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Abstract

The investigation of community structure in networks has aroused great interest in multiple disciplines. One of the
challenges is to find local communities from a starting vertex in a network without global information about the entire
network. Many existing methods tend to be accurate depending on a priori assumptions of network properties and
predefined parameters. In this paper, we introduce a new quality function of local community and present a fast local
expansion algorithm for uncovering communities in large-scale networks. The proposed algorithm can detect
multiresolution community from a source vertex or communities covering the whole network. Experimental results show
that the proposed algorithm is efficient and well-behaved in both real-world and synthetic networks.
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Introduction

Nowadays, there are growing interests in analyzing the

complex networks, such as the World Wide Web [1], citation

networks [2], online social networks [3], and metabolic

networks [4]. A network is always expressed as a graph

consisting of vertices, representing entities, and edges, indicat-

ing relationships between entities. A common feature of these

complex networks is community structure [5–7]. A network

community is usually regarded as a group of vertices that are

more densely connected within the group than the rest of the

network. These communities usually indicate a meaningful

topological relationship between entities within the network

[5,8]. Community discovery within networks is an important

problem with many applications in a number of disciplines

ranging from social network analysis to image segmentation

and from analyzing protein interaction networks to the circuit

layout problem.

A large number of methods have been presented for detecting

communities in complex networks [9,10]. For example, many

community detection algorithms have been created utilizing

greedy optimization of a modularity function Q [11,12].

However, any algorithm using Q must necessarily be a global

method, requiring complete knowledge of the entire network.

Meanwhile, it has been shown that modularity Q is not a scale-

invariant measure, and hence, by relying on its maximization,

detection of communities smaller than a certain size is impossible.

It is well known as the resolution limit problem [13]. For many

real-world networks, such as the Web graph and social networks,

which are extremely huge and fast evolving, their global

structures are almost impossible to consider. Therefore, existing

global approaches have difficulty in handling these large, real-

world networks.

Recently, researchers have proposed several methods for

identifying communities based on the local link structure of a

network [14]. P. Bagrow et al. [15] explored the local module of a

source vertex through breadth first search. A local community is

found until the expansion rate falls below some predefined

threshold. This approach works well only if the source vertex is

enclosed in the middle of the module. A. Clauset [16] proposed a

new measure to detect communities by using a local optimization

of a metric called local modularity, which only considers vertices

within the boundary of a sub-graph. However, this method is

sensitive to the join number parameter t, which must be specified

by the user. The LWP algorithm proposed in [17] defines a

different local modularity measure, which is closely related to the

idea of a weak community [18]. X. Xu [19] proposed a density-

based network clustering method for community detection.

However, like other density-based clustering methods, it is

sensitive to a minimum similarity threshold parameter, and it

provides no automated way to find the parameter. Another

important feature of complex networks is the intrinsic hierarchical

community structure. So the revealed communities depend on the

scale at which the network is examined [20–23]. A. Lancichinetti

et al. [20] proposed a hierarchical and overlapping community

detection method LFM based on a local fitness measure, which

generates multiple communities to show hierarchies of the network

by randomizing the starting vertices and varying a resolution

parameter a.

To deal with the problems above, we present an approach for

online multiresolution local community detection in large-scale

networks. We introduce a similarity-based quality function of a

community, called tightness, and present a algorithm LTE (Local

Tightness Expansion), for revealing the natural community from a

starting vertex or communities covering a network via local

optimization of the tightness measure. Moreover, our method can
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identify overlapping communities in multiresolution by adjusting

an optional resolution parameter.

The rest of the paper is organized as follows. First, the tightness

measure and vertex adoption criterion for local communities are

formalized. Then the algorithm LTE is described in detail. The

experimental results are reported. Finally, the last section

summarizes the conclusions and suggests future work.

Methods

Measurement of local community
Usually, a network can be represented by a graph G~(V ,E),

where V is the set of vertices and E is the set of edges.

Community detection is the task of finding densely connected

sub-graphs in G. Our algorithm is based on the assumption

that a community containing a given vertex s is a sub-graph

that can be locally expanded from s with a predefined

criterion. In such local structures, a network is covered by

distinct vertex groups. In the processing, we only deal with the

vertices in a limited region, including the community C, the

neighborhood N, and the unknown part U . The structure is

shown in Fig. 1.

