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Abstract

Although toll-like receptor (TLR) signals are critical for promoting antigen presenting cell maturation, it remains unclear how
stimulation via different TLRs influence dendritic cell (DC) function and the subsequent adaptive response in vivo.
Furthermore, the relationship between TLR-induced cytokine production by DCs and the consequences on the induction of
a functional immune response is not clear. We have established a murine model to examine whether TLR3 or TLR4 mediated
DC maturation has an impact on the cytokines required to break tolerance and induce T-cell-mediated autoimmunity. Our
study demonstrates that IL-12 is not absolutely required for the induction of a CD8 T-cell-mediated tissue specific immune
response, but rather the requirement for IL-12 is determined by the stimuli used to mature the DCs. Furthermore, we found
that IFNa is a critical pathogenic component of the cytokine milieu that circumvents the requirement for IL-12 in the
induction of autoimmunity. These studies illustrate how different TLR stimuli have an impact on DC function and the
induction of immunity.
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Introduction

Since the discovery of toll-like receptors (TLRs), we have come

to appreciate their crucial role in the induction of adaptive

immunity against pathogens. In response to microbes, the

engagement of pathogen associated molecular patterns by TLRs

initiates a complex process of antigen presenting cell (APC)

maturation and pro-inflammatory cytokine production [1,2].

These intricately coordinated cellular processes are instrumental

to the functional differentiation of pathogen-specific T cells.

Although it is suggested that stimulation via different TLRs is

sufficient to promote distinct immune responses, very little is

known about how this program is set by mature DCs. This issue is

particularly difficult to dissect in vivo, since it’s not possible to

directly compare stepwise events that occur upon bacterial versus

viral infections.

Previous studies have shown that the maturation of DCs is a key

event that promotes autoimmunity in a variety of models [3,4,5].

Evidence indicates that, TLR3 and TLR7 stimulation are critical

for the activation and recruitment of autoreactive CD8+ T cells

and subsequent destruction of pancreatic islet b cells [6].

Activation of APCs via TLR4 or TLR9 can also disrupt self-

tolerance and result in the induction of EAE [7]. Likewise, TLR3,

TLR4 and TLR9 appear to play a critical role in the development

of autoimmune myocarditis [8,9]. While infection is a well

recognized trigger of autoimmunity, recent studies suggest that

endogenous TLR ligands expand TLR signaling capacity and may

therefore play a role in autoimmune disorders including those

arising from sterile inflammation [10].

Stimulation of different PRR has the potential to induce a

particular cocktail of pro-inflammatory cytokines. A given cytokine

milieu may then direct the initiation of distinct adaptive immune

responses. Hirschfeld et al. along with subsequent studies shed

light on the cytokine specificity of TLR2 and TLR4 and its impact

on T helper cell differentiation [11,12]. Following TLR4

engagement by lipopolysaccharide (LPS), murine macrophages

produce large amounts of tumor necrosis factor alpha (TNFa),

interleukin (IL)-1b, IL-12 and IP-10 which selectively induced a

Th1 response. In contrast, peptidoglycan (PGN) engagement of

TLR2 induces moderate production of TNFa and IL-1b, without

IL-12 and IP-10, biasing toward a Th2 response [11,12,13].

Evidence suggests that differential adaptor engagement and

downstream signaling by different TLRs can contribute to the

production of a given cytokine milieu. For instance, TLR3 and

TLR4 can signal via TRIF and activate IRF3 dependent

production of IFNb [14,15]. TLR sensors of nucleic acids,

TLR3, TLR7, TLR8 and TLR9, have the ability of producing

both IFNa and IFNb via IRF3 and IRF7 activation [15,16]. In

addition to differential adaptor engagement and downstream

signaling, qualitative parameters of the TLR ligand interaction

itself may contribute to the induction of certain cytokines, as in the

case of TLR9 signaling where distinct endosomal trafficking of A
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type but not B type CpG result in IRF-7 and IFNa production

[17,18].

One key cytokine that is produced upon DC maturation is the

pro-inflammatory cytokine IL-12 [19]. IL-12, a heterodimeric

cytokine consisting of the IL-12p35 and IL-12p40 subunits, is

readily produced by stimuli such as double stranded RNA, LPS,

flagellin, single stranded RNA and bacterial DNA [20]. Although

evidence suggests that IL-12 plays an important role and has been

referred to as signal 3, after the TCR induced signal 1 and

costimulatory signal 2 [21]. The role of IL-12 in the induction of

adaptive immune responses remain controversial [22]. In addition

to playing a significant role in the induction of Th1 responses, IL-

12 also the functional maturation of cytotoxic T lymphocytes

(CTLs) by augmenting proliferation, survival and generation of

effector molecules such as perforin and granzymes [23]. Studies

have also identified IL-12’s role in modulating lymphocyte

trafficking by modulating P-SGL1 expression [24].

