
Calcineurin Inhibitor-Induced and Ras-Mediated
Overexpression of VEGF in Renal Cancer Cells Involves
mTOR through the Regulation of PRAS40
Aninda Basu1,2, Pallavi Banerjee1,2, Alan G. Contreras1,2, Evelyn Flynn1,2, Soumitro Pal1,2*

1 Division of Nephrology and Transplantation Research Center, Children’s Hospital, Boston, Massachusetts, United States of America, 2 Department of Pediatrics, Harvard

Medical School, Boston, Massachusetts, United States of America

Abstract

Malignancy is a major problem in patients treated with immunosuppressive agents. We have demonstrated that treatment
with calcineurin inhibitors (CNIs) can induce the activation of proto-oncogenic Ras, and may promote a rapid progression of
human renal cancer through the overexpression of vascular endothelial growth factor (VEGF). Interestingly, we found that
CNI-induced VEGF overexpression and cancer cell proliferation was inhibited by rapamycin treatment, indicating potential
involvement of the mammalian target of rapamycin (mTOR) pathway in this tumorigenic process. Here, we examined the
role of mTOR pathway in mediating CNI- and Ras-induced overexpression of VEGF in human renal cancer cells (786-0 and
Caki-1). We found that the knockdown of raptor (using siRNA) significantly decreased CNI-induced VEGF promoter activity
as observed by promoter-luciferase assay, suggesting the role of mTOR complex1 (mTORC1) in CNI-induced VEGF
transcription. It is known that mTOR becomes activated following phosphorylation of its negative regulator PRAS40, which
is a part of mTORC1. We observed that CNI treatment and activation of H-Ras (through transfection of an active H-Ras
plasmid) markedly increased the phosphorylation of PRAS40, and the transfection of cells using a dominant-negative
plasmid of Ras, significantly decreased PRAS40 phosphorylation. Protein kinase C (PKC)-f and PKC-d, which are critical
intermediary signaling molecules for CNI-induced tumorigenic pathway, formed complex with PRAS40; and we found that
the CNI treatment increased the complex formation between PRAS40 and PKC, particularly (PKC)-f. Inhibition of PKC activity
using pharmacological inhibitor markedly decreased H-Ras-induced phosphorylation of PRAS40. The overexpression of
PRAS40 in renal cancer cells significantly down-regulated CNI- and H-Ras-induced VEGF transcriptional activation. Finally, it
was observed that CNI treatment increased the expression of phosho-PRAS40 in renal tumor tissues in vivo. Together, the
phosphorylation of PRAS40 is critical for the activation of mTOR in CNI-induced VEGF overexpression and renal cancer
progression.
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Introduction

Recent improvements in immunosuppressive therapies have

significantly reduced the incidence of acute rejection of allografts,

and increased the survival of transplant patients [1,2]. However,

these agents may also contribute to higher rates of mortality due to

an increased risk of cancer [3,4,5,6]. It has been established that

cancer represents the second main cause of death in renal

transplant patients with normal function of the graft [7]. It has also

been shown that the transplant environment can accelerate

recurrence or progression of cancer [3,4,5]. Thus, therapeutic

targets need to be developed in order to prevent cancer

development in patients under immunosuppressive therapy.

The immunosuppressive agents are thought to compromise

immune surveillance mechanism(s) of tumor cells and/or

interfere with normal DNA repair mechanisms [4,5,8]. In

particular, calcineurin inhibitors (CNIs) are excellent immuno-

suppressive agents to inhibit allograft rejection; however they may

promote the growth of different tumors [9,10,11,12]. The

calcineurin complex consists of three subunits, the catalytic A,

the regulatory B, and calmodulin [13]. The cellular calcium

activates the catalytic subunit for its function as serine/threonine

phosphatase, resulting in the activation of the nuclear factor of

activated T cells (NFAT) family of transcription factors [14]. The

CNI cyclosporine (CsA) binds to cyclophylin, a cytoplasmic

protein, and the resultant complex binds to the regulatory B

subunit of calcineurin and prevents the activation of NFAT [15].

However, apart from inhibiting NFAT, the CNIs may also

regulate other signaling molecules playing important roles in

tumor growth [16,17]. Hojo et al. [9] showed that CsA promotes

cancer progression and metastasis by direct cellular effect(s)

through transforming growth factor-b (TGF-b) production, which

is independent of its effect on the immune system of the host.

