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Abstract

Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of
simple building blocks. Here we describe an application of category theory to describe structural and resulting functional
properties of biological protein materials by developing so-called ologs. An olog is like a ‘‘concept web’’ or ‘‘semantic
network’’ except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures
that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other olog.
We consider simple cases of beta-helical and amyloid-like protein filaments subjected to axial extension and develop an
olog representation of their structural and resulting mechanical properties. We also construct a representation of a social
network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that
the olog for the protein and the olog for the social network feature identical category-theoretic representations, and we
proceed to precisely explicate the analogy or isomorphism between them. The examples presented here demonstrate that
the intrinsic nature of a complex system, which in particular includes a precise relationship between structure and function
at different hierarchical levels, can be effectively represented by an olog. This, in turn, allows for comparative studies
between disparate materials or fields of application, and results in novel approaches to derive functionality in the design of
de novo hierarchical systems. We discuss opportunities and challenges associated with the description of complex biological
materials by using ologs as a powerful tool for analysis and design in the context of materiomics, and we present the
potential impact of this approach for engineering, life sciences, and medicine.
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Introduction

Biological materials, many of which contain proteins as a basic

building block, provide an enormous diversity of properties

including structural support, prey procurement and material

transport [1]. Significant evidence has now emerged that proteins

are organized in functional networks, resulting in structures that

span many hierarchical scales [2,3,4,5,6,7,8,9]. In the glassy sponge

Euplectella aspergillum, for instance, silica nanospheres are arranged at

multiple levels of hierarchy to constitute a skeleton with high

structural stability at minimum cost [10]. The teeth of sea urchins

and the lamellar structure of mollusk shells are other examples for

structural hierarchies in biomaterials that lead to extremely strong

and tough structures [11]. Earlier studies showed that in materials

like bone or wood, for example, the structural assembly of basic

building blocks such as collagen, water, hydroxyapatite minerals,

hemicelluloses and lignin governs the mechanical properties at

different length scales with similar mechanisms despite the

differences in the building blocks and the overall material properties

[12,13]. A frontier in protein materials science is the understanding

how the exceptionally complex functionality found in natural

biological systems is created despite i) a limited number of around

20 amino acid building blocks, ii) constraints in available material

volume and energy for synthesis, and iii) only a handful of simple

chemical interaction force fields, generally referred to as interaction

rules [2,3,4,5,6,14].

It is remarkable that the same library of amino acid building

blocks creates materials as diverse as spider silk, tendon, cornea,

blood vessels, and cellular protein networks, each of which displays

greatly variegated functions. Our understanding of the synthesis of

their basic elements into multi-functional structures remains in its

infancy, and is currently limited to specific protein networks or

protein materials. For example, mechanistic theories are typically

developed for specific proteins (see e.g. [15,16,17,18,19,20]) rather

than providing a unified model that is applicable to a variety of

distinct materials. The extraction of generic principles of how

functional properties are derived in functionally diverse systems

despite the presence of the same (universal) building blocks, solely

by using structure as a design paradigm, presents an exciting

opportunity. The systematic characterization of this knowledge
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has resulted in the formation of a new field referred to as

materiomics [21].

Here we describe, by means of the application of the

mathematical field of category theory to protein materials, how

the extreme diversity of protein functional properties can be

described in a unified model that contains only a limited number

of universal elements and their interaction rules. Category theory

has been successfully applied to carry out qualitative analyses in

fields such as linguistics (grammar, syntax, semantics, etc. – key

concepts that enable the understanding of language, see e.g.

[22,23,24,25,26,27]) and computer science (again modeling syntax

and semantics of denotation and operation in programming

languages, see e.g. references [28,29,30,31]).

Category theory can be seen as an abstraction of graph theory

which has been used to describe the structure of biopolymers,

disease spread and neuronal activity as well as to determine the

role of proteins or genes of unknown function and to identify drug

targets [32,33,34,35,36,37,38,39]. The focus of such earlier studies

has been on metabolic networks of biochemical reactions, protein

interaction networks and transcriptional regulatory networks,

amongst others [32]. The role of network motifs (or building

blocks) has been studied but is often limited to structural motifs in

networks [40]. Current theoretical approaches to material science

focus either on structural aspects or on functional aspects and lack

the general and abstract description of how system elements

behave and interact with each other in order to create

functionality. For protein materials, a major limitation of existing

methods is the reliance on topological considerations which do not

account for biological information about the network’s interaction

[32]. For example, protein networks are typically modeled as

undirected graphs where the nodes represent proteins and the

edges represent physical interactions between them. The need for

a broader view on functionality (biological, chemical, mechanical

and other) and structure, enhanced data collection abilities, and

integrated studies, as each study covers only a small subset of a

generally big topic, cannot be achieved with graph theoretic

approaches. Category theory provides means to overcome the

limitations of conventional networks while also including graph

theoretic tools.

The combination of universal elements into multi-level

structures enables protein materials to achieve context specific

functionalities in an abstract ‘‘complexity space’’. This paradigm

shows that in order to create highly functional materials it is not

essential to rely on a multitude and a certain quality of building

blocks (e.g. with superior qualities, great material volume, strong

interactions, etc.). Rather, it is sufficient to use simple interaction

rules and simple building blocks – each of which does not need to

possess superior qualities – but assembled into hierarchical

systems, where the overall structure provides enhanced function-

ality [14,21]. This insight has implications for our understanding

of how nanomaterials could be utilized to create macroscopically

functional materials, and suggests a paradigm that departs from

the current belief in engineering science that material building

blocks with superior qualities at the small scale (e.g., carbon

nanotube, carbyne, graphene, etc.) are crucial to reach high

performance materials. On the contrary, we hypothesize that

superior functionality can be reached with any fundamental

building block, provided that the design space is expanded to

incorporate hierarchical structures. Eventually, an understanding

of how diverse functional properties can arise out of inferior

building blocks could make a profound impact towards the

development of environmentally benign and friendly materials, as

it would allow manufacturers to use local, abundant, and simple

building blocks with overall negative CO2 balance (e.g. wood,

plants, silica, water, soy beans) to create highly functional materials

and structures. But how can we find a proper mathematical

description of these hierarchical mechanisms that generate

functional properties? A possible approach is to use novel

mathematical concepts that provide a powerful, abstract way to

describe emergence of functionality from first principles, e.g. on the

basis of fundamental interactions between building blocks.

Abstract representation of structure and function of
protein materials using category theory

Biological materials evolved to perform specific biological

functions [2,3,4,5,6,7,8,9], where the components and connections

within a given biological material are analogous to a circuit

diagram. But just as it is extremely difficult to deduce the circuitry

of a device by experimenting with its inputs and outputs, it is

similarly inadequate to describe the higher-level structure of a

biological material using only the physical interactions between

proteins and some information about gene expression. Instead, we

need to take into account additional types of structural information

given by the fundamental principles that govern the interactions of

the building blocks that define the system and its emerging

functionality as these building blocks are connected together, from

the micro to the macro scale. The above considerations are

important in any synthetic science; in order to duplicate the

functionality of a natural system, we do not need to understand

everything about it, only the principles out of which the desired

functions arise. Biological systems contain any number of copies of

thousands of different components, each with very specific

interactions, and each representing a microscopic device in and

of itself. As a result, the microscopic description of a biological

system (and materials therein) is intractably complex, unless one

moves to a higher level of abstraction in the analysis that, as

discussed before, cannot be solely provided by network theory.