Generally, a community is measured by a specific property of

the vertices within it. For this task, different community

measurements have been proposed [16,20,24]. Here, we introduce

a structural similarity-based metric. First, we formalize some

notions of the local community.

Definition 1 (Neighborhood) Let G~(V ,E,w) be a weighted

undirected network and w(e) be the weight of the edge e. For a vertex

u[V , the structure neighborhood of vertex u is the set C(u) containing u and

its adjacent vertices which are incident with a common edge with

u : C(u)~fv[V jfu,vg[Eg|fug.
Then we can use the similarity functions based on the common

neighborhood to measure the similarity of any pair of adjacent

vertices. In this paper, we adopt a structural similarity measure

from the cosine similarity function used in [21] which effectively

denotes the local connectivity density of any two adjacent vertices

in a weighted network.

Definition 2 (Structural Similarity) Given a weighted undirected

network G~(V ,E,w), the structure similarity s(u,v) between two adjacent

vertices u and v is:

s(u,v)~

P
x[C(u)\C(v)

w(u,x):w(v,x)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x[C(u)

w2(u,x)
r

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x[C(v)

w2(v,x)
r : ð1Þ

When we consider an unweighted graph, the weight w(u,v) of any edge

fu,vg[E can be set to 1 and the equation above can be transformed to

s(u,v)~
jC(u)\C(v)jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jC(u)j:jC(v)j

p : ð2Þ

It corresponds to the so-called edge-clustering coefficient introduced by Radicchi

et al. [18].

Definition 3 (Tightness) By employing the structural similarity, we

introduce tightness, a new quality function of a local community C, which is

given as follows:

T(C)~
SC

in

SC
inzSC

out

, ð3Þ

where SC
in~

P
u[C,v[C,fu,vg[E

s(u,v) is the internal similarity of the community

C which is equal to two times of the sum of similarities between any two

adjacent vertices both inside the community C; SC
out~

P
u[C,v[N,fu,vg[E

s(u,v)

is the external similarity of the community C which is equal to the sum of

similarities between vertices inside the community C and vertices out of it.

The tightness measure is extended from the weak community

definition proposed by F. Radicchi [18]. Similar to other

community definitions [20,25], the tightness value of a community

C, denoted by T(C), will increase when sub-graph C has high

internal similarity and low external similarity. The whole network

without outward edges will achieve the maximal value 1, but the

problem here is to find the local optimization of the measurement

for each community.

Suppose a community C is detected from a certain vertex s. We

explore the adjacent vertices in the neighborhood set N of C, as

shown in Fig. 2. So the variant tightness of the community C
S
fag

becomes

T(C
[
fag)~ SC

inz2Sa
in

(SC
inz2Sa

in)z(SC
out{Sa

inzSa
out)

~
SC

inz2Sa
in

SC
inzSa

inzSC
outzSa

out

,

ð4Þ

where Sa
in~

P
fv,ag[E^v[C

s(v,a) and Sa
out~

P
fa,ug[E^u=[C

s(a,u). Then

the tightness increment of a vertex a joining in C is

DTC(a)~T(C
[
fag){T(C)

~
SC

inz2Sa
in

SC
inzSa

inzSC
outzSa

out

{
SC

in

SC
inzSC

out

~
2Sa

in
:SC

out{SC
in
:Sa

outzSC
in
:Sa

in

(SC
inzSa

inzSC
outzSa

out)(S
C
inzSC

out)
:

ð5Þ

If DTC(a)w0 holds, then 2Sa
in
:SC

out{SC
in
:Sa

outzSC
in
:Sa

inw0 which is

Figure 1. An illustration of the division of an abstract graph
into the local community C, its neighborhood N, and the edges
that connect N to the unknown vertices in U .
doi:10.1371/journal.pone.0023829.g001
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equivalent to
SC

out

SC
in

{
Sa

out{Sa
in

2Sa
in

w0. So we define the tightness gain

in the following.

