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Abstract

Butenolide [5-octylfuran-2(5H)-one] is a recently discovered and very promising anti-marine-fouling compound. In this
study, the acute toxicity of butenolide was assessed in several non-target organisms, including micro algae, crustaceans,
and fish. Results were compared with previously reported results on the effective concentrations used on fouling (target)
organisms. According to OECD’s guideline, the predicted no effect concentration (PNEC) was 0.168 mg l21, which was
among one of the highest in representative new biocides. Mechanistically, the phenotype of butenolide-treated Danio rerio
(zebrafish) embryos was similar to the phenotype of the pro-caspase-3 over-expression mutant with pericardial edema,
small eyes, small brains, and increased numbers of apoptotic cells in the bodies of zebrafish embryos. Butenolide also
induced apoptosis in HeLa cells, with the activation of c-Jun N-terminal kinases (JNK), Bcl-2 family proteins, and caspases
and proteasomes/lysosomes involved in this process. This is the first detailed toxicity and toxicology study on this
antifouling compound.
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Introduction

Biofouling is one of the most serious problems in the maritime

industry and aquaculture development. In the marine environ-

ment, submerged surfaces are often colonized by marine

organisms that have come to be called biofoulers, which are

marine organisms that attach to submerged surfaces. Biofoulers

increase the weight, drag and surface corrosion of ships, and lead

to huge costs to maintain mariculture systems and seawater

pipelines [1]. Antifouling compounds are used as biocides in

marine paints that are coated on the submerged surfaces to control

the preponderance of biofoulers. It is estimated that without

antifouling measures, the fuel consumption of ships would increase

up to 40% [2]. However, the toxicity of antifouling compounds is a

major concern. Tributyltin was a widely used antifouling

compound, but it was completely banned in 2008 from the

world’s oceans because of concerns over its toxicity [3]. Several

alternative antifouling compounds have replaced tributyltin,

although most of them are still too toxic to be used for the long

term [4]. Better and less toxic antifouling compounds are needed.

A chemically synthesized butenolide, 5-octylfuran-2(5H)-one

(Figure 1), is a very promising antifouling compound that has

been recently designed and patented by our laboratory. This

compound exhibits broad anti-fouling activity against major

fouling species, such as barnacles, bryozoans and the tube-building

polychaetes. Its antifouling activity has been demonstrated in a

field test [5]. The preliminary toxicity study showed that it has

very low toxicity in its target organisms as indicated by the high

pharmaceutical ratios (LC50/EC50), and it has a simple chemical

structure that makes it easy to be synthesized [5]. The toxicity of

this butenolide in other non-target marine organisms has not yet

been assessed in detail. For any new commercial antifouling

compound, the predicted no effect concentration (PNEC) should

be lower than the predicted environmental concentration (PEC)

both inside harbors and in shipping lanes [6]. Besides determining

its PNEC, it is also important to know the mechanism of toxicity of

a compound. However, due to the paucity of molecular reporters,

it is very difficult to study toxicology in marine organisms. We

therefore used other model organisms to study the possible mode

of action of butenolide. Zebrafish is widely used in pharmacology/

toxicology studies, because it is small, optically transparent,

accessible during development ex utero, and permeable to small

molecules. Its embryogenesis is also very well characterized and a

database of developmental defects (www.zfin.org) in zebrafish

(Danio rerio) is available. Developmental defects in zebrafish caused

by small molecules can be linked to a specific genetic pathway

known to cause the same defect [7,8]. On the other hand, cell

cultures are more suitable for in-depth molecular mechanism

studies, since they are simple and easy to control, and also have a

large molecular toolbox available. In this study, the PNEC of

butenolide was assessed using a toxicity study on non-target

organisms and the previously reported toxicity data on fouling
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(target) organisms [5]. Then, the acute toxicology of butenolide

was investigated both with zebrafish embryos and with the HeLa

cell line.

Materials and Methods

Chemicals
The antifouling compound 5-octylfuran-2(5H)-one (here re-

ferred to as butenolide) was synthesized by Shanghai Medicilon

Inc (Shanghai, China) The chemical structure for this compound

is shown in Figure 1).