It is exactly in the face of this complexity that ologs are so

appealing. The use of ologs presents us with an opportunity to

identify patterns that describe systems and their components, to

elucidate possible connections among these components, and to

construct isolated functional (and specifically not limited to structural)

‘‘modules’’ by comparing information from many different

materials or organisms. That is, by determining fundamental design

principles that are simple yet functional, we can not only produce a

powerful conceptual model of our system, we also create the

possibility of comparing vastly different systems. Indeed, we will

show below that although there is almost nothing physical in

common between a protein and a social network, we can construct a

scenario in which the design principles are well-matched, and thus

the systems may be compared. Such a comparison may allow results

from the science of social networks to guide us in our study of

biological materials of the same structure, and vice versa.

To give a few concrete examples of how such analogies between

seemingly disparate fields can be made, Figure 1 shows an

illustration of multiscale hierarchical structure of protein materials,

a summary of multiscale modeling and experimental tools, and an

analogy to music. In protein materials (left for the example of

spider silk), multifunctional materials are defined via the formation

of hierarchical structures. The synergistic interaction of structures

and mechanisms at multiple scales provides the basis for enhanced

functionality of biological materials despite the reliance on few

distinct building blocks. Similar to the case of protein materials,

musical composition (right) is built upon universal elements at the

microscale such as basic wave forms, and gathers a small variety of

available instruments into hierarchical assemblies to create

macroscale functionality, such as a particular orchestral sound

(e.g. a symphony). Universality tends to dominate at smaller levels,

Proteins and Social Networks
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whereas diversity is found predominantly at larger, functional

levels [9]. The integrated use of computational and experimental

methods at multiple scales provides a powerful approach to

elucidate the scientific concepts underlying the materiomics

paradigm (center).

Outline of this paper
The scope of this paper is to present a novel methodology to

material science which incorporates structural and functional

hierarchies. Hence, we utilize a comprehensive example, the

behavior of an beta-sheet nanocrystal a beta-helical structure

Figure 1. Illustration of multiscale hierarchical structure of protein materials, a summary of multiscale modeling and experimental
tools, and an analogy to music (figure adapted from [14]). In protein materials (left for the example of spider silk), multifunctional materials
are created via the formation of hierarchical structures. The synergistic interaction of structures and mechanisms at multiple scales provides the basis
for enhanced functionality of biological materials despite the reliance on few distinct building blocks. Similar to the case of protein materials is music
(right), where universal elements such as basic wave forms or a set of available instruments are used in hierarchical assemblies to provide macroscale
functionality, and eventually a particular orchestral sound (e.g. a symphony). Universality tends to dominate at smaller levels, whereas diversity is
found predominantly at larger, functional levels. The integrated use of computational and experimental methods at multiple scales provides a
powerful approach to elucidate the scientific concepts underlying the materiomics paradigm (center).
doi:10.1371/journal.pone.0023911.g001
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under tensile load, in order to illustrate the concept rather than to

derive a full analysis. The biochemical structure is extremely

simplified, thus allowing us to demonstrate the transformation of

the protein system into a social network with similar character-

istics. We conclude the paper with a discussion of opportunities for

the science and engineering of natural protein materials as well as

synthetically designed materials from the atomistic scale with the

chemical structure of molecules to the macroscale.

Methods

Category theory is a relatively new branch of mathematics

(invented 200 years after the introduction of partial differential

equations), designed to connect disparate fields within the larger

discipline (see [41]). It is both a language that captures the essential

features of a given subject, and a toolbox of theorems that can be

applied quite generally. If a given study within mathematics is

formalized as a category, it can be connected with other categories

that are seemingly far afield, as long as these structures align in the

required ‘‘functorial’’ way. Theorems within one branch, like

abstract equational algebra, can be applied to a totally different

area, like geometric topology. Category theory may not only serve

as an alternate foundation to mathematics [42], it unites the

various distinct areas within advanced mathematics, formally

proving similarities that are not apparent on the surface [43]. A

good overview for non-specialists can be found in [44] and [45].

Quickly after its inception, category theorists realized that its

basic ideas were applicable well beyond the borders of mathe-

matics. Category theory has by now been successfully applied in

computer science, linguistics, and physics [46]. Whereas the theory

of differential equations can be applied throughout science to

create quantitative models, category theory can be applied

throughout science to create qualitative models. And once such

a qualitative model is formed as a category, its basic structure can

be meaningfully compared (again via functors) with that of any other

category, be it mathematical, linguistic, or other [47]. Like a

biological system, the basic building blocks of a category are

simple, but the networks that can be formed out of them are as

complex as mathematics itself. These building blocks are called

objects, arrows, and composition: arrows between objects form

paths which can be composed into new arrows. It is a wonder that

such a simple system can account for the wide variety of forms

found in the mathematical universe, but perhaps this is less of a

surprise to a biologist who notices the same phenomenon in his or

her field.

In this study we use a linguistic version of category theory in

which the objects are drawn as text boxes describing some type of

thing, like a protein or a genetic code, and where the arrows also

have labels describing some functional relationship, as every

protein has a genetic code. Chains of arrows can be composed,

providing a description of how a number of small-scale

relationships come together to constitute a single, conceptually

simpler, larger-scale relation (like a person’s father’s sister’s

daughter is simply their cousin; an example for ‘‘functionality’’

in the space of linguistics). These linguistic categories are called

‘‘ologs’’, short for ‘‘ontology logs’’ (see [47]). Ontology is the study

of how or what something is, and ologs are a systematic framework

in which to record the results of such a study. The term ‘‘log’’ (like

a scientist’s log book) alludes to the fact that such a study is never

really complete, and that a study is only as valuable as it is

connected into the network of human understanding. This brings

us to the heart of the matter: in order to build a sufficient

understanding of hierarchical materials, scientists must integrate

their findings more precisely with those of other scientists.

The fact that an olog is fundamentally a category means that

such connections can be formulated between ologs with

mathematical rigor, and meaning preserved [47], to facilitate

the communication with other fields of science. This concept is

depicted for a simple example in Figure 2. Note how the structure

of the category, i.e. the arrangement of objects (here: sets) and

arrows (here: functions), is preserved while the objects and the

arrows itself are subjected to a transformation. This means that if

a certain property, such as the mechanical behavior of amyloids,

can be described in a categorical framework, structure preserving

transformations translate the components of the system into other

systems, such as a wood or concrete based system, while the

relations and thus the functionality within the category is

maintained. The revelation and abstraction of the origin of

protein material properties must be done by intensive materio-

mics studies that typically involve multiscale experiment and

simulation.