Definition 4 (Tightness Gain) The tightness gain for the community C

adopting a neighbor vertex a can be denoted as

tC(a)~
SC

out

SC
in

{
Sa

out{Sa
in

2Sa
in

: ð6Þ

Let DSa
out~Sa

out{Sa
in and DSa

in~2Sa
in, the equation above is

equivalent to

tC(a)~
SC

out

SC
in

{
DSa

out

DSa
in

: ð7Þ

It means that the ratio of external similarity to internal similarity of

community C is greater than the ratio of external similarity

increment to internal similarity increment caused by adopting

vertex a. Obviously, this case will result in the increase of the

tightness value of community C. Therefore, tC(a) can be utilized

as a criterion to determine whether the candidate vertex a should

be included in the community C or not.

In the following, we introduce an optional resolution parameter

a to control the scale at which we want to observe the communities

in a network.

Definition 5 (Tunable Tightness Gain) The tunable tightness gain for

the community C merging a neighbor vertex a can be denoted as

ta
C(a)~

SC
out

SC
in

{
aSa

out{Sa
in

2Sa
in

ð8Þ

A parameter a[(0,?) is introduced as the coefficient of Sa
out

which can increase or decrease the proportion of the external

similarity of the candidate vertex a. Here, the criterion for

accepting a vertex a is changed to ta
C(a)w0. For a~1, the criteria

is moderate and can be used in most normal cases. However, if we

set a[(0,1), the value of Sa
out is reduced by this coefficient which

increases the chance of a candidate vertex a joining C and bigger

communities will be formed compared to the normal case with

a~1. On the contrary, it will result in the formation of smaller

communities in a network when we set aw1. Therefore, large

values of a yield small communities, small values instead deliver

large communities. In most cases, the whole network forms a

single community containing all the vertices with av0:01. In

contrast, several small groups containing two or more vertices are

identified when we set aw10.

The Algorithm
Like other local community inferring methods [16,17,20], our

local community detection algorithm is able to start from an

arbitrary vertex s in a network G. To find the densely connected

local community containing vertex s, our algorithm works with

two iterative steps: update step and join step. First, the starting

vertex s is added in C. In the update step, we refresh the

neighborhood set N , and calculate the structural similarities

between vertices in the community C and their neighbor vertices

in N. In the joining step, we try to absorb a vertex in N having

highest structural similarity with vertices in C into the community

C. If ta
c(a)w0, then the vertex a will be inserted into C.

Otherwise, it will be removed from N and other vertices will be

considered in the descending order of the structural similarity. The

two procedures above will be repeated in turn until set N is empty.

Then, the whole community C is discovered. Details of the local

community detection algorithm are given in the following.

Step 1. Pick a vertex s[V as the starting vertex. Let

C~fsg and N~C(s){fsg.
Step 2. Select the vertex a[N that possess the largest

similarity with vertices in C.

Step 3. If ta
c(a)w0, set C~C

S
fag and N~

N
S
C(a){C.

Step 4. Repeat Step 2 and Step 3 until N~1.

Unlike methods proposed in [16,17,20], which calculate the

quantitative metrics for every vertex in the neighbor sets and select

the vertex who produces the greatest increment of the metric to

join the community C, our method picks the neighbor vertex with

the largest similarity as the candidate vertex and calculate ta
c (a) to

determine whether it should be added to the community C or not.

The structural similarity reflects the local connectivity density of

the graph. The larger the similarity between a vertex outside the

community and a vertex inside it, the more common neighbors the

two vertices share, and the more probability they are at the same

community. Furthermore, unlike the quantitative metrics men-

tioned above, which need to be recalculated for each neighbors of

a new vertex added in the community, the similarity of each pair

of vertices and ta
c(a) in our algorithm are both calculated only

once by using a dynamical priority queue. So the execution of our

algorithm is accelerated and the accuracy remains high.

Figure 2. The tightness variant of a community C when a vertex a joins C.
doi:10.1371/journal.pone.0023829.g002
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The algorithm proposed above can be rerun from different

vertices not yet belonging to any community, to form the

communities covering the whole network. The process of our

local tightness expansion algorithm LTE are given as follows.

Step 1. Pick a vertex s that has not been assigned to any

community as the starting vertex.

Step 2. Detect the local community containing s by

using algorithm described above.

Step 3. Repeat from step 1 until all vertices in V are

visited.