Given IL-12’s involvement in promoting multiple facets of T

cell immunity, it is believed to be a key mediator of autoimmunity

and has been widely used as a marker for DC activation in cancer

immunotherapy [25,26]. Indeed, studies in several murine

experimental models and clinical settings also point to IL-12

playing an important role in the development organ specific

autoimmunity. Analysis in autoimmune prone murine strains

demonstrated that predisposition to autoimmunity may be

attributed to enhanced IL-12 production by APCs due to

alterations in the induction of NF-kB [27,28]. In an autoimmune

myocarditis model, IL-12 facilitates the differentiation of patho-

genic CD8 T cell effectors [29]. In the non-obese diabetic (NOD)

model, the administration of IL-12 or ablation of IL-12 mediated

Stat4 signaling can markedly accelerate or completely prevent the

onset of diabetes respectively [30,31]. Furthermore, blocking IL-

12 in patients with active Crohn disease, which is commonly

associated with increased production of IL-12 by APCs, can

induce stable remission [32].

IL-12’s impact on the development of organ specific autoim-

munity is however not decidedly pathogenic across all experimen-

tal settings. In some models, IL-12 appears non-pathogenic or

even protective [33,34]. Complicating the interpretation of these

data is the discovery of the anti-inflammatory effects of closely

related cytokine IL-35, which has redundant usage of the IL-

12p35 subunit [35]. One potential contributing factor to IL-12’s

divergent role in the pathogenesis of autoimmune disorders may

be related to the different molecular mechanisms that are

necessary to initiate different autoimmune diseases. It is possible

that in certain models of autoimmunity, the induction of disease

depends on certain cytokines induced by different PRR ligands.

The current study investigated whether different APC matura-

tion stimuli influenced the requirement for IL-12 in the induction of

a CD8 T cell mediated autoimmune response in vivo. In this report,

we used the previously characterized RIP-gp transgenic model,

where the lymphocytic choriomeningitis virus glycoprotein

(LCMV-GP) is expressed in the pancreatic islet b cells [36]. In

this model, T cells specific for the LCMV-GP remain ignorant

towards the LCMV-GP expressed in the pancreas under the steady

state. Upon activation, these autoreactive CD8+ T cells infiltrate the

pancreatic islets and mediate the destruction of the GP+ b-cells,

resulting in diabetes. Recent work has shown an alternate way to

activate endogenous GP-specific T cells using mature bone marrow

derived dendritic cells (BMDCs). We have compared the ability of

Poly I:C and LPS to mature DCs since TLR3 acts via the adapter

TRIF, while TLR4 uses both TRIF and MyD88. By maturing WT

or IL-12 deficient BMDCs with Poly I:C or LPS and pulsing mature

DCs with GP peptides, the impact of TLR3 or TLR4 stimuli on the

requirement for IL-12 in breaking tolerance and inducing

autoimmunity can be evaluated. Unexpectedly our studies showed

that autoimmunity induced with Poly I:C matured DCs is IL-12

independent, whereas IL-12 was essential for the induction of

autoimmunity using LPS matured DCs. Our analysis also showed

that Poly I:C stimulated DCs produce high amounts of IFNa,

compared with LPS stimulated DCs. Accordingly, IFNa given

together with LPS stimulated DCs was able to induce autoimmunity

in the absence of IL-12. Therefore, IFNa can overcome the

requirement for IL-12 in the induction of T cell mediated pathology

elicited by LPS-matured DCs. These studies clearly demonstrate

that different TLR matured DCs require different cytokines to elicit

a functional immunopathological adaptive immune response. These

observations have important implications for controlling tissue

specific autoimmunity and anti-tumor immunity.

Results

TLR induced DC maturation programs the requirement
for IL-12 in the induction of autoimmunity

We first explored whether the p40 subunit of IL-12 plays an

obligatory role in the induction of autoimmunity in our model.

RIP-gp/p402/2 mice were generated and infected with LCMV

and blood glucose was monitored for 3 weeks. Approximately 8 to

10 days after LCMV infection, all LCMV-infected RIP-gp/

p402/2 mice were diabetic. There was no significant difference

in the kinetics or incidence of disease in comparison with LCMV-

infected RIP-gp/p40+/+ mice (Figure 1A). Therefore, the p40

subunit of IL-12 does not appear to play an essential role in virus

induced autoimmunity.

We further evaluated the role of the p40 subunit using an

alternate method to induce autoimmunity. BMDCs were matured

using Poly I:C or LPS, then pulsed with both class I and class II

LCMV-GP peptides (gp33, gp276, and gp61 peptides) and given

i.v. to RIP-gp transgenic mice. Poly I:C matured p402/2

BMDCs were as effective as wild type BMDCs in inducing

diabetes (Figure 1B). However, the treatment of RIP-gp/p402/2

mice with LPS matured p402/2BMDCs showed a reduced

incidence of diabetes, in contrast to the treatment of RIP-gp/

p40+/+ mice with LPS-matured p40+/+ BMDCs (Figure 1C).

The induction of diabetes using this DC based model is dependent

upon CD8 T cells (Dissanayake D. unpublished). Therefore, the

absolute requirement for the p40 subunit of IL-12 is dependent

upon the stimuli that triggered DC maturation.

Since activated B cells, macrophages, and neutrophils express

p40 [19] it remains possible that the requirement for p40 in the

induction diabetes may reflect a defect in B cell, macrophage, or

neutrophil functions. To determine whether the ability of the DC

alone to produce p40 could influence diabetes induction, we

treated RIP-gp/p40+/+ mice with LPS matured p402/2

BMDCs or conversely treated RIP-gp/p402/2 mice with LPS

matured p40+/+ BMDCs (Figure 1D). RIP-gp/p402/2 mice

treated with LPS matured p40+/+ BMDCs developed diabetes,

but not vice versa clearly demonstrating that p40 production is

required by LPS matured DCs to induce CD8 mediated immune

pathology.