Figure 2. Simple examples of transformations preserving structure in category theory. Categories consist of objects and arrows which are
closed under composition and satisfy certain conditions typical of functions. y is a structure-preserving transformation (or covariant functor, or
morphism of categories) between the two categories. If the categorical objects in this example are considered as sets of instances, then each instance
of the set ‘A man’ is mapped to an instance of the set ‘A tennis ball’. This concept applies to all objects and arrows in the categories.
doi:10.1371/journal.pone.0023911.g002
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We omit a precise definition of categories and hence ologs in

this paper as we will focus on the application of this concept – the

discussion will be limited to a general description of ologs and how

they are constructed. Hence, we will proceed to describe ologs by

example; for a more mathematically precise account of ologs, see

reference [48].

Results and Discussion

The use of ologs is a powerful tool that can ultimately enable the

kinds of breakthroughs needed to further our understanding of

how functional diversity is achieved despite intrinsic limitations of

building blocks. The generation of ologs also allows us to observe

the formation of patterns that define certain functionality, and

draw connections between disparate fields. A key insight used here

is that although patterns of functionality generation can be quite

different in the space specific to applications (e.g.: proteins,

language, music), they are remarkably similar in the space of

categories. In other words, we hypothesize it is possible to observe

universal patterns of how functionality is created in diverse fields;

and that it is possible to generate fundamental laws (similar to

PDEs in conventional physics) that describe the emergence of

functionality from first principles.

We briefly expand on the potential powerful application of

category theory mentioned above. As explained in the introduc-

tion the same 20 amino acids can have different functions

depending on how they are arranged in a sequence as defined by

the genes. In other words, the same library of fundamental

building blocks can produce different functionality depending on

the precise sequence. Just so, an olog serves as a code or formula

for a complex structure, but the context in which it is interpreted

can lead to different results. We will show that the same olog can

be interpreted as formulating the structural and functional

relationship between a protein filament such as a beta-helix and

a beta-sheet nanocrystal or the same relationships between two

types of social networks involving a chain of participants. In the

case of a protein the building blocks are polypeptide fragments or

H-bond clusters as glue, whereas in a social network the building

blocks are people and communication methods. It is the interplay

between form and function of few universal building blocks that

ties biological structuralism and category theory, and which may

produce potentially novel approaches to designing engineered

systems.

Olog of protein filaments under axial loading
We develop an olog for two protein filaments that display a

distinct mechanical behavior once exposed to mechanical force.

We begin the discussion with a presentation of the proteins and

their functional properties, here their mechanical properties under

axial extension (realized e.g. via the application of an axial force

applied to the protein filament). The structure, mechanisms and

resulting functional properties have been developed in a series of

earlier studies based on computational approaches to molecular

nanomechanics (for alpha-helices, see [49] and for amyloids or

beta-sheet crystals, see [20,50]; we refer the reader to these

original papers for further detail).

Figure 3 shows the visualization of the two protein materials

based on an abstraction of how their mechanical properties can be

understood based on the interplay of a set of ‘‘building blocks’’

(Figure 3A). Both protein materials resemble a linear arrangement

of three elements, ‘‘bricks’’, ‘‘glue’’, and for one of them, ‘‘lifeline’’.

Thereby as a design rule, brick and glue need to alternate in order

to achieve a stable structure. Two brick or glue elements

immediately next to each other would not stick together. There

is a fundamental chemical reason for this constraint as bricks

represent a segment of a protein’s polypeptide backbone and glue

represents H-bonding which can only occur between a cluster of

amino acid residues in the backbone. The ‘‘lifeline’’ is a third

element that is introduced here, reflecting the situation in which

there is still a physical connection of bricks even after large force

causes the glue to break. Chemically, this resembles the existence

of a ‘‘hidden’’ polypeptide length such that there exists a

‘‘covalent’’ link between two brick elements even after the H-

bond glue has broken. The hidden length is not observed as a

relevant structural property until the glue breaks, at which point

the lifeline comes into play and provides an increasing resistance

against deformation. Thus, although both glue and lifeline can

connect neighboring brick elements, they are differentiated in that

the lifeline is much stronger than the glue and that its resting

extension is roughly the failure extension of the glue (Figure 3).

Although this description of protein filaments is a simplification

of how their mechanical properties can be described and the focus

is set on a distinct feature of the protein material’s behavior only, it

enables us to understand the key functional properties based on

the interplay of building blocks. We demonstrate this now with a

detailed discussion of the two cases considered. Figure 3C depicts a

model of an amyloid-like beta-sheet crystal as found in silk beta-

sheet crystals subjected to axial deformation. The structure is

realized by the assembly of on an alternating sequence of bricks

(amino acid segment) and glue (H-bond cluster). Upon the increase

of the extension one of the glue elements breaks. Since there is no

more physical connection between the two brick elements that

were previously connected by the glue element the entire system

has failed, and at an extension that is roughly equal to the failure

extension of the glue (Figure 3E). We define this behavior as

‘‘brittle’’. Figure 3D depicts a model of a beta-helix protein

(structurally and mechanically similar to an alpha-helix protein a

protein found in the cell’s cytoskeleton) under axial loading,

assembled based on an alternating sequence of bricks (amino acid

cluster), glue (cluster of H-bonds) and a lifeline element. The

lifeline element is formed by the protein backbone that still exists

even after the cluster of H-bonds break after unfolding of one

helical turn [49]; providing a physical connection that allows

additional glue elements to break after more axial extension is

applied. In fact, at large extensions all glue elements will have

broken such that the system’s overall failure extension is much

larger than the failure extension of the glue, marking a ‘‘ductile’’

behavior (Figure 3E).

The comparison of the distinct mechanical behavior of beta-

sheet crystals and beta-helices was achieved by mapping the key

mechanisms that generate their specific properties into the abstract

space of interactions between a set of building blocks. What was

described in words in the preceding paragraphs can be rigorously

achieved using ologs, which describe the interactions between

building blocks. Through the development of ologs for each system

we aim to answer a series of questions:

N What are the components of the system, and how do they

interact?

N How do these interactions produce the functionality we

observe of the overall system?

N When does functionality break down? E.g., failure of building

blocks as the system is pushed to extreme conditions, or the

presence of defects.

N A further reaching question may be, by what process did the

system come to be constructed, and what selective pressures at

the macroscale induce observable changes in the system and at

different levels in the structural makeup.

Proteins and Social Networks
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To eventually get us to this point, we will now discuss the

components of our brick-and-glue system of proteins so as to

acquaint the reader with the olog presented in Figure 4 which

describes both the brittle and ductile protein filaments outlined

above. Three universal elements, which we have been calling

bricks (b), glue (g), and lifeline (L) are the abstract building blocks

composing our systems, and they are defined in relation to one

another as follows. Both glue and lifeline are materials that can

connect two brick elements. There are two distinctions between

them: i) the failure extension of glue is much less than that of brick,

whereas the failure extension of lifeline is roughly equal to that of

brick, and ii) the resting extension of lifeline is roughly equal to the

failure extension of glue. These two properties ensure that the

lifeline is not detected under axial loading until a glue element

breaks and that all the glue elements break long before a lifeline or

brick element breaks (see also Figure 3B).