Actually, if we allow a new community to be able to absorb

vertices possessed by other communities, then it will form

overlapping communities. Otherwise, non-overlapping communi-

ties are formed. In a word, our algorithm can identify either the

local community from a specified vertex or communities covering

the whole network. A problem for our non-overlapping commu-

nity detection method is that the result, to a certain extent,

depends on the visiting order of vertices [11,16], which means that

different starting vertices sequence may lead to different partition

of the network. However, our experimental results show that the

effect is slight, especially for networks with clear community

structures.

The running time of our community detection algorithm LTE is

mainly consumed in selecting the neighbor vertex with the largest

similarity in the process of forming the local communities. We

perform this function with a dynamic priority queue which is

implemented with a Fibonacci heap. So the computational

complexity for our non-overlapping local expansion method is

almost the same as generating the minimal spanning tree of a

graph with the Fibonacci heap, which has a computational

complexity of O(m+nlogn), where n is the number of vertices

inferred, and m is the number of edges in the network. For scale

free network, the running time complexity is O(nlogn).

When the overlapping communities are considered, the running

time is longer than the non-overlapping process because some

vertices will be visited multiple times. However, the computational

complexity is hard to estimate as it depends on the resolution

parameter a and intrinsic link structure of the network.

To illustrate the running time of the proposed algorithm LTE

and to compare it with other algorithms, we generate seven

networks where the numbers of vertices n range from 1,000 to

500,000 and the numbers of edges m are always ten times n. The

running times of our algorithm on the synthetic networks

compared with other local community detection methods (e.g.,

Clauset’s method, LFM and LWP) are plotted in Fig. 3. It shows

that our algorithm LTE with a~1 for detecting non-overlapping

communities can process a network with 500,000 vertices within

two minutes. We can observe that both the overlapping and non-

overlapping version of our algorithm LTE run much faster than

LFM , LWP and Clauset’s method.

Results

In this section,we evaluate our method using some real-world

datasets and computer-generated benchmark datasets. Our

algorithm is implemented in ANSI C++. All the experiments

were conducted on a PC with a 2.4 GHz Pentium IV processor

and 2 GB of RAM.

Test On Real-World Networks
To evaluate the accuracy of our algorithm, we first conduct

experiments on three popular real-world networks.

Zarchary’s karate club. Zarchary’s karate club is a well

known social network that describes the friendship relations

between 34 members of a karate club observed over two years by

Zarchary [26], as shown in Fig. 4. In that period, the club

members split into two distinct groups due to a contrast between

the owner (vertex 1) and the instructor (vertex 33) of the club.

We start from vertices 1 and 33 respectively to detect the

overlapping communities, and then detect communities from

other vertices which have not been absorbed in communities.

When we set a[½0:78,1:36�, four communities are discovered in

this network by our algorithm, as shown in Fig. 4. It is noteworthy

that vertex 10 is shared by two communities. It is absorbed by

these two communities since it connects the two communities in

the same way and the positive tightness gains are harvested when it

is merged by both of these two communities.

When we set the parameter aw1:36, the number of detected

community also increases along with the increase of the

parameter. Finally, we get a stable result in which all communities

are made up of two or a little more vertices. This is because the

tightness gain of the first absorbed vertex starting from an

arbitrary vertex must be positive, no matter how large the

parameter a is. If there are neighbors only having links to the

above two vertices, they are also enclosed in this community. We

find that in any networks, when the value of parameter a is large

enough, our algorithm always finds covers of networks as that

described above. When we set a[½0:50,0:60�, our algorithm detects

two communities in which vertices 5, 6, 7, 11, 17 form a

community and the remaining vertices are enclosed in the other

community. When av0:5, the whole network is identified as a

single community.

The algorithm LFM detects the same four communities in this

network with parameter a~1. The Clauset’s method also finds

four communities in this network. The only difference is that three

vertices 3, 9, 10 are identified as shared overlapping vertices by the

owner’s community and instructor’s community. Though the

result of our algorithm on Karate network does not match the

ground truth of the dataset, it is similar to results often found by

other methods, which means that it is topologically meaningful.

NCAA college-football network. The NCAA college-

football network is a representation of the schedule of American

Division I college football games for the 2000 season [1]. As shown

in Fig. 5, 115 vertices in the network represent teams (identified by

their college names), which are divided into eleven communities

(or conferences) and five independent teams (Utah State, Navy,

Notre Dame, Connecticut and Central Florida). 616 edges

represent regular season games between the two teams they

connect. The question is to automatically recover the conferences

within the network.