Animal/cell culture and toxicity tests
Tables 1 and 2 summarize the methods used in the cell and

animal culturing and toxicity tests, respectively. To identify a

suitable cell line for this toxicology study, the dosage-dependent

cytotoxicity of butenolide was determined in several cell lines with

a MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-

mide) assay [9]. From HeLa, SF9 cells or primary neuron cultures,

the supernatant was removed and 20 ml of MTT (2.5 mg ml21)

were added to each well. After incubation at 37uC for 4 h, 100 ml

of dimethyl sulfoxide (DMSO) were added to each well and

incubated for 20 min. The absorbance of each well was then

measured at 570 nm by a Thermo scientific MultiskanH FC

multiplate photometer (Waltham, MA, USA). The inhibitory

effect or cytotoxicity of butenolide was then calculated based on

the following equation:

Cytoxocity %ð Þ~(ODno butenolide{ODtreatment)=

(ODno butenolide{ODno cell)|100%

To HL-60 and K562 cells, 20 ml of MTT (2.5 mg ml21) were

added to each well and incubated for 4 h. They were centrifuged

for 5 min at 1000 rpm and 100 ml of DMSO was added to the

pellet and incubated for 20 min to solubilize the dark-blue

formazan. Absorbance of the solution was measured at 570 nm

and the cytotoxicity was calculated as described above.

Cell cultures of Skeletonema costatum, in the exponential growth

stage were diluted 20 fold in an f/2 culture medium (Table 2). The

cell densities at the onset and completion of the experiment were

measured by counting on a hemocytometer [10].

Calculation of predicted no effect concentration (PNEC)
The predicted no effect concentration (PNEC) was calculated

according to the equation below using the lowest no effect

Figure 1. The chemical structure of butenolide [5-octylfuran-
2(5H)-one].
doi:10.1371/journal.pone.0023803.g001

Table 1. Source and culture methods of organisms used in the toxicity tests.

Toxicity test preparation

Culture
medium Culture condition Source of organism

HeLa cell 1 Seeded at 4000–5000 cells well21, 24 h in 5% CO2 at 37uC ATCC, Manassas, VA

Ptk2 cell 2 Seeded at 50000 cells well21, 24 h in 5% CO2 at 37uC ATCC, Manassas, VA

Sf9 cell 3 Seeded at 4000–5000 cells well21, 24 h at 28uC, 75 rpm shaking ATCC, Manassas, VA

HL-60 cell 4 Seeded at 50000 cells well21, 24 h in 5% CO2 at 37uC ATCC, Manassas, VA

K562 cell 4 Seeded at 50000 cells well21, 24 h in 5% CO2 at 37uC ATCC, Manassas, VA

Primary cortical neuron 12 Seeded at 6000 cells well21, 15 d in 5% CO2 at 37uC. One third of the
medium was replaced by fresh medium every 4 days of culture

Embryonic day 18 (E18) rats [35]

Melita longidactyla 5 Animals of 0.5–1 cm were maintained .24 h at 2261uC Hong Kong coastal waters

Tigriopus japonicus 5 Maintained .48 h under 2261uC, fed with micro algae Isochrysis galbana 24.434335N,118.090925E

Daphnia magna 7 Fed stock daphnids with green alga Chlamydomonas reinhardtii.
Collect young (,24 h) daphnids

Institute of Hydrobiology, Chinese
Academy of Sciences

Lutjanus erythropterus 5 Juvenile fish of 3–4 cm were maintained .24 h at 2261uC Aqua farm in Shen Zhen, China

Danio rerio 10 Cultured at 28uC. Collect freshly fertilized embryos Provided by Dr. Zi-Long Wen

Skeletonema costatum 11 Cultured at 24uC to exponential growth phase
and seeded at 8*108 cells ml21