Koehl et al. [18] reported that CsA treatment promotes the

development of post-transplantation cancer, which is highly

dependent on the process of tumor angiogenesis. Similarly, Guba

et al. [19] suggested that CsA treatment can induce the expression

of angiogenic cytokines.
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Vascular endothelial growth factor (VEGF) is one of the most

potent angiogenic cytokines that plays important role in tumor

growth [20,21]. We have recently demonstrated that the treatment

with CNIs induces overexpression of VEGF, and promotes a rapid

progression of human renal cancer [22]. CNI-induced VEGF

overexpression is regulated at both transcriptional and post-

transcriptional level [22,23]. We have also found that CNIs can

activate the proto-oncogenic H-Ras in human renal cancer cells

[24]; and we have shown that CNI-induced VEGF overexpression

is mediated through the activation of protein kinase C (PKC)-f
and PKC-d [22,23], which are potential downstream targets of

Ras [25].

In contrast to CNIs, the mammalian target of rapamycin

(mTOR) inhibitor rapamycin (RAPA) may have a completely

opposite effect in terms of tumor development [10,19,26]. The

transplant patients receiving RAPA treatment do not develop

cancer at the same rate as those receiving other immunosuppres-

sive agents such as CNIs [27,28]. It has been shown that RAPA

treatment may have an anti-angiogenic effect [19]. Interestingly,

we have recently demonstrated that RAPA treatment can

significantly inhibit CNI-induced VEGF mRNA stability [23],

and CNI-induced proliferation of human renal cancer cells [24].

These results clearly suggest a possible role of mTOR in CNI-

induced tumorigenic pathways. In support of these observations, it

has been reported that the Akt-mTOR pathway is required for

CNI-induced tumor growth [29]. In addition, both PKC-f and

PKC-d may activate the Akt-mTOR pathway [30,31,32,33].

The mTOR pathway plays a key role in cell survival, growth,

protein synthesis, cellular metabolism, and angiogenesis [34,35].

Alterations in the pathway regulating mTOR occur in many solid

malignancies, including kidney cancer [36,37,38]. mTOR, which

is constitutively activated in many cancers by deregulated

activation of oncogenes or loss of tumor suppressor genes,

functions as macromolecular complexes [39]. The mTOR

complex1 (mTORC1), containing raptor, is RAPA sensitive; while

the mTOR complex2 (mTORC2), containing rictor, is RAPA

insensitive [34,39]. It has recently been established that a proline-

rich Akt substrate of 40 kDa (PRAS40) can negatively regulate

mTOR activity [40,41]. Before getting phosphorylated by Akt,

PRAS40 binds to raptor and sequesters raptor from mTORC1;

this leads to the disruption of mTORC1 similar to the effect of

RAPA [40,42]. The interaction of PRAS40 with raptor competes

with the interaction of raptor with S6K1 and 4E-BP1 [42,43]. In

addition, this interaction of PRAS40 is very specific for the

mTORC1, as PRAS40 does not associate with or disrupt

mTORC2 [34].

In this study, we show that CNI-induced and Ras-PKC-

mediated VEGF overexpression can be channeled through the

mTORC1 signaling pathway, and this is mediated through the

regulation of PRAS40. We demonstrate that CNI treatment and

activation of H-Ras and PKC can lead to the phosphorylation of

PRAS40; and overexpression of PRAS40 leads to the down-

regulation of CNI- and Ras-induced VEGF transcriptional

activation. The results of our study suggest a novel cross-talk

among Ras, PKC and mTOR in regulating CNI-induced VEGF

overexpression.

Results

Involvement of the mTOR complex1 in Calcineurin
Inhibitor-Induced VEGF Overexpression in Human Renal
Cancer Cells

We have recently demonstrated that treatment with calcineurin

inhibitors (CNIs) can promote VEGF overexpression in human

renal cancer cells through both transcriptional and post-transcrip-

tional regulations [22,23]. We have also shown that CNI-induced

VEGF mRNA stability, and CNI-induced renal cancer cell

proliferation are markedly inhibited following treatment with the

mTOR inhibitor rapamycin (RAPA) [23,24]. Our findings clearly

indicated the possible role of mTOR in CNI-induced tumorigenic

pathways. Here, we first examined the role of mTOR in CNI-

induced VEGF transcriptional activation in human renal cancer

cells (786-0 and Caki-1). Cells were transfected with the VEGF

promoter-luciferase plasmid, and then treated with the CNI

cyclosporine (CsA) in absence or presence of RAPA. As shown in

Figure 1A, CsA treatment promoted VEGF transcriptional

activation in 786-0 cells, and RAPA treatment significantly

inhibited CsA-induced VEGF promoter activity. We found a

similar result (data not shown) in Caki-1 cells. Next, we also

observed that CsA treatment induced VEGF protein expression as

observed by Western blot analysis; and the treatment with RAPA

significantly inhibited CsA-induced VEGF expression (Figure 1B).