First, we use our algorithm LTE to detect non-overlapping

communities in this network. The visiting sequence of the vertices

is in the ascending order of the vertex number in the dataset.

When we set a[½0:79,1:10�, our algorithm identifies thirteen

communities within this network, as shown in Fig. 5. Among them,

seven conferences (e.g., Atlantic Coast, Mountain West, Big 10,

Big 12, Pac 10, SEC and Conference USA) are correctly

identified. Interestingly, the Mid-American conference is divided

into two small divisions in real-world: MAC East and MAC West,

which are correctly identified as communities respectively by our

algorithm. The remaining two communities closely resemble the

Sunbelt and Western Athletic conferences. Five independent

teams that do not belong to any conference tend to be grouped

with the conference with which they are most closely associated.

There are also a few failure cases for our algorithm. For example,

the team Boise State in the Western Athletic conference is

Local Multiresolution Community Detection
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incorrectly merged into the Sunbelt conference. We found that

Boise State played more games against Sunbelt teams than teams

in its own conference, which likely explains the inaccuracy. In

general, our algorithm is inaccurate in cases like this where the

network structure genuinely does not correspond to the real-world

organization of conferences. In other respects, our algorithm

performs remarkably well.

When we increase the value of a from 1.10 gradually, the

number of detected community increases and the size of each

community decreases correspondingly. Finally, we get the same

stable result described above. When we set a[½0:27,0:29� and

a[½0:19,0:24�, our algorithm can detect six and two communities

respectively in this network. The whole network forms a single

community when av0:19.

Based on the intrinsic conferences in the football network, we

compare the accuracy of our algorithm with other local methods

by calculating precision and recall scores for each conference [27].

We take every vertex in the network as the starting vertex, and

execute the algorithm LTE with a~1 to infer the local

community. Finally, the overall precision and recall scores of a

conference is the average of the detected communities starting

from each vertex in the conference. As shown in Table 1, our

algorithm LTE achieve much higher accuracy than the Clauset’s

method and LWP method in every conference. The result of

algorithm LFM is comparable to that of our method. Both LTE

algorithm and LFM algorithm correctly detect the conferences

Atlantic Coast, Big East, Mountain West, Pac 10, and SEC in this

network. In conferences Big 10, USA, Mid-American and Western

Figure 3. Running time comparison for our algorithm LTE with other state-of-the-art local community detection algorithms.
doi:10.1371/journal.pone.0023829.g003

Figure 4. The Zachary’s karate network and four communities discovered by our algorithm on it.
doi:10.1371/journal.pone.0023829.g004

Local Multiresolution Community Detection
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Athletic, the precision and recall values of LFM are a little higher

than that of our method. But our algorithm LTE obtains better

result on conferences Big 12 and Subelt. The LFM algorithm

performs well in this network because it using a dynamic process of

vertex selection for detecting a local community. When a new

vertex is absorbed in a community, the fitness variant of all the

vertices in the community will be recalculated and the vertices

having negative fitness contribution will be get out of the

community which will result in more densely connected

communities in sparse real-world networks.

Amazon co-purchase network. We also use our method to

study a large-scale co-purchase network from Amazon.com. This

network was collected in January of 2006, and has been studied in

[16,17]. In this network there are 585,283 vertices and 4,566,749

Figure 5. The NCAA college-football network and thirteen communities obtained by our algorithm on it with a[½0:79,1:10�. The
conferences are represented by the vertex groups and the detected communities are distinguished by different colors.
doi:10.1371/journal.pone.0023829.g005

Table 1. Accuracy comparison of local community detection methods for each conference in NCAA college-football network.

NCAA college-
football network Clauset LWP LFM LTE

conference name size Precision Recall Precision Recall Precision Recall Precision Recall