Hong Kong coastal waters

1—Minimum essential medium (MEM) containing 10% fetal bovine serum (FBS), 100 mg l21 penicillin and 100 mg l21 streptomycin.
2—Dulbecco medium supplemented with 10% heat-inactivated fetal calf serum.
3—Sf-900 II SFM.
4—RPMI-1640, supplemented with 10% heat-inactivated fetal calf serum.
5—Fully aerated seawater at salinity: 3361%.
6—Fully aerated 0.22 mm filtered seawater at salinity: 3361%.
7—Glass-fiber (GF/C Whatman, Maidstone, UK) filtered freshwater.
8—ISO testing water (1) [36].
9—Fully aerated 1 mm filtered seawater at salinity: 3361%.
10—60 mg ml21 instant ocean sea salts dissolved in water.
11—f/2 culture medium [37].
12—Neural basal medium with B27 (Invitrogen, Carlsbad, CA, USA) and 0.5 mM GlutaMAX.
doi:10.1371/journal.pone.0023803.t001

Butenolide’s Toxicity and Toxicology
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concentration (NEC) or L(E)C50 and assessment factor (AF) [4,6].

PNEC~lowest NEC or L Eð ÞC50=AF

Histological analysis and light microscopy
Zebrafish embryos treated with 1.25 mg ml21 butenolide from the

two-cell stage or the control embryos were fixed at 48 hours post

fertilization (hpf) in 10% formalin in PBS overnight at 4uC. The

samples were dehydrated in ethanol and infiltrated in paraffin resin

(paraplast plus, McCormick Scientific, Richmond, USA) following the

manufacturer’s instructions. The specimens were then sectioned at

7 mm using a Leica Reichert-Jung 820-II Histocut Microtome (Leica

Microsystems, Wetzlar, Germany). Histological hematoxylin-eosin

(HE) staining of the sections was subsequently carried out using

standard protocols [11]. The sections were then examined under an

Olympus BX51 upright microscope connected to a Spot insight QE

digital camera. The whole mount/live zebrafish embryos were

manually dechorionated and examined under a Nikon MULTI-

ZOOM AZ100 fluorescent microscope (NIKON CORPORATION,

Tokyo, Japan) connected to a SPOTH FLEX color camera (SPOT

Imaging Solutions, Diagnostic Instruments, Inc., Sterling Heights, MI,

USA). Images were taken with the SPOTH advanced software (SPOT

Imaging Solutions, Diagnostic Instruments, Inc., Sterling Heights, MI,

USA) and then analyzed with Helicon focus (Helicon Soft Ltd.,

Kharkov, Ukraine) (for whole mount images) and Adobe Photoshop

CS3 (Adobe Systems Incorporated, San Jose, CA, USA).

Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) assay

Zebrafish embryos treated with 1.25 mg ml21 butenolide from

the two-cell stage or the control embryos were fixed at 24 hpf in

4% paraformaldehyde in PBS for 45 min at room temperature.

Whole-mount TUNEL staining of zebrafish embryos was

performed using a fluorescein in situ cell death detection kit

(Roche Applied Science, Indianapolis, USA) according to the

manufacturer’s protocol. Images were taken under a Nikon

MULTIZOOM AZ100 fluorescent microscope with a GFP-B

filter set (EX 460–500 nm, DM 505 nm, BA 510–560 nm) and a

SPOTH FLEX color camera as described above.

Western blotting
HeLa cells were cultured in 60 mm Petri-dishes. Cells at

different time points after butenolide treatment were collected and

lysed in NP-40 lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM

NaCl, and 1% NP-40) in the presence of protease inhibitors.

Whole cell lysates (60 mg lane21) were separated on 10% SDS-

PAGE and transferred onto a Hybond ECL nitrocellulose

membrane (Amersham Biosciences, Piscataway, NJ, USA). After

blocking, the membranes were incubated for 3 h at room

temperature or overnight at 4uC with antibodies at a dilution of

1:1000. The membranes were then incubated with horseradish

peroxidase-conjugated secondary antibody at a dilution of 1:5000

for 1 h and developed using ImmobilonTM Western detection

reagents (Millipore, Billerica, MA, USA).Information on the

antibodies used in the experiments is summarized in Table 3.

