior predictive distribution.
doi:10.1371/journal.pone.0023966.g002
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credible intervals. Previous efforts ([12], [3],[4]) have been made

to map malaria prevalence in Tanzania, by collecting and

analyzing historical survey data. The risk map presented here

depicts with high-fidelity the contemporary situation of malaria in

the country and could be used as part of monitoring and

evaluation of malaria situation and ongoing interventions in the

country.

Compared to the distribution maps based on historical

data([3],[4]), our malaria risk map shows an overall lower

prevalence over the country. The malaria distribution map shows

very low levels of prevalence (v0:05%) on the island of Zanzibar.

This could be explained by the increase in coverage levels of

interventions which significantly reduced the burden of disease

[13]. This type of interventions should be emulated in mainland

Tanzania, especially in the areas of high risk (provinces Kagera,

Mara, Shinyanga, Pwani, Lindi, Mtwara and Ruvuma). Although

we observe a decrease in malaria prevalence over the last years,

the magnitude of the decline is not clear in the absence of a

baseline map. There are, however, evidences from other studies

such as the National Malaria Control Programme (NMCP) survey

carried out in 21 districts which shows a decline of 30% in under-

five malaria risk between 2006 and 2008. In Ifakara and Rufiji

Demographic Surveillance System (DSS) all-age malaria preva-

Figure 3. Smooth map of the parasitaemia risk in children v5
years in Tanzania.
doi:10.1371/journal.pone.0023966.g003

Figure 4. The 2.5% (left) and 97.5% (right) percentiles of the predicted posterior distribution for the parasitaemia prevalence.
doi:10.1371/journal.pone.0023966.g004

Figure 5. Estimated number of children v5 years infected with
malaria parasite in Tanzania.
doi:10.1371/journal.pone.0023966.g005
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lence has dropped 50%–60% between the years 2000 and 2008

(Impact and ALIVE projects, Ifakara Health Institute, unpub-

lished). These reports are also supported by reduction in the

intensity of malaria transmission by about 80% between 1990 and

2001–2003 ([14]) due mainly to increase of bednets and ITNs use.

A comprehensive review of the impact of malaria control in

Tanzania can be found in [15] who concluded that malaria is

‘‘down but not out’’.

Intervention measures (bednet, IRS) seem to have no statisti-

cally significant effect on malaria risk. These results could be

explained, on one hand, by the fact that only data on bednet

ownership/use were collected, without distinguishing between

treated and untreated nets. Since untreated nets are less effective

than treated ones ([16]), this had certainly influence the results of

the risk factor analysis. On the other hand, usage of mosquito nets,

especially by children is very important, but not all owned bednets

were also used. The other important factor is that the IRS

coverage was very low for the mainland (1:12%), therefore it is

difficult to observe a significant effect, especially if the implemen-

tation of the intervention is not fully correct. The absence of

significant association between intervention measures and malaria

risk may be explained by other factors such as indication bias

(children living in high risk areas use more frequently the

intervenition measures), exophilic behavior of vectors, resistance

of vectors to the insecticides and lack of efficacy of these

interventions.

In the multivariate non-spatial model for mainland Tanzania

demographic (residence and age), wealth index and environmental

covariates were all significant. However, in the Bayesian

geostatistical model, the environmental factors did not remain

significant. This could be explained by other unmeasured factors

such as: access to health care, deforestation (especially the Lake

Victoria shores areas), irrigation, swamp draining, etc. Informa-

tion on some of these factors may be obtained from remote sensing

sources. However, information on health related factors would

require collection of national and regional data on such variables

at high spatial resolution. We observe that in Zanzibar none of the

covariates included in the analysis were significantly associated

with malaria risk. This is not surprising considering the high level

of malaria control implemented on the islands, which counteract-

ed the environmental and climatic effects.

Additional nationally representative surveys were carried out in

Tanzania during 2008, namely the NMCP malaria indicator

survey (June–July) and the Tanzania National Insecticide Treated

Table 5. Estimates of the number of children less than 5 years old with malaria parasites at regional level.

Region Number of Infected 95%CI Model-based
Model-based
prevalence

children v5 children prevalence
adjusted for
population

Arusha 243725 1694 (200,11362) 1.11% 0.70%

Dar-Es-Salaam 422267 6203 (2180,15486) 3.05% 1.47%

Dodoma 287515 6895 (849,37505) 2.70% 2.40%

Iringa 251918 5374 (610,30768) 2.14% 2.13%

Kagera 349344 58494 (13291,122501) 17.68% 16.74%

Kaskazini-Pemba 31049 366 (105,1152) 1.04% 1.18%

Kaskazini-Unguja 25086 73 (16,263) 0.32% 0.29%

Kigoma 286895 24568 (4423,79297) 7.78% 8.56%

Kilimanjaro 216248 1287 (162,8223) 0.60% 0.59%

Kusini Unguja 14436 163 (41,595) 0.99% 1.13%

Kusini-Pemba 29202 263 (81,864) 0.77% 0.90%

Lindi 130174 22810 (5931,48259) 12.82% 17.52%

Manyara 170711 2535 (328,14111) 1.37% 1.49%

Mara 232267 36158 (12153,19547) 11.26% 15.57%

Mbeya 349050 9053 (1186,45019) 3.47% 2.59%

Mjini-Magharibi 44467 386 (127,1035) 0.76% 0.87%

Morogoro 304225 17724 (2621,72404) 6.01% 5.83%

Mtwara 192776 35946 (10332,71287) 17.96% 18.65%

Mwanza 448578 55631 (13867,130405) 13.13% 12.40%

Pwani 155518 17365 (4362,43447) 11.10% 11.17%

Rukwa 192567 13998 (2529,48138) 6.62% 7.27%

Ruvuma 193856 18826 (3478,55652) 10.64% 9.71%

Shinyanga 492062 56444 (12798,144062) 10.97% 11.47%

Singida 191261 4438 (596,24707) 2.21% 2.32%

Tabora 288518 12991 (2090,53399) 4.82% 4.50%

Tanga 265337 9591 (1671,37409) 4.44% 3.61%

TOTAL 5809052 419277 (96028,1170757) 5.99% 7.22%

doi:10.1371/journal.pone.0023966.t005
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Nets Programme (NATNETS) (July–September). Although the

three surveys differ in timing and sampling methods, one could

compile the data sets and check if the model-based predictions are

more accurate, especially in areas where our map shows high

uncertainty. If the disease burden estimates would be similar, one

could suggest optimizing the resource allocation for conducting a

single national survey, instead of three.
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