Atlantic Coast 9 0.7037 0.7054 1 1 1 1 1 1

Big 10 12 0.3889 0.39 0.8472 0.9226 0.9167 1 0.8819 0.9881

Big 12 12 0.9236 0.8251 1 1 1 0.8571 1 1

Big East 8 0.5625 0.4895 0.1719 0.1033 1 1 1 1

Conference USA 10 0.67 0.6686 0.1444 0.119 0.9 1 0.89 0.9889

Mid-American 12 0.9236 0.753 1 0.8571 1 0.8571 0.5 0.8571

Mountain West 8 0.8906 0.8026 0.1563 0.1169 1 1 1 1

Pac 10 10 0.82 0.7322 1 1 1 1 1 1

SEC 12 0.9236 0.7874 1 1 1 1 1 1

Sunbelt 7 0.5306 0.5365 0.1429 0.0897 0.4286 0.5 0.5102 0.6381

Western Athletic 10 0.62 0.5874 0.6091 0.6717 0.8 0.8889 0.74 0.8378

doi:10.1371/journal.pone.0023829.t001

Local Multiresolution Community Detection

PLoS ONE | www.plosone.org 6 August 2011 | Volume 6 | Issue 8 | e23829



edges with an average degree of 7.80. The vertices represent items

such as books, CDs and DVDs sold on Amazon’s Web site and the

edges connect items that are frequently purchased together by

customers.

As illustrative examples, we choose five digital media (four CDs and

one DVD) and five books as source vertices, as shown in Table 2.

These items were adopted in [17]. The CD ‘‘Alegria’’ and the books

‘‘Small Worlds’’ and ‘‘Harry Potter’’ were used in [16].

We find a community from each of the starting vertices above.

On the whole, the vertices in the communities are mostly works by

the same singer or author. Due to space limitations, we present

only five identified communities below. Fig. 6(A) shows the local

Table 2. Source vertices and sizes for illustrative examples of detected communities using our algorithm LTE in Amazon co-
purchase network.

source vertex vertex number type degree community size

Cirque Reinvente by Cirque du Soleil B00000F3V8 DVD 15 18

Alegria by Cirque du Soleil B000003FRF CD 11 25

Love Wants to Dance by Maria Muldaur B0002M5TB6 CD 14 20

Toddlers Sing by Music for Little People B00000C41T CD 10 6

Preschool Songs by Cedarmont Kids B000008UPJ CD 17 23

Molecular Biology of Cell by Bruce Alberts 0815332181 book 222 47

An Introduction to Bioinformatics Algorithms by
Neil C. Jones et al.

0262101068 book 89 43

Molecular Biology of the Gene, Fifth Edition
by James D. Watson

080534635X book 24 9

Small Worlds by Duncan Watts 0691117047 book 15 27

Harry Potter and the Order of the Phoenix by J. K. Rowling 0439358078 book 34 37

doi:10.1371/journal.pone.0023829.t002

Figure 6. Identified local communities from different starting vertex in the Amazon co-purchase network. (A) Local community for the
compact disc Algeria (ID B000003FRF), (B) local community for the DVD Cirque Reinvente (ID B00000F3V8), (C) local community for the compact disc
Love Wants to Dance (ID B0002M5TB6), and (D) local community for the book Molecular Biology of Cell (ID 0815332181) and the book Molecular
Biology of the Gene (ID 080534635X)(marked in yellow).
doi:10.1371/journal.pone.0023829.g006
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community for the CD ‘‘Alegria’’. All 25 items found in this

community are compact disks by Cirque du Soleil, the same as the

results found in [17]. Fig. 6(B) shows the local community for the

DVD ‘‘Cirque Reinvente’’. Compared with the result found by in

[17], the community found by our method is more accurate

because it contains all 18 DVDs produced by Cirque du Soleil and

excludes the books by Cirque du Soleil. Fig. 6(C) shows the local

community for the compact disk ‘‘Love Wants to Dance’’. All 20

items are compact disks of songs by Maria Muldaur, which covers

the items found in [17]. The compact disk ‘‘Sweet Lovin Ol Soul’’

by Maria Muldaur is only identified by our method. Actually, it

should be included in the community because it has more links

with the vertices in the community than with the vertices outside

the community.

Note that unlike the Clauset’s algorithm proposed in [16],

which may identify multiple communities as explores the network,

our algorithm only identifies one community for each source

vertex with a certain parameter. For example, starting from the

same vertex: the compact disc ‘‘Alegria’’ by Cirque du Soleil, the

Clauset’s algorithm will identify multiple communities including a

community of compact discs by Cirque du Soleil that corresponds

to our result, a community of DVD by Cirque du Soleil that

corresponds to the community we detect using the DVD ‘‘Cirque

Reinvente’’ by Cirque du Soleil as the source vertex, and another

community containing books and movies by Cirque du Soleil.