Studies have shown that the IL-12p40 subunit can also

heterodimerize with the p19 subunit to form IL-23 [37]. IL-23

plays an important pathogenic role in several autoimmune models

via the induction and maintenance of Th17 cells [33,34]. To

determine whether the lack of diabetes induction can be attributed

to the lack of IL-23, we treated RIP-gp mice with LPS matured

p352/2 BMDCs or p192/2 BMDCs. Fifty percent of RIP-gp

mice treated with LPS matured p192/2 BMDCs developed

Cytokines’ Context Dependent Role in Autoimmunity
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diabetes, unlike the mice given LPS matured p352/2 BMDCs,

indicating that the production of IL-12 by DCs is critically

important for diabetes induction (Figure 1E). Together, our data

demonstrate that the different pathogen-related stimuli define the

requirement for IL-12 in the induction of autoimmunity.

Specifically, IL-12 production by DCs plays a critical role in

diabetes induction when DCs are matured with LPS, but not with

Poly I:C treatment or LCMV infection.

Reduced T cell infiltration in mice treated with LPS
matured DCs

To gain insights into the mechanism through which LPS

matured DCs have a limited capacity to induce diabetes, the

pancreas was evaluated by immunohistochemistry. Five days after

RIP-GP mice were given WT or p402/2 LPS matured DCs, the

pancreas was taken and stained for CD8 T cell infiltration

(Figure 2). RIP-GP mice that were given LPS treated p402/2

Figure 1. APC stimulation confers differential requirement of IL-12 in the induction of autoimmunity. (A) Diabetes incidence in RIP-gp/
p40+/+ (solid circle) and RIP-gp/p402/2 (solid square) mice that were infected with LCMV-WE on day 0. Results are from 9 mice per group, 2
independent experiments. (B, C) Diabetes incidence in RIP-gp/p40+/+ (open circle) and RIP-gp/p402/2 (open triangle) mice treated with p40+/+ and
p402/2 BMDCs respectively, pulsed with peptides derived from LCMV-GP and stimulated with (B) LPS or (C) Poly I:C. (D) Diabetes incidence in RIP-
gp/p40+/+ (solid square) and RIP-gp/p402/2 (solid diamond) mice treated with p402/2 and p40+/+ BMDCs respectively, pulsed with peptides
derived from LCMV-GP and stimulated with LPS. (E) Diabetes incidence in RIP-gp mice treated with IL-12p352/2 (open diamond) and IL-12p192/2
(open square) BMDCs pulsed with peptides derived from LCMV-GP and stimulated with LPS. In each experiment, non-peptide pulsed DCs were
included as negative controls (Cross). Results in (B) to (E) are from 7 to 11 mice per group, 2 independent experiments. A test of statistical significance
of p,0.05 by the Mantel-Cox Test and Gehan-Breslow-Wilcoxon Test is denoted with * in (B), (D) and (E).
doi:10.1371/journal.pone.0023940.g001
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DCs showed reduced CD8+ T cell inflammation in the islets

which correlated with a reduced incidence of diabetes. A series of

experiments were done to evaluate why there may be reduced

CD8 inflammation.

Induction of T cell responses in the absence of p40
IL-12 has previously been described to be important for T cell

survival and the induction of effector functions [38]. Therefore, we

examined the impact of IL-12 on LCMV-GP specific T cell

responses. CFSE labeled P14 T cells specific for gp33 peptide in

the context of H-2b [39] were stimulated with gp33 peptide pulsed,

LPS or Poly I:C matured p40+/+ and p402/2 BMDCs for 3

days in vitro. In the absence of IL-12 secretion by DCs, antigen-

specific T cell proliferation and upregulation of the activation

marker CD44 was unaffected (Figure 3A). Furthermore, the lack

of IL-12 did not enhance T cell apoptosis since the proportion of

CD8 T cells that were CFSE-7AAD+ were comparable between

co-cultures with p40+/+ and p402/2 BMDCs under all

stimulation conditions (Figure 3B).

To determine whether T cell functional maturation was

impaired in the absence of IL-12, we evaluated cytotoxic activity

in DC primed mice. C57BL/6 mice were treated with LPS or Poly

I:C stimulated p40+/+ and p402/2 BMDCs pulsed with gp33

peptide. gp33 specific cytolytic activity was assessed in vivo on day 5

by quantifying the ratio of gp33 peptide pulsed targets to AV

peptide pulsed control target cells remaining in the spleen of

primed C57BL/6 mice. C57BL/6 mice given Poly I:C stimulated

p402/2 BMDCs showed gp33-specific cytolytic activity compa-

rable to C57BL/6 mice treated with Poly I:C stimulated p40+/+
BMDCs (Figure 3C). Interestingly, C57BL/6 mice given LPS

stimulated p402/2 BMDCs had higher gp33 specific cytolytic

activity compared with C57BL/6 mice treated with LPS

stimulated p40+/+ BMDCs (Figure 3C). Therefore changes in

CD8+ T cell activation, function or survival was unlikely to

account for differences observed in the infiltration of the pancreas

of mice treated with LPS matured p402/2 DCs.