This distinction between one number being roughly equal to

another and one number being much greater than another is

simple, yet universal in the sciences, and thus we can expect

these types (M and O in the olog) to be quite common in

scientific ologs. In fact, we reuse this concept within the olog

when we distinguish a ductile system from a brittle one. That is,

we characterize a ductile system to be one whose failure

extension is much greater than that of its glue element, whereas we

characterize a brittle system to be one whose failure extension is

roughly equal to that of its glue element. Relations like that are

typical for hierarchical systems where a scaling law applied to

the scale of a building block connects the behavior of such

building blocks to the overall system behavior. Other common

(i.e. universal) patterns that we may find in biological materials is

a certain shape (fibers, helices, spheres), bonds of a certain form

(H-bonds, backbone), dimensionality (1D, 2D, 3D), and so on.

Figure 3. Visualization of protein filaments considered here, and abstraction of how key functional properties (here: mechanical
properties under axial extension) can be understood based on the interplay of a set of ‘‘building blocks’’. A, Overview over
fundamental building blocks of our protein materials. The protein materials considered here are composed of a linear arrangement of three elements,
‘‘bricks’’, ‘‘glue’’, and in some cases ‘‘lifeline’’. Thereby as a design rule, brick and glue need to alternate in order to achieve a stable structure. That is,
two brick or glue elements immediately next to each other would not stick together – the chemical reason is that bricks represent the protein’s
polypeptide backbone and glue represents H-bonding which can only occur between residues in the backbone. The ‘‘lifeline’’ is a third element
introduced here, reflecting the situation when there is still a physical connection between bricks even after the glue breaks. Chemically, this
resembles the existence of ‘‘hidden’’ polypeptide length such that there exists a ‘‘covalent’’ link between two brick elements even after the H-bond
glue has broken. This hidden length is not ‘‘visible’’ before the glue is actually broken. B, Mechanical behavior of each of the building blocks
characterized by a description of the failure extension. The hidden length of lifelines is reflected in the fact that the resting extension of the lifeline is
roughly equal to the failure extension of the glue. Both the brick and the lifeline have large failure extensions relative to the glue. C, Model of a beta-
sheet crystal under axial loading. This resembles a system without a lifeline since after breaking of the H-bond cluster ( = glue) between the layers
formed by clusters of polypeptide ( = brick) no physical connection exists. D, Model of a beta-helical protein under axial loading. This resembles a
system with a lifeline, as after breaking of the cluster of H-bonds ( = glue) that are formed between clusters of amino acids ( = brick) there still exists a
physical connection due to the polypeptide backbone as shown in D ( = lifeline). As shown in E, the existence of a lifeline has major implications on
the functional properties of the overall system. A system with a lifeline (D) shows a ductile response, where a connection can be sustained at large
extension as compared to the glue alone. In contrast a system without a lifeline (C) shows a brittle response, where only a small extension can be
sustained until the material breaks (which equals roughly the failure extension of the glue).
doi:10.1371/journal.pone.0023911.g003

Proteins and Social Networks
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Our olog concentrates on materials whose shape is one-

dimensional, a feature we define by the use of mathematical

graphs.

The interactions of building blocks are not limited by their

interface. As each object represents a category itself, it can be

again a composition of objects and arrows. Hence, the

functionality can be affected by the existence or alteration of

neighbor building blocks by drawing connections between objects

within categories. This is exactly how functional and structural

hierarchies are represented in an olog. Since a brick (or a glue) can

refer to anything in the world, an entire system of bricks and glue

can be regarded as a new ‘‘brick’’ (and a whole system of bonds as

‘‘glue’’). A zoom-in or zoom-out is possible by defining new

building blocks in terms of others.

Figure 4. Pictured here is an olog, which captures the semantic content of our situations, as described in Sections 3.1 – 3.3. Each box
represents an abstract type, and each arrow represents an aspect (or observable) of that type. Each type refers to a set of intended instances, which
we think of as being contained in the box. For example, box E contains ductile sequences of bricks and glue (like a beta-helix or an alpha-helix),
whereas box V contains real numbers (like 9.228). Each arrow from a source box to a target box refers to an observation one may make on things in
the source box, for which the observed result is a thing in the target box. For example, arrow 11:ERO indicates that one can observe of any ductile
material S a pair of numbers (R,r) where R is much greater than r. The meaning of these numbers R and r is enforced by a ‘‘commutative diagram’’
declared in Table 1 (line 6): the number R must refer to the failure extension of the system S and the number r must refer to the failure extension of its
glue. This says that a ductile system fails at a much greater extension than its glue elements do. Perhaps a simpler but more mundane observation is
made by arrow 37:QRV which indicates that one can take any pair of real numbers (x,y) and observe the x-coordinate. So the pair (8.0, 3.2) is inside
box Q, and it is observed by arrow 37 to have x-coordinate 8.0, which is in box V. Thus, each box is meant to contain an intended set of instances and
each arrow is meant to functionally relate two such sets. The rest of the olog is recorded in Tables 1 and 2. Some are commutative diagrams which
declare two paths through the olog to be equivalent and some are fiber products which define new types in terms of others.
doi:10.1371/journal.pone.0023911.g004
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Once the fundamental structure of our protein materials and

the definition of ductility and brittleness have been defined in the

olog, we describe our hypotheses by two arrows, 1:ARE and

5:BRC, the first of which hypothesizes that systems with lifelines

are ductile, and the second of which hypothesizes that systems

without lifelines are brittle. This hypothesis has now been

examined in the paragraphs above, but can be even more

carefully explicated using a category-theoretic formulation, where

each component type and aspect is laid bare. In fact, we have no

hope of proving an analogy between this protein setup and the

upcoming social network setup without such a formulation. In

Figure 4 we show the entire setup as a diagram of boxes and

arrows, the precursor to an olog. However, this diagram is not

sufficient in the sense that there are mathematical truths present in

our system that are not present in the diagram. We include the rest

of this information in Tables 1 and 2, which we will describe

shortly.

In order to explain what is missing from Figure 4, we should first

more clearly explain what is there. Each box represents a set. For

example box H, labeled ‘‘a graph’’, represents the set of graphs,

Table 1. Commutative diagrams in the olog. *

Starting point Ending point Path 1 Path 2 Same result

A: a one-dimensional system
of bricks, glue, and lifeline

F: a one-dimensional system
(S) of bricks (b) and glue (g)

ARERF ARF Each of these paths from A to F simply ‘‘forgets’’
the lifeline.

A: a one-dimensional system
of bricks, glue, and lifeline

D: a ‘‘chain graph’’ *R*R*R
…R*

ARFRD ARD Each of these paths from A to D yields the
structure graph of the system, which is a ‘‘chain
graph’’.

A: a one-dimensional system
of bricks, glue, and lifeline

H: a graph ARDRH ARGRH Each of these paths from A to H yields the
structure graph of the system.

B: a one-dimensional system
of bricks and glue without lifeline

F: a one-dimensional system
(S) of bricks (b) and glue (g)

BRCRF BRF Each of these paths from B to F simply forgets
that the system has no lifeline.

C: a brittle system (S) of bricks
(b) and glue (g)

Q: a pair (x,y) of real
numbers

CRFRQ CRMRQ Each of these paths from C to Q sets x = failure
extension of the system (S), y = failure extension
of the glue (g).