We next examined the role of mTOR complex1 (mTORC1) in

CNI-induced VEGF transcription. As discussed earlier, raptor is a

part of mTORC1 [34,39]. Here, we observed that the knockdown

of raptor using siRNA significantly downregulated CNI-induced

VEGF promoter activity (Figure 1C). The knockdown of raptor

(,70%) was confirmed by Western blot analysis (Figure 1C, right

panel). Together, these observations clearly suggest the involvement

of mTORC1 in CNI-induced VEGF overexpression in renal

cancer cells.

Treatment with CNI, and the Activation of H-Ras
Promotes Phosphorylation of PRAS40

We have recently shown that CNI treatment can induce

activation of H-Ras in renal cancer cells [24]. In a recent report

[44], it has been demonstrated that the activation of Ras can

promote mTOR signaling. As discussed earlier, PRAS40 acts as a

negative regulator of mTORC1, and inhibits its activity for the

downstream signaling events [34,40,41]. After phosphorylation,

PRAS40 gets disassociated from raptor of mTORC1, and thus

mTOR becomes activated. As our earlier experiment indicated

the involvement of raptor in CNI-induced VEGF transcription,

here we wished to evaluate if CNI treatment and activation of H-

Ras could regulate PRAS40 phosphorylation. First, we checked

the expression of phospho-PRAS40 in normal renal epithelial cells

(RPTEC), and in 786-0 and Caki-1 renal cancer cells. Through

Western blot analysis, we found that the expression of phospho-

PRAS40 was markedly higher in 786-0 and Caki-1 cells compared

with RPTEC (Figure 2A, upper panel); however, there was no

significant change in the expression of total PRAS40 in these cells

(Figure 2A, lower panel). This observation suggests that the mTOR

pathway is active in renal cancer cells.

We next determined the effect of CsA treatment on PRAS40

phosphorylation. 786-0 cells were treated with either increasing

concentrations of CsA or the vehicle alone; and the expression of

phospho-PRAS40 was examined by Western blot analysis. As

shown in Figure 2B, CsA treatment markedly increased the

expression level of phospho-PRAS40 compared with vehicle-

treated control (upper panel); however, there was no significant

change in the expression of total PRAS40 following CsA treatment

(lower panel).

Next, we sought to evaluate the effect of H-Ras activation on

PRAS40 phosphorylation. To this end, Caki-1 cells were

transfected with either increasing concentrations of the plasmid

expressing activated form of H-Ras, H-Ras(12V), or the empty

expression vector. Following transfection, the expression of

phospho-PRAS40 and total PRAS40 was measured. We found

CNI-Induced VEGF Expression and Role of PRAS40
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that the activation of H-Ras significantly increased the level of

phosho-PRAS40 compared with vector-transfected control

(Figure 2C, first panel); there was no significant change in total

PRAS40 following H-Ras activation (Figure 2C, second panel). The

overexpression of H-Ras(12V) in these cells was confirmed by

Western blot analysis (Figure 2C, third panel).

Finally, we checked the effect of the inhibition of endogenous Ras

on PRAS40 phosphorylation. The Caki-1 cells were transfected

either with the dominant-negative mutant of Ras, Ras(17N), or the

empty vector, and the expression of phospho-PRAS40 was

measured. As shown in Figure 2D, inhibition of Ras decreased

the expression of phospho-PRAS40 (upper panel); however, there was

no significant change in the expression of total PRAS40 (lower panel).

Together, these observations suggest that CNI treatment and

activation of the H-Ras pathway in human renal cancer cells can

induce mTOR through increased phosphorylation of PRAS40.