Evaluating DC cytokine production in the absence of p40
Studies have shown that the induction of pro-inflammatory

mediators by DCs plays a critical role in promoting the maturation

and homing of T cells [4]. To determine whether the induction of

Figure 2. Limited CD8 infiltration in mice treated with LPS
matured DCs. Degree of CD8+ islet infiltration in RIP-gp mice treated
with LPS stimulated peptide-pulsed p40+/+ or p402/2 BMDCs. Results
are from a minimum of 5 mice per group, 100 islets per group from 2
independent experiments.
doi:10.1371/journal.pone.0023940.g002

Figure 3. IL-12 is not required for CD8 T cell proliferation,
survival, activation and CTL differentiation. (A, B) CFSE-labeled
P14 transgenic T cells were cultured in media alone or co-cultured with
either p40+/+ or p402/2 BMDCs stimulated with LPS or Poly I:C and
pre-pulsed with gp33 peptides. Cultures were assessed by flow
cytometry 3 days later. Representative plots of CFSE dilution, CD44
(A) and 7AAD (B) staining on gated CD8+ cell populations and the
percentages of cells in each quadrant are displayed. Results are
representative of 3 independent experiments of 2–3 mice per group.
(C) In vivo CTL activity of C57BL/6 mice treated with PBS (naı̈ve control)
or administered with p40+/+ and p402/2 BMDCs pulsed with gp33
peptide and stimulated with LPS was assessed on day 5 by flow
cytometry analysis of the remaining ratio of gp33 peptide pulsed
splenocytes to negative control AV peptide pulsed splenocytes given
i.v. 4 hours prior. Results are representative of 2 independent
experiments of 3–5 mice per group. A test of statistical significance of
p,0.05 by the Student T-Test is denoted with *.
doi:10.1371/journal.pone.0023940.g003
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autoimmunity by LPS or Poly I:C matured DCs was linked to the

production of different cytokines, we compared the cytokine

production from p40+/+ and p402/2 BMDC’s. 12 hours after

stimulation with LPS, p40+/+ BMDCs exhibit robust production

of IL-12 (Figure 4A). Although Poly I:C induced IL-12 production,

the response is clearly less than that observed after LPS

stimulation. Notably, the induction of intracellular levels of TNFa
was similar upon LPS versus Poly I:C stimulation. Therefore IL-12

is differentially induced in LPS matured DCs compared with Poly

I:C maturation, and IL-12 was essential for the induction of

autoimmunity in our model after LPS -induced DC maturation.

Cytokine production was also evaluated in the supernatant from

these cultures using a cytometric bead assay. p40+/+ and p402/

2 BMDCs stimulated with LPS or Poly I:C showed an

approximate 10,000 fold and 1,000 fold increase in the production

of IL-6 compared to unstimulated control cultures respectively,

but revealed no significant difference in the production of IL-6 in

the absence of p40 (Figure 4B). P40+/+ and p402/2 BMDCs

stimulated with LPS and Poly I:C induced an approximate 200

fold and 20 fold increase in the production of TNFa respectively

(Figure 4C). In the absence of IL-12, LPS stimulated p402/2

BMDCs had a slight reduction in TNFa production detectable by

the cytometric bead assay that was not observed by intracellular

cytokine staining (Figure 4C and A, T-test p,0.05). No difference

in TNFa production was observed between poly I:C stimulated

WT and p402/2 DCs. We also examined the production of the

anti-inflammatory cytokine IL-10 and chemotactic factor MCP-1

(data not shown) but did not find a significance difference in

production with either stimulation conditions in the presence or

absence of IL-12. Similar to observations by others, there appears

to be a qualitative difference in the ability of LPS and Poly I:C to

induce IL-10 production, as only LPS stimulation induced

significant IL-10 production (Figure 4D) [40]. Although these

studies were done to examine whether the absence of p40 would

have a negative impact on cytokine production, we found that the

intrinsic ability of LPS versus Poly I:C to stimulate cytokines had

more influence on the levels of cytokines that were produced, than

the absence of p40.

IFNa can promote autoimmunity in the absence of IL-12
Since the absence of p40 did not result in a profound reduction

in cytokine secretion by BMDCs, we decided to evaluate whether

different levels of cytokines were made upon LPS versus Poly I:C

stimulation of BMDCs. It is possible that cytokines that are

produced by DCs after Poly I:C stimulation, are able to bypass the

requirement for IL-12. One significant qualitative difference noted

Figure 4. Cytokine profiles of BMDCs remain largely unaltered in the absence of IL-12. (A) Expression of IL-12 and TNFa assessed by
intracellular cytokine staining. p40+/+ and p402/2 BMDCs were stimulated with LPS, PolyI:C or left unstimulated for 12 hours and assessed by flow
cytometry. Representative IL-12 and TNFa profiles on gated CD11c+CD11b+ cell populations are presented with p40+/+ shown in blue solid lines and
p402/2 shown in blue dashed lines. Isotype controls for p40+/+ and p402/2 are displayed in red solid and dashed lines respectively. Results are
representative of 3 independent experiments of 2–3 mice per group. (B, C, D) Cultured supernatants of p40+/+ and p402/2 BMDCs stimulated with
LPS, PolyI:C or left unstimulated for overnight were assessed by Cytometric Bead Array. Results are from 2 independent experiments with a minimum
of 6 mice per treatment group. A test of statistical significance of p,0.05 by the Student T-Test is denoted with *.
doi:10.1371/journal.pone.0023940.g004
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in the literature between TLR4 and TLR3 stimulation is the