E: a ductile system (S) of bricks
(b) and glue (g)

Q: a pair (x,y) of real
numbers

ERFRQ ERORQ Each of these paths from E to Q sets x = failure
extension of the system (S), y = failure extension
of the glue (g).

F: a one-dimensional system (S)
of bricks (b) and glue (g)

H: a graph FRDRH FRJRH Each of these paths from F to H yields the
structure graph of the system.

I: a threesome (b,g,L) of building
blocks, serving as bricks, glue, and
lifeline

Q: a pair (x,y) of real
numbers

IRMRQ IRKRQ Each of these paths from I to Q sets x = resting
extension of lifeline (L), y = failure extension of
glue (g).

I: a threesome (b,g,L) of building
blocks, serving as bricks, glue, and
lifeline

U: a building block IRKRLRPRU IRTRU Each of these paths from I to U yields the lifeline
element (L).

K: a threesome (b,g,S) of building
blocks, serving as bricks, glue,
and strong-glue

R: a brick KRNRR KRLRR Each of these paths from K to R yields the same
brick element (b).

L: a pair (b,S) of building blocks,
serving as bricks and strong-glue

Q: a pair (x,y) of real
numbers

LRPRQ LRMRQ Each of these paths from L to Q sets x = failure
extension of brick (b), y = failure extension of
strong-glue (S)

L: a pair (b,S) of building blocks,
serving as bricks and strong-glue

U: a building block LRPRU LRRRU Each of these paths from L to U yields the brick
element (b).

N: a pair (b,g) of building blocks,
serving as bricks and glue

Q: a pair (x,y) of real
numbers

NRORQ NRPRQ Each of these paths from N to Q sets x = failure
extension of brick (b), y = failure extension of
glue (g).

N: a pair (b,g) of building blocks,
serving as bricks and glue

U: a building block NRPRU NRRRU Each of these paths from N to U yields the brick
element (b).

N: a pair (b,g) of building blocks,
serving as bricks and glue

U: a building block NRPRU NRSRU Each of these paths from N to U yields the glue
element (g).

P: a pair (B1,B2) of building blocks,
such that B2 can connect two
instances of B1

V: a real number PRQRV PRURV Each of these paths from P to V yields the failure
extension of B1.

P: a pair (B1,B2) of building blocks,
such that B2 can connect two
instances of B1

V: a real number PRQRV PRURV Each of these paths from P to V yields the failure
extension of B2.

*Each sequence of consecutive arrows through the olog (Figure 4) is called a path, which represents a functional relationship between its starting point and its ending
point. Two such paths ARB may result in the same function, and the 17 lines of this table record 17 cases of this phenomenon in our olog. The idea is that given an
instance of A, each of these paths returns the same instance of type B. By having this additional data, we confine the meaning of the label on each box and arrow – they
cannot stray far from our intended meaning without ‘‘breaking’’ these path equalities. Thus this table serves as an additional check on our labels. [For a more
diagrammatic description of the same information presented in the typical style of category theory, see Figure S1.].
doi:10.1371/journal.pone.0023911.t001
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whereas box J, labeled ‘‘a system consisting of bricks connected by

glue, structured as in graph G’’, represents the set of such systems.

Each arrow represents a function from one set to another, and its

meaning is clear by reading the label of the source box, the label of

the arrow, and then the label of the target box. For example, we

read arrow 20: JRH as ‘‘a system consisting of bricks connected

by glue, structured as in graph G is structured as a graph’’. Thus,

any element of the set J is functionally assigned its structure graph,

an element of H, by arrow 20. Just as the structure graph of a

system is an observable of that system, any function from one set to

another can be considered an observable of the former.

A function may be thought of as a ‘‘black box’’ which takes

input of one type and returns output of another type. If the

output of one function is fed as input to another function and the

whole system is imbedded in a black box, it is called the

composition of functions. Finally, two functions are equal

(regardless of the inner workings of their ‘‘black boxes’’) if, upon

giving the same input they always return the same output. The

first kind of mathematical truth alluded to above that is missing

from Figure 4 is a declaration of which compositions of functions

in our system are equal. Such equalities of compositions of

functions are called commutative diagrams in category theory

literature. All such declarations are presented in Table 1. These

equalities can be considered as checks on our understanding of all

the sets and functions in the arrows – declaring them is at the

very least ‘‘good science’’.

Table 2 describes a certain class of commutative diagrams;

called fiber product diagrams (see also Figure S2). In a fiber product

diagram, one set and two observables of it are declared as a kind

of ‘‘universal solution’’ to a problem posed by another diagram.

In these terms, we consider the diagram DRHrJ as posing a

problem, to which DrFRJ is a solution, as we now explain. The

diagram DRHrJ poses the problem ‘‘what should we call a

system consisting of bricks connected by glue, structured as in

graph G, where graph G is a ‘‘chain graph’’. The declared

solution is F ‘‘a one-dimensional system (S) of bricks (b) and glue

(g)’’, together with its two observables FRD and FRJ. Thus the

second kind of mathematical truth alluded to above that is

missing from Figure 4 is that some boxes and attributes have

fixed meaning in terms of the others. A list of these is given in

Table 2, where we see terms such as ‘‘one-dimensional’’,

‘‘brittle’’, ‘‘ductile’’, and ‘‘lifeline’’ defined solely in terms of

more basic concepts.

Thus, while it is convenient to think of the olog for our protein

systems as the diagram in Figure 4, in fact it is the totality of

Figure 4, Table 1, and Table 2, which really constitutes the olog.

Just as in biological materials, the parts of the olog (its boxes and

arrows) are not sufficient for the system to act as a whole – the less-

obvious interrelationships between these parts give the system its

functionality. It is important to note that ologs can be constructed

based on modeling and simulation, experimental studies, or

theoretical considerations that essentially result in the understand-

ing necessary to formulate the olog. This has been done for the

proteins considered here based on the results from earlier work

which provided sufficient information to arrive at the formulation

of the problem as shown in Figure 3.

Table 2. Fiber product diagrams in the olog.**

Object Fiber product object name Defining attributes Equated terms ‘‘Idea’’

A a one-dimensional system
of bricks, glue, and lifeline

DrARG DRHrG A system of bricks, glue, and lifeline is defined as
‘‘one-dimensional’’ if its structure graphs (brick/
glue) and (brick/lifeline) are both chains.

C a brittle system of bricks
(b) and glue (g)

FrCRM FRQrM A system is defined as ‘‘brittle’’ if its failure
extension is roughly equal to the failure
extension of its glue.

E a ductile system of bricks
(b) and glue (g)

FrERO FRQrO A system is defined as ‘‘ductile’’ if its failure
extension is much greater than the failure
extension of its glue.

F a one-dimensional sequence
(S) of bricks (b) and glue (g)

DrFRJ DRHrJ A system of bricks and glue is defined as ‘‘one-
dimensional’’ if its structure graph is a chain.

I a threesome (b,g,L) of building blocks,
serving as bricks, glue, and lifeline

MrIRK MRQrK A strong-glue element is defined as ‘‘lifeline’’ if
its resting extension is roughly equal to the
failure extension of a glue element.