Apoptosis suppression assay
To test the inhibitors of the apoptosis regulators, HeLa cells

were seeded into a 24-well culture plate. Inhibitors were added 1 h

before the application of 100 mg ml21 butenolide. The inhibitors

tested were 10 mM ALLN (N-Acetyl-Leu-Leu-Nle-CHO), 10 mM

MG132 (Calbiochem, La Jolla, CA, USA), 50 mM Z-VAD-FMK

(Promega, Madison, WI, USA), and 50 mM SP600125 (LC

Laboratory, Woburn, MA, USA). The cytotoxicity was measured

Table 2. Toxicity test methods.1

Test solution
Tested butenolide
concentrations (mg ml21) Toxicity test set up Endpoint

HeLa cell 1 0, 5, 10, 25, 50, 75, 100, 200 96-well plate, 3 replicates 17 h cytotoxicity

Ptk2 cell 2 0, 6.25, 12.5, 25, 50, 75, 150 96-well plate, 3 replicates 12 h cytotoxicity

Sf9 cell 3 0, 5, 10, 25, 50, 75, 100, 200 96-well plate, 3 replicates 24 h cytotoxicity

HL-60 cell 4 0, 12.5, 25, 50, 75 96-well plate, 3 replicates 24 h cytotoxicity

K562 cell 4 0, 12.5, 25, 50, 75 96-well plate, 3 replicates 24 h cytotoxicity

Primary cortical neuron 12 0, 6.5, 12, 25, 50, 100 96-well plate, 3 replicates 48 h cytotoxicity

Melita longidactyla 6 0, 1, 1.75, 2.5, 3.25, 5 10 animals per 100 ml test
solution64 replicates

48 h lethality

Tigriopus japonicus 6 0, 0.5, 1, 1.75, 2.5, 3, 4 10 animals per 25 ml glass beaker
containing 10 ml test solution64
replicates

48 h lethality

Daphnia magna 8 0, 0.032, 0.16, 0.80, 4.0, 20 10 animals per 50 ml FalconTM

tube containing 25 ml test
solution64 replicates

48 h immobilisation

Lutjanus erythropterus 9 0, 0.06, 0.14, 0.29, 0.56, 0.70,
1.0, 1.5, 2.0, 2.5

10 fishes per 5 L flask containing
4 L test solution63 replicates

48 h lethality

Danio rerio 10 0, 0.5, 1.0, 1.25, 2.5, 3.0, 3.5,
4.0, 4.5, 5.0

#5 embros well21 in 24-well
plate (1 ml test solution well21)

Development of pericardial edema
and lethality at 55pfh (for EC50 and
LC50, respectively)

Skeletonema costatum 11 0, 0.08, 0.4, 2, 10, 50 24-well plate, 1.3561016 quanta
sec21 cm22, 14 h/10 h light/dark
cycle, 4 replicates

5 d IC50

1Please see Table 1 for footnotes.
doi:10.1371/journal.pone.0023803.t002
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at 4 h by the MTT assay as described above. To investigate the

effects of over-expression of Bcl-2 family proteins on butenolide-

induced apoptosis, HeLa cells seeded in 35 mm Petri dishes were

transfected with 1 mg of empty vector, Bcl-2, Mcl-1 or Bcl-XL

constructs by lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA)

and incubated in an MEM medium containing 5% FBS at 37uC
for 24 h before the application of 100 mg ml21 of butenolide. The

Bcl-2, Mcl-1 and Bcl-XL constructs tagged with green fluorescent

protein were generously provided by Professor Donald C. Chang

of HKUST. The cell toxicity was measured after 3 h of butenolide

treatment by counting dead cells and total cell numbers under a

fluorescent microscope.

Results

Butenolide’s acute toxicity
The results of acute toxicity tests of butenolide in several marine

and freshwater non-target organisms belonging to different taxo-

nomic groups are summarized in Table 4. The lowest L(E)C50 was

0.0168 mg ml21 (Hydroides elegans larvae) [5] among the freshwater or

saltwater representative species of three taxonomic groups of three

trophic levels (phytoplankton: Skeletonema costatum; crustaceans: Balanus

amphitrite larvae, Melita longidactyla, Tigriopus japonicus and Daphnia

magna; and fish: Lutjanus erythropterus and Danio rerio embryos) as well as

two additional marine taxonomic groups (Bugula neritina larvae and

Hydroides elegans larvae) [5]. According to the technical guidance on

risk assessment from the European Chemicals Bureau (http://ecb.jrc.

ec.europa.eu/documents/TECHNICAL_GUIDANCE_DOCU-

MENT/EDITION_2/tgdpart2_2ed.pdf), the AF was set at 1000

in the calculation, resulting in a PNEC of 0.0168 mg l-1.