Figure 1. Role of mTORC1 in CNI-induced VEGF transcriptional activation. A, 786-0 cells were transfected with the 2.6-kb VEGF promoter-
luciferase construct (0.5 mg/well). After transfection, the cells were cultured for 12 hour, and then treated overnight (12 hour) with different
combinations of CsA (5.0 mg/ml) and RAPA (10.0 ng/ml) or vehicle alone (control). Following 24 hour of transfection, the cells were harvested, and
fold change in luciferase activity was calculated as the relative luciferase counts from each group of cells compared with that of cells treated with
vehicle alone. The data reflect three independent experiments. Columns, average of triplicate readings of two different samples; error bars, SD. B, 786-
0 cells were treated with different combinations of CsA (5.0 mg/ml) and RAPA (10.0 ng/ml) or vehicle alone (control) for 24 hour. Whole cell lysates
were prepared, and Western blot analysis was performed using anti-VEGF and anti-b-actin to quantitate the protein expression of VEGF and b-actin
respectively. The bar graph below the Western blot illustrates the relative expression of VEGF by densitometry, wherein the signals were standardized
to the expression of the internal control b-actin. Representative of three independent experiments. Columns, average of relative intensity of VEGF
expression from three different blots; bars, SD. C, 786-0 cells were transfected with either raptor siRNA (25 nM) or control siRNA. Following 24 hour of
siRNA transfection, cells were transfected with the 2.6-kb VEGF promoter-luciferase construct (0.5 mg/well). After 12 hour of plasmid transfection, the
cells were treated overnight (12 hour) with either CsA (5.0 mg/ml) or vehicle alone (control). The cells were harvested, and fold change in luciferase
activity was calculated as the relative luciferase counts from each group of cells compared with that of cells transfected with control siRNA and
treated with vehicle alone. The data reflect two independent experiments. Columns, average of triplicate readings of samples; error bars, SD. The
knockdown of raptor was confirmed by Western blot analysis after 48 hour of siRNA transfection (right panel). (A–B) *, p,0.01 compared with vehicle-
treated cells; **, p,0.01 compared with only CsA-treated cells. (C) *, p,0.01 compared with control siRNA-transfected and vehicle-treated cells; **,
p,0.05 compared with control siRNA-transfected and CsA-treated cells.
doi:10.1371/journal.pone.0023919.g001
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PKC Forms Complex with PRAS40, and can Induce Its
Phosphorylation

In our previous report [22], we have demonstrated that both

PKC-f and PKC-d are critical intermediary signaling molecules

for CNI-induced VEGF transcriptional activation; and these PKC

isoforms may serve as potential downstream targets of active Ras

[25]. Here, we sought to determine if PKC could regulate the

phosphorylation of PRAS40. First, we checked whether there was

any complex formation between PRAS40 and either PKC-f and

PKC-d in RPTEC and 786-0 cells under basal condition. By

immunoprecipitation, we observed that indeed both PKC-f and

PKC-d could make complex with PRAS40 (Figure 3A); however,

intensity of the complex was much stronger in cancer cells versus

normal renal epithelial cells. We next examined if CNI treatment

could modulate the complex formation between PRAS40 and

PKC-f and PKC-d in 786-0 cells. As shown in Figure 3B, the

treatment with CsA markedly increased the complex between

PRAS40 and PKC-f compared with vehicle-treated control;

however, there was no significant change (data not shown) in the

complex formation between PRAS40 and PKC-d.

Next, we tested if inhibition of PKC through the treatment of

pharmacological inhibitor could decrease the phosphorylation of

PRAS40. 786-0 cells were treated with either increasing

concentrations of calphostin C or the vehicle alone. Following

treatment, the expression of phospho-PRAS40 and total PRAS40

was measured by Western blot analysis. As shown in Figure 3C,

the treatment with calphostin C markedly decreased the level of

phosho-PRAS40 compared with vehicle-treated control (upper

panel); however, there was no significant change in the expression

of total PRAS40 (lower panel). Together, these observations suggest

that PKC can associate with PRAS40, and regulate its

phosphorylation. However, it cannot be concluded if there is a

direct complex formation between PKC and PRAS40, and

whether some other associated molecules are involved in PKC-

mediated PRAS40 phosphorylation.

Inhibition of PKC Down-Regulates H-Ras-Induced
Phosphorylation of PRAS40

In our earlier experiments, we have demonstrated that H-Ras

activation could induce PRAS40 phosphorylation. Here, we

wished to explore if the inhibition of PKC could down-regulate

H-Ras-induced phosphorylation of PRAS40 in renal cancer cells.