K a threesome (b,g,S) of building blocks,
serving as bricks, glue, and strong-glue

NrKRL NRRrL A ‘‘brick/glue/strong-glue threesome’’ is defined
to be a brick/glue pair and a brick/lifeline pair
where the bricks are the same in both instances.

L a pair (b,S) of building blocks,
serving as bricks and strong-glue

MrLRP MRQrP Two building blocks, one of which can connect
together two instances of the other, are defined
as ‘‘bricks and strong-glue’’ if their failure
extensions are roughly equal.

N a pair (b,g) of building blocks,
serving as bricks and glue

OrNRP ORQrP Two building blocks, one of which can connect
together two instances of the other, are defined
as ‘‘bricks and glue’’ if the failure extension of
the connector is much less than the failure
extension of the connectee.

**Some boxes in the olog (Figure 4) are defined in terms of others by use of so-called fiber products. For example, object A is defined in terms of three others in
relationship, DRHrG: given a system of bricks, glue, and lifeline (D), we observe its structure graph (H) and set it equal to a ‘‘chain graph’’ (G) – in so doing we define
‘‘one-dimensionality’’ for a system. A reader of this olog realizes that our notion of one-dimensionality is not up for interpretation, but directly dependent on the other
notions in this olog. By having this additional data, we confine the meaning of 24 labels (8 for boxes, 16 for arrows) in the olog. Thus this table serves to anchor the
interpretation of our olog more firmly to its original intention. [For a more diagrammatic description of the same information presented in the typical style of category
theory, see Figure S2.].
doi:10.1371/journal.pone.0023911.t002
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Olog of social network
In this section we construct a simple social network that may

appear to some as vastly different as a protein filament, and to

others as quite similar. The reason for the discrepancy is that

semantically and physically the situations have almost nothing in

common, but structurally and functionally they do. In fact, we will

prove category-theoretically that they are structurally and

functionally isomorphic in the sense that their ologs are identical.

We now describe the setting for our simple social network as

depicted in Figure 5. Imagine a building with sound-proof rooms

labeled 1 through 100, equipped with a controlled wireless

communication system connecting each pair of consecutive rooms.

In each room a human participant sits on a chair with a simple

wireless transceiver that can transmit and receive text messages

from the participant to the left (his or her predecessor) or the

person to the right (his or her successor).

We assume that participants in odd numbered rooms are

women and people in even numbered rooms are men, just for

pronoun clarity. The goal is to faithfully pass messages (sentences

of under ten words, say) from room 1 to room 100 and back the

other way as quickly as possible. The woman in room 1

(respectively the man in room 100) receives a message from the

experimenter. She then inputs it into her transceiver and sends it

to her neighbor (2), who passes it along to his neighbor (3), and on

Figure. 5. Visual representation of the social network. A, Overview over fundamental building blocks of our social networks. The social
networks considered here are composed of a linear arrangement of three elements, ‘‘bricks’’, ‘‘glue’’ and in some cases ‘‘lifeline’’. Thereby, as a design
rule, brick and glue need to alternate in order to achieve a stable structure. That is, two brick or glue elements immediately next to each other would
not stick together; where the reason is that bricks represent participants with transceivers and glue represents wireless communication that, in our
case, can only occur between neighboring participants. The ‘‘lifeline’’ is a third element that is introduced here, reflecting the situation when there is
still a physical connection of bricks even after the glue breaks. This reflects the existence of a ‘‘hidden’’ connection in that there exists a physical
passageway between two brick elements even after the communication over the wireless connection is no longer feasible. The hidden connection is
not ‘‘visible’’ before the glue is actually broken because, for reasons of efficiency, participants will choose to communicate the simple messages
wirelessly rather than verbally, as the latter requires much more effort. B, Mechanical behavior of each of the building blocks. The hidden length of
lifelines is reflected in the fact that the resting extension of the lifeline is roughly equal to the failure extension of the glue. In other words, lifeline
passageways are used only when wireless communication is no longer feasible. Both the brick and the lifeline have large failure extensions relative to
the glue because participants and their verbal communication function perfectly well in the presence of noise on the wireless channels. C,
Representation of a social network not allowing for face-to-face interaction under stress from wireless noise. This resembles a system without a
lifeline, as after noise on the wireless line reaches a critical point, messages can no longer be correctly conveyed. D, Representation of a social network
allowing for face-to-face interaction under high levels of wireless noise. This resembles a system with a lifeline, as after messages can no longer be
conveyed wirelessly, communication can still take place, due to the physical passageways as shown in D. As shown in E, the existence of a lifeline has
major implications on the functional properties of the system. A system with a lifeline (D) shows a ductile response, where a connection can be
sustained at large displacements as compared to the glue alone. In contrast a system without a lifeline (C) shows a brittle response, where only a
small displacement can be sustained until the material breaks (roughly the failure extension of the glue).
doi:10.1371/journal.pone.0023911.g005
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down the line until it is received by the man in room 100, who

submits it to the experimenter there. Thus the network has a task

of faithfully sending messages from one experimenter to the other;

if they fail to successfully transmit at least one message per hour we

say that the system has failed.

An obstacle can be added by allowing that the transmission of

messages between participants is not always error-free. That is, the

experimenters can adjust the amount of ‘‘noise’’ in the system,

resulting in messages that could be anywhere from error-free to

completely unintelligible. For example, the message ‘‘the party was

fun and exciting’’ may arrive in the next room as ‘‘tha partu was

fon and escitin’’. Upon receiving a garbled message, a participant

may take the time to ‘‘fix it up’’ before sending it along, thereby

helping to ensure that the message can be correctly submitted at

the end of the line. We define the ‘‘extension’’ of the system to be

the amount of noise, measured as the probability that a

transmission error occurs for an arbitrary letter in a message.

Given sufficient noise, it may happen that no messages can be

transferred successfully through the network. Thus, we define the

‘‘failure extension’’ of the network to be the amount of noise

present when this occurs. Similarly, the failure extension of a glue

element is the amount of noise at which a wireless transmission

cannot be successfully sent from one room to the next.

Finally, we can add lifelines to this picture by adding physical

passageways between consecutive rooms. Now, in case the noise

gets too high, individuals may walk or run through these ‘‘lifeline

passageways’’ and transmit a message by voice. During low levels

of noise, the doorways will typically not be used to relay

information because the text messaging is much faster, and hence

the existence of the lifelines will be ‘‘hidden’’. However, once the

transmission noise is severe enough to prevent good wireless

communication (that is, the glue breaks), these passageways come

into effect and save the network from breaking altogether. The

three basic building blocks of this social network are shown in

Figure 5A. For a rigorous analysis we also define a failure

extension for bricks and lifeline, and resting extension for lifeline

(Figure 5B). We define the failure extension of bricks and lifeline to

be much higher than the failure extension of glue (because

messages existing on a given transceiver or passed via voice are

much less affected by the noise level), and we define the resting

extension of our lifeline passageways to be the amount of noise at

which participants begin to use the passageways.