robust induction of IFNa by TLR3 [41]. Considering IFNa has

been described to negatively regulate IL-12 production [42] and

our findings that diabetes induction is independent of IL-12 when

autoreactive T cells are activated when IFNa is significantly

represented in the cytokine milieu (with LCMV infection or Poly

I:C stimulation), the possibility arises that IFNa induction is

critical and may overcome the requirement for IL-12 in LPS

matured DCs. Indeed, in characterizing the IFNa response in our

model, we observed robust production of IFNa, 12 hours after

stimulating BMDCs with Poly I:C but not LPS (Figure 5A).

However, we found no evidence of reciprocal co-regulation of

IFNa by IL-12 as IFNa production was not significantly enhanced

in the absence of IL-12. Therefore, it is clear that Poly I:C

stimulation leads to high levels of IFNa production that is

independent of p40 in our culture conditions, and thus IFNa may

have a critical role in promoting autoimmunity in this model.

To investigate whether IFNa can overcome the requirement for

IL-12 in LPS matured DCs, RIP-gp mice were given LPS matured

p402/2 DCs with various combinations of IFNa. IFNa was

included in BMDC cultures to promote DC maturation and/or

administered in vivo 3 days after DC treatment, to evaluate the

impact on the induction of diabetes. The following combinations

were tested: LPS matured p402/2DCs, LPS plus IFNa matured

p402/2DCs, LPS matured p402/2DCs with IFNa treatment 3

days later, or LPS plus IFNa matured p402/2DCs with IFNa
treatment 3 days later (Figure 5B). As in previous experiments,

RIP-gp/p40+/+ hosts given LPS matured p402/2DCs did not

lead to the induction of autoimmunity. Although nearly a quarter

of RIP-gp/p40+/+ hosts receiving LPS plus IFNa matured

p402/2DCs became diabetic, the effect of IFNa on diabetes

induction had the most impact when RIP-gp/p40+/+ mice were

given IFNa 3 days after treatment with LPS matured or LPS plus

IFNa matured p402/2DC (Figure 5B). Treatment of RIP/

p40+/+ mice with IFNa alone was not sufficient to induce

diabetes. These results suggest that IFNa is a critical cytokine that

can circumvent the requirement for IL-12 and therefore is a key

mediator of autoimmune pathology in the absence of IL-12.

Furthermore, our results suggest that the effects of IFNa’s may be

mediated by modifying the host’s T cells or target organ in

addition to directly enhancing the immunostimulatory activities of

IL-12 deficient DCs.

IFNa has previously been described to enhance the effector

functions and survival of CD8 T cells [23,38,43,44]. To assess

whether IFNa circumvents the LPS specific requirement for IL-12

by enhancing host’s T cell responses, we examined the in vivo CTL

activity of p40+/+ C57BL/6 primed with LPS plus IFNa
stimulated peptide pulsed p402/2 BMDCs or LPS stimulated

p402/2 BMDCs followed by the administration of exogenous

IFNa to the host 3 days later. However, we did not observe a

change in gp33 specific CTL activity in either treatment condition

(data not shown). Furthermore, in lethally irradiated RIP-gp mice

reconstituted with IFNaR2/2 bone marrow, treatment with LPS

stimulated p402/2 BMDCs followed by the administration of

IFNa 3 days later induced autoimmunity with similar kinetics and

incidence of disease compared to RIP-GP/p40+/+ mice recon-

stituted with IFNaR+/+ bone marrow (Figure 5C). These data

indicate that exogenous IFNa does not act directly on host T cells

or on secondary events involving DC populations (such as cross

priming) and acts by promoting inflammation.

To determine whether IFNa plays a role in promoting an

inflammatory response in the absence of IL-12, RIP-gp hosts were

given LPS matured p40+/+ BMDCs or LPS matured p402/2

BMDCs and CD8+ T cell infiltration in the pancreas was

Figure 5. Exogenous IFNa can overcome the absence of DC-
derived IL-12 in the induction of autoimmunity. (A) IFNa
production was measured in the supernatant from unstimulated, LPS
stimulated and PolyI:C stimulated p40+/+ and p402/2 BMDCs by ELISA.
Results are from 4 mice per treatment group and representative of 3
independent experiments. (B) Diabetes incidence in RIP-gp mice treated
with IFNa alone (open diamond), peptide-pulsed p402/2 BMDCs
stimulated with LPS (open square) or peptide-pulsed p402/2 BMDCs
stimulated with LPS plus IFNa (open triangle). Injection of 10000 u of
IFNa to RIP-gp mice 3 days after treatment with LPS stimulated peptide-
pulsed 402/2 BMDCs or LPS and IFNa stimulated peptide-pulsed p402/
2 BMDCs (open circle and open upside-down triangle respectively).
(C) Diabetes incidence in IFNaR+/+/RIP-gp bone marrow chimeras
treated with LPS stimulated p40+/+ BMDCs (open circle) and IFNaR2/
2/RIP-gp chimeras treated with LPS stimulated p402/2 BMDCs (open
square) or an additional i.v. injection of IFNa 3 days later (open triangle). A
test of statistical significance of p,0.05 against RIP-gp mice (B) and
IFNaR2/2/RIP-gp mice (C) treated with p402/2 BMDCs stimulated with
LPS is denoted with *. Results shown are from a minimum of 6 mice per
group from 2 independent experiments.
doi:10.1371/journal.pone.0023940.g005
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examined five days post-treatment by immunohistochemistry. In