To this end, Caki-1 cells were transfected with either H-Ras(12V)

or the empty expression vector in absence or presence of the PKC

inhibitor calphostin C. Following transfection, the expression of

phospho-PRAS40 and total PRAS40 was measured. As shown in

Figure 2. CNI treatment and H-Ras activation increases the phosphorylation of PRAS40. A, The expression of phospho-PRAS40 and
PRAS40 was measured in whole cell lysates of RPTEC, 786-0, and Caki-1 by Western blot analysis using anti-phospho-PRAS40 and anti-PRAS40. B, 786-
0 cells were treated with different concentrations (1.0 and 5.0 mg/ml) of CsA or with vehicle alone (control) for 3 hour. Cells were lysed, and the
expression of phospho-PRAS40 and PRAS40 was measured by Western blot analysis. C, Caki-1 cells were transfected with either increasing
concentrations (0.1–1.0 mg/well) of H-Ras(12V) or empty expression vector (control) for 24 hour. Cells were lysed, and the expression of phospho-
PRAS40, PRAS40, Ras, and b-actin in cell lysates was measured by Western blot analysis. D, Caki-1 cells were transfected with either different
concentrations (0.5 and 1.0 mg/well) of the dominant-negative Ras(17N) or empty expression vector (control) for 24 hour. Cells were lysed, and the
expression of phospho-PRAS40, and PRAS40 was measured by Western blot analysis. (A–D) Representative of three independent experiments with
similar findings.
doi:10.1371/journal.pone.0023919.g002
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Figure 3D (upper panel), activation of H-Ras induced the

phosphorylation of PRAS40 compared with vector-transfected

control; and the inhibition of PKC significantly down-regulated H-

Ras-induced PRAS40 phosphorylation. There was no significant

change in the expression of total PRAS40 following H-Ras

activation and PKC inhibition (Figure 3D, lower panel). These

observations clearly suggest that the Ras-PKC pathway, which is

critical for CNI-induced tumorigenic signaling events, can

phosphorylate PRAS40, and may thus activate mTOR.

Overexpression of PRAS40 Inhibits CNI- and
H-Ras-Induced Transcriptional Activation of VEGF

Our previous experiments suggested that CNI-induced and

Ras-mediated signaling pathways could inactivate PRAS40

through its increased phosphorylation. Here, we first examined

if the overexpression of PRAS40 could inhibit CNI-induced

overexpression of VEGF in renal cancer cells. 786-0 cells were co-

transfected with the VEGF promoter-luciferase construct and

either PRAS40 overexpression plasmid or the empty expression

vector. Cells were treated with either CsA or the vehicle alone. As

shown in Figure 4A, CsA treatment increased VEGF transcrip-

tional activation compared with vehicle-treated control; and the

overexpression of PRAS40 significantly reduced CsA-induced

VEGF promoter activity. The overexpression of PRAS40 in

transfected cells was confirmed by Western blot analysis

(Figure 4A, lower panel).

Next, we determined if the overexpression of PRAS40 could

inhibit H-Ras-induced VEGF transcription. Caki-1 cells were co-

transfected with the VEGF promoter-luciferase construct and H-

Ras(12V) in absence or presence of the PRAS40 overexpression

plasmid. Control cells were transfected with empty expression

vectors. As shown in Figure 4B, activation of H-Ras increased

VEGF transcriptional activation compared with vector-transfected

cells; and the overexpression of PRAS40 significantly decreased H-

Ras-induced VEGF promoter activity. Together, these findings

suggest that CNI- and Ras-induced signaling events can promote

VEGF transcriptional activation in an mTOR-dependent pathway

through the regulation of PRAS40.

CNI Treatment Increases the Phosphorylation of PRAS40
in Renal Tumor Tissues in Vivo

We have recently demonstrated that in immunodeficient (nu/nu)

mice, CNI (CsA) treatment significantly accelerated the growth of

human renal tumors (786-0) through VEGF-induced angiogenesis,

compared with vehicle-treated controls [22]. However, we did not

evaluate the expression level of phospho-PRAS40 in the tumors.

Thus, here we examined the status of phospho-PRAS40 in these

tumor tissues from CsA-treated as well as control mice. As shown

in Figure 5, the expression of phospho-PRAS40 was markedly

increased (as observed by patches of dark red staining) in renal

tumor tissues obtained from CsA-treated mice (top right panel),

compared with tumor tissues from the vehicle-treated control

group (top left panel). However, there was no significant change in

the expression of total PRAS40 in tumor tissues obtained from

CsA-treated (middle right panel) or vehicle-treated group (middle left

panel). Our in vivo data is similar to our in vitro findings, and it

suggests that CNI-mediated and VEGF-induced accelerated

growth of human renal tumors may involve increased phosphor-

ylation of PRAS40, which may lead to the activation of mTOR

pathway.