We now analyze the performance of the two types of networks

constructed here, without and with a lifeline. In the system without

a lifeline (Figure 5C) as soon as the noise level is high enough to

cause breakdown of one of the glue elements the system fails since

no more messages can be transmitted. In the system with lifelines

(Figure 5D), even though glue elements may break there is still the

possibility for signals to travel through the passageway such that a

much greater noise level (or extension) can be sustained. A brittle

network is one in which the failure extension is roughly the same

as the failure extension for each glue element. A ductile network is

one in which the failure extension is much greater than the failure

extension of each glue element. We thus hypothesize that social

networks with lifeline passageways will be ductile and that those

without lifeline passageways will be brittle. While the above

communication network is fairly degenerate as compared with, say

the Facebook network, the basic idea is similar. People are

connected with a set of ‘‘friends’’ and the basis of this friendship is

communication. Communication can be muddled by various

kinds of noise, but the use of additional forms of interaction (e.g.

talking in face-to-face meetings in addition to using online text

messages) increases the probability that the parties understand

each other.

We have constructed a system so that the olog describing it is

precisely the same as that defining the protein system of Section

2.1. The basic layout is in Figure 4, and Tables 1 and 2 add

‘‘rigidifying information’’. For example, the participants with their

transceivers are the bricks, the wireless communication between

neighboring rooms is the glue, the passageways are the lifelines.

We define brittleness and ductility exactly as we did in the protein

case and as described in the previous paragraph; in fact this is

forced on us because boxes C and E are fiber products (see also

Figure S2). The fact that the same olog describes our protein

materials and our social network should be considered as a

rigorous analogy or isomorphism between these two domains, as we

describe in more detail in the next section.

Analogy between protein filament and social network
The analogy between the protein strands (beta-sheet crystals

and beta-helices) and the social network experiment is as follows:

In both cases a network (protein/social) consisting of bricks (amino

acid clusters/human participants) connected together by glue (H-

bond cluster/wireless communication) is subject to pulling (axial

extension/error-producing noise) and eventually reach a breaking

point (when the maximum extension is reached/transmission rate

drops to zero). Lifelines (additional physical connections via

covalent links/passageways) serve to increase the ductility (failure

extension of network divided by failure extension of individual glue

elements/ditto) of the network. Table 3 gives a complete list of the

meaning of all labels in the protein and social network.

We now rigorously show that the two situations can be modeled

by precisely the same olog. Thus the olog sets out a space of

possible systems that includes everything from proteins to social

networks (and potentially many other realizations), any two

instances of which must be analogous, at least to the level of

detail found in Figure 4 and the associated tables. If one desires

additional detail, for example to add a precise meaning for resting

extensions, or even real numbers, one would simply expand the

olog to capture these ideas. A key result from our discussion is that

the interpretation of what b, g and L mean in different systems can

be distinct (proteins, polymers, music, etc. can have different

physical realizations of these concepts). Yet, their fundamental

properties and how they relate to others – other elements, different

scales in hierarchies, etc. – are defined properly in the olog, and

mathematically expressed not only as a fundamental property but

in addition as functors to other elements in the system. For physical

systems a key aspect of understanding the interplay of building

blocks can for instance be expressed in scaling laws that define

properties as a function of ratios of length-scales or energy levels,

which fundamentally define how elements behave and interact

with others. The general presentation of such relationships in

networks is what is missing in current theories, and is where ologs

present a powerful paradigm for de novo design of biologically

inspired systems that span multiple hierarchical levels. This is

because ologs achieve a rigorous description of the synergistic

interactions of structures and mechanisms at multiple scales, which

provides the basis for enhanced functionality despite the reliance

on few distinct building blocks.

It is important to note that for the sake of the analogy discussed

here the two very different domains (protein vs. social network)

were designed in a way to show that they could have identical

conceptual descriptions at a very high level of detail. More detail

could show differences between these two domains. For example,

an observation we purposely did not include is that the bricks in

our social network need to breathe and eat. It is impossible (and

perhaps not desirable in some cases) to include every detail of each

system – our goal was to emphasize the essential parameters, and
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to provide a level of abstraction that emphasizes the key elements

that define functional properties. Furthermore, whereas it may be

rare for two different scientific studies to result in identical ologs,

finding reusable parts should be quite common. In our olog, the

notion of bricks being connected together by glue to form the

structure of a graph is surely reusable not only within materials

science but throughout engineering.

Of course, the biological system was strongly simplified and we

focused only on a single aspect within the vast range of properties

in biological materials. Similarly, our social network was contrived

to fit the olog of the protein. This analysis does not claim to

describe the formation of ‘‘all’’ complex protein assemblies but

shall serve as a generally comprehensible example for a

methodology which puts these kinds of analogies in a concise

mathematical framework, where future work could emphasize on

applications to more complex cases. It shall thus serve as an

impetus for further studies in this field. In fact, without the

classification as a category theoretic transformation, such analogies

have been recently used to compare active centers of proteins, that

means a cluster of amino acids that have a high centrality in the

amino acid network of the hosting protein by their participation in

enzyme catalysis and substrate binding, to ‘‘strangers’’ in social

networks and top predators in mammalian networks [51]. Creative

elements, a highly specific subset of these central residues, occupy

a central position in protein structure networks. They, among

other things, give non-redundant, unique connections in their

neighborhood, integrate the communication of the entire network,

and accommodate most of the energy of the whole network. In

atypical situations they become especially relevant due to their

transient, weak links to important positions such as hubs. In

mammalian networks top predators take the role of active centers

as they act as couplers of distinct and dissimilar energy channels

Table 3. Analogy between protein and social network.***

Type Type Labels Protein Specific Social-network Specific

A a one-dimensional system of
bricks, glue, and lifeline

beta-helix social network with wireless & physical
passageways

B a one-dimensional system of
bricks and glue without lifeline

beta-sheet nanocrystal social network with wireless, without physical
passageways

C a brittle system (S) of bricks (b) and glue (g) brittle protein filament brittle social network

D a ‘‘chain’’ graph *R*R* … R* chain shape for protein chain shape for network

E a ductile system (S) of bricks (b) and glue (g) ductile protein filament ductile social network

F a one-dimensional system (S) of bricks
(b) and glue (g)

beta-helix / beta-sheet nanocrystal social network

G a system consisting of bricks connected by
glue and lifeline, both structured as in graph G

lifeline protein of specified shape lifeline social network of specified shape

H a graph shape of protein shape of network

I a threesome (b,g,L) of building blocks,
serving as bricks, glue, and lifeline

amino cluster, H-bond, backbone transceiver, wifi system, physical passageway

J a system consisting of bricks connected
by glue, structured as in graph G

protein of specified shape social network of specified shape

K a threesome (b,g,S) of building blocks,
serving as bricks, glue, and strong-glue

amino acid cluster, H-bond, backbone transceiver, wifi system, physical passageway

L a pair (b,S) of building blocks, serving as
bricks and strong-glue

amino acid cluster, backbone transceiver, physical passageway

M a pair (R,r) of real numbers such that
R is roughly equal to r

e.g. R = 20.5 r = 23.45 e.g. R = 20.5 r = 23.45

N a pair (b,g) of building blocks, serving
as bricks and glue

amino acid cluster, H-bond transceiver, wifi system

O a pair (R,r) of real numbers such that R..r e.g. R = 100 r = 20.6 e.g. R = 100 r = 20.6