According to guidelines for the testing of chemicals from the

Organization for Economic Co-operation and Development

(OECD) (http://www.oecd.org/dataoecd/6/14/2483645.pdf), the

assessment factor shall be 100 and thus, the PNEC would be

0.168 mg l-1. The positive controls for these toxicity tests are

provided in Table S1.

The mechanism of butenolide’s acute toxicity on
zebrafish embryos

Zebrafish embryos developed pericardial edema (edema around

the heart), poor blood circulation, small brains and small eyes within

55 hours of treatment with butenolide (from the 2-cell stage). The

severity of these symptoms increased as the concentration of

butenolide increased (Table 5, Figure 2a–d, i–l). For example, with

a butenolide treatment of 0.5 mg ml-1, the number of embryos that

had pericardial edema was only 2 out of 14; but with a treatment of

1.25 mg ml-1, the number increased to 10 out of 12 (Table 5). When

the embryos were treated from 23 hours post fertilization (hpf), the

phenotype was similar but weaker than those treated from the 2-cell

stage (Figure 2e–h). The TUNEL assay results showed an abnormal

increase in apoptotic cells in the embryo fish bodies treated with

butenolide, indicating that butenolide induced apoptosis in zebrafish

embryos (Figure 2m–n). The hatching of butenolide-treated fish was

slightly earlier than in the control, but the dose-response relationship

was not very clear (Table S2, up to 2.5 mg ml-1). It appears that the

butenolide had no effect on the final hatched percentage.

Molecular mechanism of butenolide’s acute toxicity in
HeLa cells

The concentration of butenolide that led to toxicity in HeLa,

Ptk2, Sf9, HL-60 and K562 cells was similar, whereas the primary

neuron cells were more sensitive to butenolide treatment than the

other cell types (Table S3). Because of their ease of manipulation

and the consistency and robustness of their results, HeLa cells were

used for the subsequent toxicology studies (Figure 3a). Similar to its

effect on zebrafish embryos, butenolide also induced apoptosis in

HeLa cells, which was confirmed by counter staining with Hoechst

33342 (data not shown).

As revealed by the Western blot analysis (Figure 3b), the caspase

substrate protein PARP (poly ADP ribose polymerase) showed

cleavage after 2 h of treatment, suggesting the activation of

protease caspase-3 and execution of apoptosis.

In the early stages (within 2 h) of treatment with butenolide,

MAPKs family members JNK (c-Jun N-terminal kinases) and

ERK (extracellular signal-regulated kinases) were activated

(phosphorylated), whereas p38 was activated later (after PARP

cleavage) (Figure 3b). The JNK inhibitor SP600125 partially

inhibited butenolide-induced HeLa cell apoptosis (Figure 3d),

whereas p38 and ERK inhibitors had no significant inhibiting

effect (data not shown), suggesting that JNK is involved in

butenolide-induced apoptosis and is the most important MAPK

family protein involved in this process.

Table 3. Antibodies used in this study.

Antigen Antibody Source

Mcl-1 Rabbit anti-Mcl-1 (S-19) polyclonal antibody Santa CruZ Biotechnology, Inc. (Santa Cruz, CA, USA)

Bax Rabbit anti-Bax polyclonal antibody Cell Signaling Technology, Inc. (Danvers, MA, USA)

PUMA Rabbit anti-PUMA polyclonal antibody Cell Signaling Technology, Inc. (Danvers, MA, USA)

Phospho-JNK Rabbit anti-phospho-SAPK/JNK (Thr183/Tyr185)
polyclonal antibody

Cell Signaling Technology, Inc. (Danvers, MA, USA)