Discussion

The development as well as rapid progression of cancer is a

major problem in patients treated with immunosuppressive agents

[3,4,5]. We have recently demonstrated that calcineurin inhibitors

(CNIs) can promote rapid progression of human renal cancer

through the overexpression of VEGF [22,23]; and H-Ras and

Figure 3. PKC forms complex with PRAS40, and can promote its phosphorylation. A, Lysates of RPTEC and 786-0 cells were
immunoprecipitated with anti-PRAS40. B, 786-0 cells were treated with either CsA (5.0 mg/ml) or vehicle alone (control) for 2 hour. Cell lysates were
immunoprecipitated with anti-PRAS40. (A–B) Immunoprecipitates (IP) were captured by protein A-Sepharose beads, boiled in SDS buffer, and
separated by SDS-PAGE. Western blot analysis was performed using either anti-PKCf, or anti-PKCd, or anti-PRAS40. C, 786-0 cells were treated with
either increasing concentrations (50–250 nmol/L) of calphostin C or vehicle alone (control) for 3 hour. Cells were lysed, and the expression of
phospho-PRAS40 and PRAS40 was measured by Western blot analysis. D, Caki-1 cells were pretreated with either calphostin C (100 nmol/L) or vehicle
alone; and cells were then transfected with either H-Ras(12V) (1.0 mg/well) or vector alone for 24 hour, in absence or presence of calphostin C. Cells
were lysed, and the expression of phospho-PRAS40 and PRAS40 was measured by Western blot analysis. (A–D) Representative of three independent
experiments with similar findings.
doi:10.1371/journal.pone.0023919.g003
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PKC may act as critical intermediary signaling molecules for CNI-

induced VEGF overexpression [22,24]. In this study, we show a

novel pathway, in which CNI-induced and Ras-PKC-mediated

signals can involve mTORC1 through the regulation of its

inhibitory molecule PRAS40, and promote VEGF overexpression.

As discussed earlier, CNIs mediate their immunosuppressive

function through inhibition of the calcineurin-NFAT pathway

[15]. However, CNIs may also regulate other signaling molecules

involved in the expression of VEGF and other genes [16,17]. We

have recently shown that CNI treatment can activate H-Ras, and

can also induce the phosphorylation of its downstream targets,

PKC-f and PKC-d; and promotes the overexpression of VEGF in

human renal cancer cells [22,23]. Chen et al. [45] have reported

that CsA-induced oxidative stress can up-regulate and activate

PKC-f in virally infected human B cells, which may lead to the

induction of lymphoproliferative disorders in transplant patients.

Interestingly, we have demonstrated that the CNI-induced

VEGF overexpression and renal cancer cell proliferation is

inhibited by RAPA treatment, suggesting the possible role of

mTOR in CNI-induced tumorigenic pathways that involves Ras

activation [23,24]. In support to our observations, Carriere et al.

[44] have recently reported that mitogenic and oncogenic

activation of the Ras pathway can induce mTORC1; it has also

been shown that the Akt-mTOR pathway is required for CNI-

induced tumor growth [29]. In addition, both PKC-f and PKC-d
may promote induction of the Akt-mTOR pathway [30,31,32,33];

and the PI-3K/Akt/mTOR-mediated signals can be channeled

through HIF and Sp1 [46,47], two major transcription factors for

VEGF expression [25,48].

In the present study, we find that raptor, which is a part of

mTORC1 is critical for CNI-induced VEGF transcriptional

activation. We show that CNI/Ras-induced and PKC-mediated

overexpression of VEGF in human renal cancer cells involves

PRAS40, a negative regulator of mTORC1 [34,40,41]. The CNI

treatment as well as the activation of Ras and PKC promotes

phosphorylation of PRAS40, which may lead to the induction of

mTOR signaling pathway. Our study suggests the role of H-Ras in

regulating PRAS40 phosphorylation; however, we cannot rule out

the roles of other two Ras isoforms (K-Ras and N-Ras) in this

process. Previously, we demonstrated that CNI treatment mediates

a rapid progression of human renal tumor through VEGF-induced

angiogenesis [22]; here, we show that the expression of phospho-

PRAS40 is markedly increased in these renal tumor tissues

following CNI treatment. The overexpression of PRAS40

significantly reduced CNI- and Ras-induced VEGF transcriptional

activation. Thus, our study clearly suggests that mTOR is a critical

signaling molecule in CNI-induced tumorigenic pathway(s) that

may lead to VEGF overexpression in renal cancer. Although we

find a major role of mTORC1, any possible involvement of

mTORC2 in CNI-induced VEGF expression needs to be tested.