the absence of IL-12, RIP-gp mice treated with LPS matured

p402/2 BMDCs have clearly reduced CD8 T cell infiltration in

the pancreatic islets (Figure 2, 6). The CD8 T cell infiltration was

both antigen specific and dependent on the activation of BMDCs

as infiltration was not observed in C57BL/6 mice treated with

LPS matured p40+/+ BMDCs (no peptide) or in RIP-gp mice

given immature peptide pulsed p402/2 or p40+/+ BMDCs

(Figure 6). Furthermore, when RIP-gp mice were treated with

exogenous IFNa 3 days after injection with LPS matured p402/

2 BMDCs, autoreactive CD8 T cell infiltration was enhanced and

comparable to that observed in RIP-gp mice injected with LPS

matured p40+/+ BMDCs (Figure 6). Quantitative analysis of the

degree of infiltration showed that that percent of islets with heavy

infiltration is similar to mice immunized with WT BMDCs

(Figure 6B). Together, our results indicate that IFNa can

compensate for IL-12’s important role in diabetes induced by

LPS matured DCs by promoting CD8+ T cell infiltration.

Discussion

With this model, we can evaluate the impact of different TLR

signals on the induction of adaptive immunity in vivo, using the

same population of DCs and the same defined antigens. We have

uncovered novel insights for how different TLR maturation signals

influence the induction of autoimmunity. We demonstrated that

the transfer of TLR3 or TLR4 matured DCs presenting self-

antigens promotes CD8 T cell mediated autoimmune responses

and overt organ specific autoimmunity in vivo. Our findings add to

the growing body of evidence implicating a wide breadth of TLRs

in the pathogenesis of autoimmune disorders and support the

rationale behind targeting TLRs to promote tumor specific

immune responses [45]. Our investigation also revealed previously

unappreciated dynamics between TLR signaling and their pro-

inflammatory mediators in the pathogenesis of autoimmunity.

Specifically, our findings highlight the crucial influence of the type

of stimuli used to promote DC maturation and the differential

requirement for IL-12 in the pathogenesis of autoimmunity in vivo.

Importance of IL-12 in the induction of autoimmunity is
dependent upon TLR stimulation

Within the context of the dialogue between APCs and naı̈ve T

cells, along with antigen and co-stimulation, IL-12 produced by

APCs is thought to play a crucial instructive role in determining

the cellular fate of naı̈ve T cells and has thus been coined the term

‘‘Signal 3’’ [23,38]. In contrast to this work, our study has shown

IL-12 surprisingly plays little role in mediating the proliferation,

activation or survival of CD8 T cells. Furthermore, IL-12 appears

to have minimal impact on the functional differentiation of CTLs

in vivo. Our findings suggest a rather surprisingly minimal

physiological role for IL-12 in these facets of CD8 T cell

functional maturation in vivo.

In spite of the normal induction of CTLs after stimulation in vivo

with p40 deficient DCs, TLR4 mediated induction of autoimmune

diabetes is completely abrogated in the absence of IL-12. An

examination of the severity of inflammation in the pancreatic b
islets cells indicated that IL-12 is an important component of the

inflammatory milieu induced by TLR4 signaling, and promotes

CD8 T cell inflammation. Previous studies have found IL-12 to be

a critical pathogenic factor in promoting local inflammation and

diabetes [46]. In addition, during the priming stage of naı̈ve T

cells, IL-12 may play a direct or indirect role, i.e. via regulating the

expression of co-stimulatory molecules, in modulating the

expression of homing and trafficking molecules by CD8 T cells

[24]. As our experiments are done in p40 sufficient RIP-gp hosts,

our findings suggest DC-produced IL-12 plays an important role

in programming CD8 T cell trafficking during early encounter

with cognate antigen bearing DCs.

In stark contrast to the importance of IL-12 in TLR4 mediated

DC maturation and subsequent induction of diabetes, IL-12 was

not required in TLR3 mediated DC induction of autoimmunity.

IL-12 was not an essential component of the cytokine milieu

induced after TLR3- induced DC maturation and was not

required to facilitate CD8 T cell proliferation, survival, functional

maturation and homing to target tissues. The emerging paradigm

from studies with infectious agents suggests that IL-12 plays a

pivotal role in promoting T cell responses to bacterial and parasitic

infections, while it is not required in some viral infections

[47,48,49,50]. Our model provides a direct way to evaluate the

differences in bacterial induced DC maturation (LPS) versus virus

induced DC maturation (Poly I:C). It is not possible to directly

compare the induction of immunity by various pathogens because

they may have different inherent ways to mature the DC in vivo.