Phospho-p38 Rabbit anti-phospho-p38 MAPK (Thr180/Tyr182)
polyclonal antibody

Cell Signaling Technology, Inc. (Danvers, MA, USA)

Phospho-ERK Rabbit anti-phospho-p44/42 MAPK (Erk1/2)
(Thr202/Tyr204) polyclonal antibody

Cell Signaling Technology, Inc. (Danvers, MA, USA)

PARP Mouse anti-PARP (F-2) monoclonal antibody Santa CruZ Biotechnology, Inc. (Santa Cruz, CA, USA)

GADPH Rabbit GAPDH (14C10) monoclonal Antibody Cell Signaling Technology, Inc. (Danvers, MA, USA)

Cdc2 mouse anti-cdc2 p34 (17) monoclonal antibody Santa CruZ Biotechnology, Inc. (Santa Cruz, CA, USA)

Rabbit IgG Goat anti rabbit IgG-peroxidase antibody Sigma-Aldrich (St. Louis, Missouri, USA)

Mouse IgG anti-mouse IgG, HRP-linked antibody Cell Signaling Technology, Inc. (Danvers, MA, USA)

doi:10.1371/journal.pone.0023803.t003
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The expression level of the Bcl-2 family protein Bax did not

change with butenolide treatment (Figure 3b). However, the Bcl-2

family proteins PUMA and Mcl-1 were up-regulated in the early

stages of butenolide treatment (Figure 3b), suggesting that Bcl-2

family proteins are involved in butenolide-induced apoptosis. The

over-expression of the anti-apoptotic Bcl-2 family proteins, Bcl-2,

Bcl-XL and Mcl-1, protected the cells from butenolide-induced

apoptosis (Figure 3c), indicating that butenolide’s pro-apoptotic

effect involves Bcl-2 family proteins.

The pan-caspase inhibitor z-VAD-fmk [12,13] partially inhibited

butenolide-induced apoptosis in the HeLa cells (Figure 3d),

indicating that butenolide-induced apoptosis in HeLa cells requires

caspases. The proteasome, lysosome and calpain inhibitors ALLN

and MG132 [14,15] also partially protected the cells from

butenolide-induced apoptosis (Figure 3d). However, calpain is a

calcium-activated protease [16], and the selective intracellular Ca2+
stores chelator BAPTA-AM [17,18] had no significant rescuing

effect (Figure 3d), indicating that calpain might have less effect on

butenolide-induced apoptosis, and that proteasomes and/or

lysosomes are involved in butenolide-induced apoptosis.

Discussion

To assess the toxicity of a new antifouling compound, we

calculated the predicted no effect concentration (PNEC) according

to two standards with different AFs. When calculated and

compared using the OECD’s standard, the PNEC of butenolide

is among the highest in representative alternative new biocides

[4,19].

Regarding the selection of test species, we investigated more

organisms than the minimum requirements, which requires three

species from three trophic levels, and preferably two additional

marine taxonomic groups for PNEC calculations [4,6]. Specifi-

cally, we considered several fouling species in the PNEC

calculation in addition to non-target organisms. Although fouling

organisms are target organisms for antifouling compounds, their

ordinary lives should not be affected by these compounds where

these organisms were harmless; and the effective concentrations on

these species are important references for the prediction of the

effective concentrations in other species. As of now, the fouling

species H. elegans, B. neritina, and B. amphitrite were found to be

among the most sensitive species to butenolide. Species-selectivity

ratios/indices were used to assess the species-selectivity of

herbicides [20,21]. Here, we used a similar method to compare

the species-selectivity of several antifouling compounds (Table 6)

by the following equation:

Species� selectivity ratio based on acute toxicity testð Þ~

lowest L Eð ÞC50 in non� target organisms=

highest EC50 in target organisms determined

preferably by settlement assay

This ratio indicates the compound’s species-specificity under the

most extreme conditions, which are most likely to exist in places

near the antifouling coatings. A higher value suggests higher

specificity towards target organisms. The species-selectivity ratio

for butenolide is 0.635, which is quite high compared to other

biocides (Table 6), suggesting that butenolide is comparatively

more specific towards fouling organisms than are other biocides.