It is also discovered that some communities that start from

certain vertices will be totally included in or share some vertices

with other communities starting from other vertices. As is shown in

Fig. 6(D), the community starting from the vertex ‘‘Molecular

Biology of the Gene’’ (ID 080534635X) is wholly enclosed in the

community starting from the vertex ‘‘Molecular Biology of Cell’’

(ID 0815332181).

Therefore, the local communities identified by our local

expansion algorithm LTE are more uniform and reasonable,

Table 3. The detailed parameters of the generated benchmark networks.

Network n k maxk mu t1 t2 minc maxc on om

10000S 10000 20 50 0.1{0.8 2 1 10 50 0{0.3 2

10000B 10000 20 50 0.1{0.8 2 1 20 100 0{0.3 2

100000S 100000 40 100 0.1{0.8 2 1 50 100 0{0.3 2

100000B 100000 40 100 0.1{0.8 2 1 100 200 0{0.3 2

doi:10.1371/journal.pone.0023829.t003

Figure 7. Test of the accuracy of different community detection algorithms on LFR benchmark networks.
doi:10.1371/journal.pone.0023829.g007
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and will therefore provide more accurate information for future

recommendation.

Test On Synthetic Networks
So far, we have presented the experimental results of our algorithm

on several real-world networks. In this section, we use some synthetic

datasets to evaluate the performance of our algorithm.

LFR benchmark graphs. We use the Lancichinetti-

Fortunato-Radicchi (LFR) benchmark graphs [24,28] to evaluate

the accuracy of our algorithm. Two kinds of networks are generated

with different ranges of community size, where S means that the

sizes of the communities in the dataset are relatively small and B

means that the sizes of the communities are relatively large. The

detailed parameters of the benchmark networks are given in Table 3.

Some important parameters of the benchmark networks are: n:

number of vertices; k: average degree of the vertices; maxk:

maximum degree; mu: mixing parameter, i.e., each vertex shares a

fraction of its edges with vertices in other communities (the higher

the mixing parameter of a network is, the more difficult it is to

reveal the community structure); t1: minus exponent for the

degree sequence; t2: minus exponent for the community size

distribution; minc: minimum for the community size; maxc:

maximum for the community sizes; on: percent of the overlapping

vertices; om: number of memberships of the overlapping vertices.

First, we set the overlapping parameter on~0, and generate

eight networks for each type of dataset with mixing parameter mu
ranging from 0.1 to 0.8. When on~0, communities in the

generated networks are non-overlapped. We adopt the normalized

mutual information(NMI) to evaluate the quality of detected

communities which is currently widely used in measuring the

performance of graph clustering algorithms [24]. The accuracy of

our method is compared with other state-of-the-art community

detection methods: Clauset’s local modularity [16], LWP [17],

LFM [20] and BGLL [19]. For dealing with the possible effects of

the vertex visiting order, we execute our method ten times with

randomized vertex sequences and take the average as the final

result. We select the result with maximum NMI for the LFM

method which tries the parameter a by itself and shows

hierarchical module structure of the whole network.

The NMI scores of the four methods are plotted in Fig. 7. Our

algorithm gets NMI = 1 when muƒ0:5 on the two S-networks and

gets NMI = 1 when muƒ0:6 on the two B-networks, which means

a perfect match with the original network structure. We can see

that the accuracy of our method is higher than other three local

community detection algorithms (e.g., Clauset’s method, LFM and

LWP) on the generated networks, because our method use a

similarity-based quality function of local community and a proper

vertex adoption criterion. Note that the NMI values of the results

obtained by algorithm LWP on networks with mu§0:4 are all 0.

This is because the community definition of the algorithm LWP is

that the number of edges within the community should be more

than the number of edges between vertices in the community and

vertices outside it. However, none of the subgraphs can satisfy this

definition in the network with mu§0:4. We can also observe that

the obtained NMI values of our method LTE on the networks with

muƒ0:5 are almost the same as that of the method BGLL. But the

accuracy of our algorithm is lower than the method BGLL on the

networks with muw0:5 which shows that our algorithm has

Figure 8. Test of the accuracy of our algorithm on LFR overlapping benchmark networks.
doi:10.1371/journal.pone.0023829.g008
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difficulty to deal with the network with indistinct community

structure. BGLL is actually a global method by optimizing the

modularity function locally and is known as an efficient and

effective community detection method [13].