P a pair (B1,B2) of building blocks, such
that B2 can connect two instances of B1

e.g. amino acid and backbone e.g transceiver and wifi

Q a pair (x,y) of real numbers e.g. x = 20.55, y = 50.6 e.g. x = 20.55, y = 50.6

R a brick amino acid cluster transceiver

S a glue H-bond cluster wifi connection

T a lifeline backbone physical passageway

U a building block basic unit of material basic unit of social interaction

V a real number e.g. 181.2 e.g. 181.2

W a resting extension e.g. 61 Angstrom e.g. 1/100 error/bit

***Because our olog (Figure 4) was designed to abstract away the particulars of either the protein or the social network (using terms like ‘‘brick’’ instead of ‘‘amino-acid
cluster’’ or ‘‘transceiver’’), this table serves to remind the reader of the particulars in each case. Each type in the olog is described in these two cases. Some types, such as
‘‘a real number’’, stand on their own and we merely give examples. Others, such as ‘‘a one-dimensional system of bricks, glue, and lifeline’’ require a bit more description
in the concrete cases. For more on this, see relevant sections in the text in ‘‘Results and Discussion’’. This table provides the necessary description to connect the
concrete formulations in the case of our protein and social network to the abstract formulation given by Figure 4.
doi:10.1371/journal.pone.0023911.t003
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and increase the stability of the ecosystem’s network whereas in

social networks ‘‘strangers’’ – often innovators and successful

managers – occupy ‘‘structural holes’’. They show exactly the

same functional behavior as the active centers in protein structure

networks and thus these networks are connected by structure

preserving transformations or functors.

While we cannot discuss it here in detail (as it would be out of

scope of this article), the category-theoretic notion of functors,

which formally connect one olog to another, will eventually allow

scientists in vastly different fields to share their work by rigorously

connecting together their ologs. This opens enormous opportu-

nities for design of novel functional properties by drawing from

the understanding gained in diverse fields. Observations made in

one field, e.g. about the dynamic response and transformation of

active centers after repeated stress and the re-organization of the

network topology, lead to insights in other fields, e.g. about the

flow of novel information and direction of evolution in companies

with well-connected collaborators whose contact structure

increases the performance in uncertain environments or in crisis

[51,52,53]. Other recent studies of the characteristics of

biological protein networks showed that the modular structure

of these networks improves the robustness against hub malfunc-

tion while increasing vulnerability against random failure which

stands in contrast to the behavior of typical non-biological

networks such as the Internet [54]. Yet, another similar analogy

connects the strength of solids to the death of living organisms

where structural defects correspond to biological defects in the

organism such as cancer cells [55]. Both systems are treated

mathematically equivalent (here via Dynamic Weibull Statistics),

an essential precondition for a rigorous functorial transformation.

Insights gained from these types of studies accompanied by a

systematic description of its functional features may help in the

construction of artificial networks that inherit the advantageous

properties of the biological archetype.

Conclusion
A unique aspect of the analysis provided here is that we

described a rigorous analysis of the conceptual interaction rules in

protein materials and establish a direct link to those of a social

network via the use of category theory. This qualitative account

will allow us to draw direct analogies to existing models of complex

hierarchical structures such as those from social networks, and

potentially linguistic theory where similar problems have been

studied, and enables the utilization of insights and design

paradigms across disparate fields of the science of hierarchical

systems (Figure 6). The presented key concepts provide a generic

framework that has the potential to unify existing understanding

derived from the myriad of existing studies of individual protein

materials such as bone, silk, or cells and many others, where a

major limitation was that no unifying framework that applies

generally to all such materials has yet been proposed. This

paradigm and associated design rules, which are applicable to

other complex systems such as music, engineered technology and

materials, or food recipes, could emerge as an exciting new field of

study and make critical contribution to the field of materiomics for

which it serves as a central tool to describe structure-function

relationships for hierarchical systems.

Future directions, open research questions, and the impact of an

increased understanding of hierarchical protein materials is

discussed at three levels with increasing generality: i), impact on

protein material synthesis (design, engineering and manufacturing

or novel biomaterials), ii), impact on bioinspired nanoscale

material design and assembly (e.g. hierarchical materials such as

fibers, yarns or armors), and iii), impact on macro-scale systems

design and engineering (e.g. design of cars, airplanes etc. where the

merger of the concepts of structure and material across all the

scales provides opportunities for more efficient systems). Immedi-

ate future work could be directed towards applying the concept of

ologs to specific hierarchical biological materials, such as to silk or

Figure 6. Schematic illustration of the approach discussed here, the representation of complex hierarchical systems such as
biological materials (e.g. silk) and language in the same category theory space (olog). The description of how functional properties
emerge in different hierarchical systems can be rigorously described using this approach, and fundamental insight can be derived and compared
between different systems. This finds immediate applications in the design of synthetic systems (e.g. novel fiber and bulk materials with tunable
functional properties). The poem ‘‘The Road Not Taken’’ shown on the right written by Robert Frost (March 26, 1874 - January 29, 1963), published in
1916 in the collection Mountain Interval. Text from: http://en.wikisource.org/wiki/The_Road_Not_Taken.
doi:10.1371/journal.pone.0023911.g006
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bone that show a greater complexity than the simple problems

reviewed here. While the resulting ologs are more complex, the

basic approach is identical and the main insights discussed here

should still hold. Eventually, the olog shown in this paper (Figure 4)

could be implemented in a computational model, which will open

the possibility for design optimization using numerical algorithms

or make it easier to reuse existing ologs for the design of new ones.

Supporting Information

Figure S1 Commutativity in the olog of the protein. In

each of these eight diagrams, there are two paths from the upper

left-hand box to the lower right-hand box. By stating that these

diagrams are commutative, we are saying that these two paths are

equivalent – given the same input they produce the same output.

For example it is declared 30;39 = 32;35 : NRU, which means

that starting with a pair (b,g) of building blocks serving as bricks

and glue, one can obtain a building block in two ways, but either

way the answer is the same: the brick. Similarly, 31;40 = 32;36 :

NRU, which means that again starting with (b,g) we can again

obtain a building block in two ways, but either way the answer will

be the same: glue. An example of a non-commutative diagram

found in the original olog is: 31;40 ? 30;39 : NRU. Starting with

a pair (b,g), the path 31;40 produces its glue element whereas the

path 30;39 produces its brick element. These facts are in some

sense obvious, but to make ologs a rigorous system such facts must

be recorded.

(PDF)

Figure S2 Fiber products in the olog of the protein. In

each case, the upper left-hand box is the ‘‘fiber product’’ of the rest

of the square. The property of being a fiber product defines the

upper left-hand object: for example the notion of ‘‘one-

dimensionality’’ in box A is defined for a system of bricks, glue,

and lifeline by examining the structure of that system as a graph,

and forcing that this graph is a chain graph (i.e. the elements are

connected one to the next in a line).

(PDF)
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