This makes butenolide desirable as an antifouling compound.

The species-selectivity ratio of butenolide is much lower than its

pharmaceutical ratios. The pharmaceutical ratios (LC50/EC50)

were based on single species. When used on fouling organisms, the

pharmaceutical ratio assessed the specificity of the compound’s

effect, with a higher value suggesting higher specificity toward the

Table 4. Effects of butenolide on different organisms.

EC10 EC50 LC10 LC50 Endpoint Reference

Non target organisms

Micro algae Skeletonema costatum 0.33 5 d IC50

Crustacean Melita longidactyla 2.22 3.02 48 h lethality

Tigriopus japonicus 1.82 2.56 48 h lethality

Daphnia magna 0.58 2.34 48 h immobilisation

Fish Lutjanus erythropterus 0.77 1.32 48 h lethality

Danio rerio 0.35 0.89 2.75 3.27 Development of pericardial
edema/lethality at 55pfh

Target organisms (fouling organisms)

Crustacean Balanus amphitrite 0.518 .50 48 h settlement [5]

Bryozoan Bugula neritina 0.199 .50 12 h settlement [5]

Annelidian Hydroides elegans 0.0168 .2 48 h settlement [5]

All concentrations are in mg ml21.
doi:10.1371/journal.pone.0023803.t004

Table 5. Effects of different concentrations of butenolide on
zebrafish embryos treated at the 2-cell stage and observed at
48 hpf (hours post fertilization).

Concentration of
butenolide Number of zebrafish embryos

Total Normal Pericardial edema Died

0 mg ml21 12 12 0 0

0.50 mg ml21 14 12 2 0

1.25 mg ml21 12 2 10 0

2.50 mg ml21 12 0 12 0

5.0 mg ml21 12 0 0 12

doi:10.1371/journal.pone.0023803.t005
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fouling process and lower off-target side effects. The pharmaceu-

tical ratio of butenolide was quite high in target organisms (.97

for B. amphitrite, .250 for B. neritina, .119 for H. elegans) [5], but

much lower in the embryos of the non-target organism D. rerio

(3.67). The exact mechanism for this huge difference is unclear,

but one possibility is that butenolide has a very specific effect on

the fouling process in fouling organisms but much less specific

effects on non-target organisms. The variation in the L(E)C50 of

butenolide in different non-target species is within an order of

magnitude, which is quite low among new antifouling biocides [4],

suggesting that butenolide does not discriminate much among

non-target organisms and is less likely to cause selective loss of a

particular non-target organism in the environment. The L(E)C50

varies by at least an order of magnitude between target organisms;

and LC50 of non-target crustaceans was much lower than that of

the crustacean B. Amphitrite. The pharmacology of butenolide in

different species should be investigated to clarify the reasons for

these inter-species differences.

To guarantee the safe usage of butenolide as antifouling

compound, its degradation should be further studied to ensure

that the effective concentrations are reached only within a very

limited space near the coating. Our preliminary data on

butenolide degradation showed that it can be easily degraded

after its release into natural sea water (unpublished results).

During zebrafish organogenesis, the heart is the first organ

formed in the developing embryo, and the development of other

organs depends on blood circulation in the embryo. Pericardial

edema was the first symptom observed after treatment with

butenolide, and blood circulation in the embryos was in turn

affected. It is possible that the developmental defects/retardation

in the brains and eyes were caused by insufficient blood

circulation. We therefore focused only on pericardial edema and

looked for similar phenotypes. Using the key words ‘‘pericardial

edema’’ to search the zebrafish embryo developmental defect

database, we found that the symptoms caused by butenolide were

similar to the phenotype found in pro-caspase-3 over-expression

mutants [22], which have pericardial edema, small brains, small

eyes and abnormal increases of apoptotic cells in the body. The

similarity indicates that butenolide induces apoptosis in zebrafish

embryos and suggests that butenolide’s phenotype in zebrafish

embryos was the result of apoptosis. Therefore, pro-apoptosis is

likely to be the major effect of butenolide on this organism.