Furthermore, these pathogens will present a multitude of antigens

that are presented in different contexts and different doses. Using

our model, we can directly compare the in vivo consequence of LPS

versus Poly I:C mature DCs using the same antigens. Our data

directly demonstrate that IL-12 is required for the induction of

autoimmunity using LPS matured DCs but not Poly I:C matured

DCs, and support the hypothesis that IL-12 is required for

bacterial but not viral infections.

Predominant role for IFNa in promoting tissue specific T
cell responses

In order to explain why TLR 3 was not dependent upon IL-12

producing DCs to induce CD8+ T cell mediated pathology, we

hypothesized that other components of the inflammatory milieu

induced by TLR3 stimulation may functionally compensate for

IL-12. Although we found no conclusive evidence of compensatory

upregulation of proinflammatory mediators such as TNFa, IL-6

and MCP-1, or downregulation of anti-inflammatory cytokines

such as IL-10, we detected a clear quantitative difference in IFNa
production between TLR3 and TLR4 stimulated BMDCs.

Previous studies have suggested that there may be functional

redundancy between IL-12 and IFNa/b signaling in facilitating T

cell responses against some viral infections [51]. Other studies

have shown that IFNa but not IL-12 p40 subunit is critical for the

induction of CD4+ Th1 responses after systemic administration of

Poly I:C [52]. Using this model, our results indicate that in the

absence of IL-12, IFNa is a critical pathogenic mediator of

autoimmunity in vivo.

In contrast with previous studies which have shown IFNa
directly enhances T cell survival and effector functions

[23,38,43,44], IFNa does not act directly on T cells to mediate

CD8 T cell mediated autoimmune responses in our model

(Figure 5C). Neither did we find evidence of enhanced CTL

activity in mice treated with exogenous IFNa. In SLE patients, the

heightened level of IFNa in their sera is thought to contribute to

the breakdown of peripheral tolerance via the induction of DC

differentiation [53,54]. In contrast, studies have shown that DC

treatment with proinflammatory cytokines are not sufficient to

promote functional T helper immunity [55], while other studies

have shown that Poly I:C treatment can promote autoimmunity,

only when islet cells are engineered to express CD80 [56]. Our

results suggest IL-12 and IFNa both act to promote CD8 T cell

trafficking and local inflammation to the target organ. This is

supported by previous observations of IFNa’s critical role in

autoimmunity by promoting inflammation and upregulating
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MHC class I molecules on the target tissues [6,57]. It is likely that

IFNa influences immunity in multiple ways in different models

because of the variety of ways it has been shown to impact the

immune response.

Although we have not examined the relative requirements for

IFNa for the induction of diabetes in this model by performing the

reciprocal experiments with IFNa deficient DCs matured in

different activation contexts, studies suggest that IFNa is likely a

required factor in the context of TLR activation associated with

viral infections [6,58]. However, the absolute requirement for

IFNa production by DCs matured with different TLR stimuli has

yet to be elucidated in our model.

Figure 6. Exogenous IFNa enhances CD8 infiltration. (A) Insulitis as assessed by immunohistochemistry of CD8 infiltrates (stained red) in
pancreas sections five days after treatment. Representative sections from RIP-gp mice treated with p40+/+ (bottom left panel), p402/2 (bottom
middle panel) peptide-pulsed BMDCs stimulated with LPS or p402/2 peptide-pulsed BMDCs stimulated with LPS with an additional i.v. injection of
IFNa (bottom right panel) are displayed. For controls, representative sections of RIP-gp mice treated with unstimulated peptide-pulsed p40+/+ (top
left panel) or p402/2 (top middle panel) BMDCs and C57BL/6 mice treated with LPS stimulated peptide-pulsed p402/2 BMDCs (top right panel) are
shown. (B) Quantiation of CD8 infiltration, with the first 2 columns represented in figure 2 but reproduced here for comparison. Results are
representative of a minimum of 5 mice per group, 100 islets per group from 2 independent experiments.
doi:10.1371/journal.pone.0023940.g006
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Perspectives
In the classical paradigm of DC-T cell interaction, DCs exist in

2 basic functional states, immature and mature. Naı̈ve T cells that

encounter antigen on immature DCs become tolerized while those

that encounter antigen on mature DCs become activated.

However, current evidence extends this notion and suggests that

DCs exist in ‘states’ other than simply immature or mature and

that these states can be modified by other factors or in some cases

other subsets of cells [59,60,61,62]. One would predict that

maturation with different pattern recognition motifs should induce

a different type of DC and a corresponding pathogen related

immune response. Our findings begin to unravel some of these

intricacies, and using the same peptides and same DC subset, show

that LPS matured DCs are functionally different from Poly I:C

matured DCs in their ability to induce autoimmunity in vivo.

Furthermore, our studies suggest that IL-12 may not be an

appropriate surrogate marker for functionally mature DCs and the

relevance of using IL-12 to extrapolate immunogenicity of DC

vaccines in tumor immunotherapy should be reconsidered [63].

Furthermore, therapeutic targeting of IL-12 for treatment of

autoimmunity should also take into consideration the potential

importance of IFNa in disease progression.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations made by the Canadian Council for Animal

Care. The protocol was approved by the Animal Care Committee

at the PMH/OCI institute, protocol number 929.