As discussed earlier, in contrast to CNIs, the mTOR inhibitor

RAPA may have anti-angiogenic and anti-tumorigenic potential

[10,19]. It is a challenge for the clinicians to fix a safe but effective

immunosuppressive agent for the treatment of transplant patients.

It may be suggested that a combination therapy using both CNI

(low dose) and RAPA treatment can be considered to achieve

Figure 4. Overexpression of PRAS40 inhibits CNI- and Ras-
induced VEGF transcriptional activation. A, top, 786-0 cells were
co-transfected with the 2.6-kb VEGF promoter-luciferase construct
(0.5 mg/well) and either a PRAS40 overexpression plasmid (myc-PRAS40)
(0.5 mg/well) or empty vector. After transfection, cells were cultured for
12 hour, and then treated overnight (12 hour) with either CsA (5.0 mg/
ml) or vehicle alone (control). Following CsA treatment, cells were
harvested, and fold change in luciferase activity was calculated as the
relative luciferase counts from each group of cells compared with that
of cells transfected with empty vector and treated with vehicle alone. A,
bottom, The overexpression of myc-PRAS40 plasmid in transfected cells
was confirmed by Western blot analysis using anti-PRAS40; and the
expression of b-actin was measured as internal control. B, Caki-1 cells
were co-transfected with the 2.6-kb VEGF promoter-luciferase construct
(0.5 mg/well) and different combinations of H-Ras(12V), myc-PRAS40
and the empty vector (0.5 mg/well of each plasmid). Following 24 hour
of transfection, the cells were harvested, and fold change in luciferase
activity was calculated as the relative luciferase counts from each group
of cells compared with that of cells transfected with empty vector. (A–B)

The data reflect three independent experiments. Columns, average of
triplicate readings of two different samples; error bars, SD. In A, *,
p,0.01 compared with empty vector-transfected and vehicle-treated
cells; **, p,0.01 compared with empty vector-transfected and CsA-
treated cells. In B, * p,0.01 compared with vector-transfected cells; **,
p,0.01 compared with vector- and H-Ras(12V)-transfected cells.
doi:10.1371/journal.pone.0023919.g004
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optimal immunosuppression, as well as to prevent cancer

development/recurrence in transplant patients. In addition, our

study defines a novel pathway, in which the overexpression of

PRAS40 may limit CNI/Ras-induced and mTOR-mediated rapid

progression of human renal cancer.

In summary, our study identifies that phosphorylation of

PRAS40 may lead to the activation of mTOR signaling pathway

in CNI-induced rapid progression of human renal cancer. The

activation of H-Ras and PKC (possibly PKC-f) following CNI

treatment can promote the phosphorylation of PRAS40, and

thereby may relieve the inhibition of mTORC1. Thus, targeting

this pro-tumorigenic pathway may serve as novel therapeutics for

the prevention and treatment of renal cancer, particularly in CNI-

treated patients.

Materials and Methods

Reagents
CsA (Novartis) was purchased from Children’s Hospital Boston

pharmacy, and RAPA was purchased from LC laboratories. The

PKC inhibitor calphostin C was obtained from Calbiochem. The

small interfering RNA (siRNA) for raptor and its control were

purchased from Qiagen. The transfection of siRNA was

performed using Lipofectamine 2000 (Invitrogen).

Cell Lines
The human renal cancer cell lines (786-0 and Caki-1) were

obtained from American Type Culture Collection. 786-0 cells

were grown in RPMI 1640, and Caki-1 cells were grown in

McCoy’s medium supplemented with 10% fetal bovine serum

(GIBCO). Human normal renal proximal tubular epithelial cells

(RPTEC) were purchased from Clonetics and were grown in

complete epithelial medium (REGM BulletKit).