We also test the accuracy of our method with a~1 in detecting

overlapping communities in the networks with parameter

on~0:1,0:2,0:3, respectively. In this experiment, we adopt

Generalized Normalized Mutual Information (GNMI) proposed in [20]

to evaluate the quality of detected overlapping communities. Fig. 8

shows the evaluation results on the benchmark overlapping graphs.

We can see that our algorithm gets high precision. However, the

GNMI values decrease along with the increase of the parameter on,

because there are more and more vertices belonging to multiple

communities in the network when the value of parameter on
increases, which is increasingly difficult to be correctly identified.

Hierarchical benchmark networks. Here, we also test our

method on synthetic networks with built-in hierarchical community

structure. A benchmark network adopted by A. Arenes et al. [29] is

used. This benchmark network is a hierarchical version of the

classical benchmark proposed by Girvan and Newman [5]. There

are 256 vertices in the network, split into 16 groups with 16 vertices

on the first level. The 16 groups are ordered into four super-groups

at the second level, as shown in Fig. 9. The internal degree of

vertices at first level Zin1
and the internal degree of vertices at second

level Zin2
keep an average degree Zin1

zZin2
zZout~18. The

networks are indicated as H Zin1
{Zin2

, and we test the

performance of our method on the H13-4 and H15-2 networks

respectively. Our algorithm detects sixteen communities in both

networks when we set a~1, which matches exactly with the original

network’s structure. When we decrease the value of parameter a,

our algorithm can detect four communities and at last one

community in the two networks, respectively. The parameters a
for three different resolutions r1, r2 and r3 are given in Table 4.

Random networks. For evaluating the performance of our

method on random networks, we first test on the Erdos-Renyi

random graph. Graphs with 100, 200, 500, 1000 vertices are

generated where the connectivity probability p between each pairs of

vertices ranges from 0.01 to 0.8. We run our algorithm with a~1 for

detecting overlapping communities. We find that our method

discover only one community in the random networks with

parameter p§0:05. In the networks with pv0:05, our method

always finds covers of the whole networks consisting of a big

community as well as several small ones. We also test our method on

random scale-free graphs generated by the configuration model

(http://snap.stanford.edu/). After testing our algorithm on several

networks with different degree sequences, we find that our method

always identifies a big community containing over 90% of the vertices

along with several small communities in these networks. The above

results show that our algorithm tends to find a big community as well

as many small communities in the sparse random graph, while only

one community can be detected in the random graphs with dense

connections.

Discussion

In this paper, we present a novel local community quality

criterion, called similarity-based tightness, and design a greedy

algorithm LTE to infer the local communities in large-scale

undirected networks. The proposed method is able to identify

communities both overlapping and non-overlapping, and we show

that it is fast and scalable in large-scale networks. Moreover, we

describe that our algorithm is a multiresolution solution that can be

used freely to acquire communities at any resolution. Experimental

results on the real-world and synthetic datasets show that our

algorithm achieves good performance. In the future, we believe it is

beneficial to apply this method when analyzing large-scale online

networks like mobile communication networks and/or Web graphs.

Acknowledgments

The authors would like to thank Jame P. Bagrow for his thoughtful

comments on this paper. We thank Dr. A. Clauset, Dr. A. Lancichinetti

and Dr. F. Luo for providing the source codes of their proposed algorithms.

We also thank anonymous reviewers greatly for their valuable comments

which make this paper more interesting and informative.

Author Contributions

Conceived and designed the experiments: JH HS QS. Performed the

experiments: YL. Analyzed the data: JH HS QS. Contributed reagents/

materials/analysis tools: YL HS. Wrote the paper: JH YL TW.

References

1. Kleinberg JM, Kumar SR, Raghavan P, Rajagopalan S, Tomkins A (1999) The

web as a graph: Measurements, models and methods. In: COCOON’99:
Proceedings of the International Conference on Combinatorics and Computing.

Berlin, Heidelberg, Germany: Springer-Verlag. pp 1–18.

2. Hajra K, Sen P (2005) Aging in citation networks. Physica A 346: 44–48.

3. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks.

Nature 393: 440–442.
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