Mice and diabetes monitoring
All mice used in the experiments are on the C57BL/6

background. Wild type C57BL/6, p352/2 and p402/2 mice

were purchased from the Jackson laboratory [64,65]. RIP-gp and

P14 TCR transgenic mice [36,39] were maintained in our animal

facility according to institutional guidelines. P192/2 and

IFNaR2/2 mice were kind gifts from N. Ghilardi and D.

Pinschewer [66,67]. Genotyping for all mice were performed by

PCR. Diabetes induction was monitored by blood glucose

measurements prior to treatment and then 2–3 times per week

after treatment. Blood glucose levels were measured using Accu-

Chek III glucometers and Chemstrips (Roche).

LCMV infection
LCMV WE strain was originally obtained from F. Lehmann-

Grube [68] and grown on L929 cells and titrated as previously

described [69]. RIP-gp/p40+/+ and RIP-gp/p402/2 mice were

infected with 3000 PFU of LCMV WE and monitored for

alterations in blood glucose.

BMDC culture
Bone marrow was extracted from the femur and tibia passed

through a screen and washed in cold media. 26106 bone marrow

cells were resuspended in 10 ml of DC media (RPMI, 10% LPS

free FCS, b-mercaptoethanol, L-glutamine, 40 ng/ml GM-

CSF(PeproTech)) and cultured in 10 cm petri dishes at 37uC.

On day 3, 10 ml of DC media was added to the culture. On day 6

and 8, 10 ml of culture was removed, resuspended in 10 ml of

fresh DC media and added back to the culture. On day 9, BMDCs

were resuspended in DC media2 (ex GM-CSF) at 26106cell/ml,

re-plated in 24 well plates and stimulated with LPS (100 ng/ml),

Poly I:C (100 mg/ml), and/or IFNa (1000 u/ml). On day 10,

BMDCs were pulsed for 2 hours with gp33 peptide alone or gp33,

gp276 and gp61 peptides (1026 M) respectively, and washed prior

to use in in vitro proliferation assays or intravenous infusions into

treated mice. For intravenous infusions, 26106 BMDCs prepared

in 200 ml of sterile HBSS were given to each treated mouse. For in

vivo treatment, mice were infused with 10000 u of IFNa.

Flow cytometric analyses
BMDCs, cell cultures and single cell suspensions from spleens

were stained with antibodies specific for CD11c, CD11b, CD80,

CD86, MHCI CD8, CD44, TNF and IL-12p40/p70 flow-

cytometry antibodies (BD and eBioscience). Flow cytometry data

was acquired on FACSCanto (BD) and anaylzed with Flowjo

(Tree Star).

In vitro proliferation assay
Single cell suspensions were prepared from the spleen of P14

transgenic mice and CD8+ T cells were purified using CD8

negative sort kit (Miltenyi Biotech). Purified CD8+ T cells were

then labeled with CFSE (5-[and-6]-carboxyfluorescein diacetate,

succinimidyl ester). 16105 CFSE-labeled CD8+ T cells were co-

cultured with 26104 gp33 peptide pulsed BMDCs in 200 ml of

complete IMDM in 96 well round-bottom plates and incubated

for 3 days in a 37uC incubator.

CFSE (5-[and-6]-carboxyfluorescein diacetate,
succinimidyl ester) labeling

After washing single cell suspensions in serum-free RPMI 1640

(GIBCO BRL), cells were resuspended in serum-free media at 107

cells per 200 ml containing 10 mM CFSE (Molecular Probes). After

incubation for 15 minutes in 37uC incubator, cells were washed in

RPMI 1640 containing 10% FCS (Sigma-Aldrich).

In vivo CTL assay
RIP-gp mice were injected intravenously with 26106 gp33,

gp276 and gp61 peptide-pulsed, LPS/PolyI:C stimulated BMDCs.

5 days after the initial treatment, single cell suspensions from

spleens of C57BL/6 mice were pulsed with gp33 or AV peptide

(1026 M) and labeled with CFSE at 1.5 mM and 20 mM

respectively. 26107 each of gp33-pulsed and AV-pulsed CFSE-

labeled splenocytes were injected intravenously into each treated

RIP-gp mouse. 4 hours later, these mice were sacrificed and single

cell suspensions from their spleens were analyzed. The percent

specific lysis is calculated by dividing the number of CFSEHi cells

by the number of CFSELo cells.

Intracellular cytokine staining
Intracellular cytokine staining was performed using the BD

Cytofix/Cytoperm kit as per manufacturer’s instructions.

Cytometric bead array analysis
Media from BMDC cultures were collected after overnight

stimulation with LPS or Poly I:C. The CBA analysis was

performed using the BD CBA assay as per manufacturer’s

instructions.

Bone marrow chimeras
Bone marrow was extracted from IFNaR+/+ and IFNaR2/2

donor mice previously treated with CD4 and CD8 depleting

antibodies. 46106 bone marrow cells were transferred intrave-

nously into irradiated (9 Grays) sex-matched RIP-gp recipients,

and recipients were treated with BMDCs for analysis 6–13 weeks

after reconstitution.
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IFNa assay
Media from BMDC cultures were collected after a 12-hour

stimulation with LPS or Poly I:C and assayed with mouse IFN

Alpha ELISA kit from PBL Interferon Source, as per manufac-

turer’s instruction.

Immunohistochemistry
Immunohistochemistry were performed as previously described

[70].
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