Plasmids
A 2.6-kb VEGF promoter-luciferase construct in pGL2 basic

vector (Promega), containing full-length VEGF promoter sequence

(22361 to +298 bp relative to the transcription start site) was used

in transient transfection assay [22,48]. All the Ras mutant

constructs were obtained as generous gifts from Roya Khosravi-

Far (Beth Israel Deaconess Medical Center, Boston, MA). The

pDCR-ras(12V) overexpression plasmid encodes active human H-

Ras, in which expression is under the control of the cytomega-

lovirus promoter [49]. The Ras(17N) dominant-negative plasmid

inhibits endogenous Ras function [50]. The pRK5-myc-PRAS40

overexpression plasmid encodes wild-type human PRAS40, and

was obtained from Do-Hyung Kim (University of Minnesota,

Minneapolis, MN) through Addgene [41].

Transfection and Luciferase Assays
786-0 or Caki-1 (2.56105 cells) were transfected with the Ras

expression plasmids, PRAS40 expression plasmid, or the VEGF

promoter-luciferase plasmid using Effectene Transfection Reagent

(Qiagen), according to the manufacturer’s protocol. The total

amount of transfected plasmid DNA was normalized using a

control empty expression vector. For luciferase assay, cells were

harvested 48 hours after transfection, and luciferase activity was

measured using a standard assay kit (Promega) in a luminometer.

Transfection efficiency was determined by co-transfection of the b-

galactosidase gene under control of cytomegalovirus immediate

Figure 5. Treatment with CNI promotes the phosphorylation of PRAS40 in renal tumor tissues in vivo. Human renal cancer cells
(1.06106; 786-0) were injected s.c. in nude (nu/nu) mice (n = 5 in each group), and they were treated either with CsA (10 mg/kg/day) or with the
vehicle as control. Tumors were harvested at day 25 following tumor injection. Representative photomicrographs illustrate the immunohistochemical
expression of phospho-PRAS40 (top panels) and PRAS40 (middle panels) in harvested renal tumor tissues (magnification X400). Patches of dark red
color, expression of phosho-PRAS40, which was markedly increased in tumor tissues from CsA-treated mice. H & E, hematoxylin and eosin.
Representative of three different tissue samples of both CsA- and vehicle-treated groups.
doi:10.1371/journal.pone.0023919.g005
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early promoter and by measurement of b-galactosidase activity

using standard assay system (Promega).

Immunoprecipitation Assays
Immunoprecipitations were performed with 0.5 mg of total

protein at antibody excess (1.0 mg/ml) using anti-PRAS40

(Invitrogen). Immunocomplexes were captured with protein A-

Sepharose beads (GE Healthcare), and bead-bound proteins were

subjected to Western blot analysis using either anti-PKC-f or anti-

PKC-d (Santa Cruz Biotechnology).

Western Blot Analysis
Protein samples were run on SDS-polyacrylamide gel and

transferred to a polyvinylidene difluoride membrane (Millipore

Corporation). The membranes were incubated with anti-PRAS40

(Invitrogen), anti-phospho-PRAS40 (Invitrogen), anti-Ras (BD

Transduction laboratories), anti-VEGF (Santa Cruz Biotechnolo-

gy), anti-raptor (Cell Signaling) or anti-b-actin (Sigma-Aldrich),

and subsequently incubated with peroxidase-linked secondary

antibody (Santa Cruz Biotechnology). All primary antibodies were

diluted at 0.5 mg/ml; secondary antibodies were diluted at 0.2 mg/

ml. The reactive bands were detected by using chemiluminescent

substrate (Pierce). Expression was quantified by densitometry using

the software Quantity One (version 4.6.2).

In Vivo Tumor Development
Human renal cancer cells (786-0) were injected s.c. in

immunodeficient (nu/nu) mice. The tumor volume was measured

by following standard method [22], using the formula V = p/6 x

a2 x b, wherein a is the short axis and b is the long tumor axis. Mice

were sacrificed at designated times after injection or if complica-

tions occurred, which included signs of inactivity, cachexia, or

decreased responsiveness. The protocol (# 09-03-1298) for animal

studies was approved by the review board of Children’s Hospital

Boston.

Immunohistochemistry
Tissue sections were incubated first with either rabbit anti-

human phospho-PRAS40 (Invitrogen) or mouse anti-human

PRAS40 (Invitrogen), and then with a species-specific horseradish

peroxidase-conjugated secondary antibody. Specimens were

washed thoroughly in between incubations, developed in 3-

aminoethylcarbazole, and counterstained with Gill’s hematoxylin.

Statistical Analysis
Statistical evaluation for data analysis was determined by

Student’s t test. Differences with P,0.05 were considered

statistically significant.
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