However, there were some differences between the pro-caspase-

3 over-expression mutants and the butenolide-treated embryos. In

the pro-caspase-3 mutants, some retina cells were lost in the eyes,

especially in the photoreceptor cell layer, and the number of

apoptotic cells in the retina increased [22]. However, in the

butenolide-treated embryos, the eyes were well structured; the

retina cells were well organized and densely compacted; and there

was no obvious cell loss or specific sensitivity of the photoreceptor

cell layer to butenolide. Also, we did not observe any increase in

the number of apoptotic cells in the retina in our TUNEL assays of

both whole mount and tissue sections (data not shown). Perhaps

the cause of the small eye phenotype differs between the pro-

caspase-3 over-expression mutants and the butenolide-treated

embryos. The higher activity of caspase-3 in the retina might lead

to retina cell loss and small-eye defects in the pro-caspase-3

overexpression mutants, whereas pericardial edema and poor

blood circulation might be the reasons for the defects/develop-

mental retardation in the eyes of the butenolide-treated embryos.

These results suggest that the mechanism of apoptosis induced by

butenolide involves more than just the overall higher activity of

caspase-3.

To study the molecular mechanism of butenolide-induced

apoptosis, we used a representative cell culture to examine the

mechanism of butenolide’s direct effect. The LC50s in the tested

cell lines were higher than in the non-target organisms. Although

the reason for this discrepancy is unclear, it is important to

understand that the direct effect on cells differs from the most

prominent effects on the whole organism, and that the host

species, cell type and culture method could all influence the

sensitivity of the cell to butenolide. Among several cell types, HeLa

cells were chosen for molecular toxicology study, because they are

very consistent, robust, and easy to manipulate, and butenolide’s

effective concentration in this cell line was similar to that in most of

the other tested cell lines, including the insect cell line Sf9. The

concentration of butenolide for the molecular mechanism study

was 100 mg ml21. This concentration was just high enough to

cause sufficient cytotoxicity (Figure 3a), while low enough to avoid

necrosis as confirmed by counter staining with Hoechst 33342

(data not shown).

The MAPKs family includes ERK1/2, JNK/SAPK, p38 and

ERK5. These proteins are involved in the survival, proliferation

and differentiation of cells [23]. Bcl-2 family proteins exhibit either

pro- or anti-apoptotic activities and regulate the mitochondrial

pathways of apoptosis by controlling the permeabilization of the

outer mitochondrial membrane [24]. We found that butenolide-

induced apoptosis in HeLa cells involved JNK and Bcl-2 family

proteins. This finding was supported by our inhibitor assays and

over-expression assays, respectively. For instance, the JNK

inhibitors inhibited butenolide-induced apoptosis, whereas the

p38 and ERK inhibitors did not have significant inhibiting effects.

JNK was activated early, suggesting that its regulatory role

may be in the early stages. The Bax protein, which forms

the Mitochondrial Outer Membrane Permeabilization Pore

(MOMPP) and induces apoptosis [25,26], did not change in

expression level (Figure 3b) at the early stage (within 2 h); whereas

PUMA, which initiates apoptosis by dissociating Bax and Bcl-XL,

thereby promoting Bax multimerization and mitochondrial

translocation [27], was activated in the early stages of butenolide

treatment (Figure 3b). This evidence suggests that Bax is activated

early by PUMA upon butenolide treatment. Furthermore, Mcl-1,

Figure 2. The effect of butenolide on zebrafish embryos. a–d) 55 hpf zebrafish embryos treated with different concentrations of butenolide at
the 2-cell stage: a) the control; b) 0.5 mg ml21 butenolide; c) 1.25 mg ml21 butenolide; d) 2.5 mg ml21 butenolide, showing that the treated embryo
had smaller eyes (arrow) than the control and pericardial edema (arrowhead). e–h) Zebrafish embryos treated with different concentrations of
butenolide at 23 hpf and observed at 55 hpf: e) the control, f) 0.5 mg ml21 butenolide, g) 1.25 mg ml21 butenolide, h) 2.5 mg ml21 butenolide. i–j)
High magnification of the pericardial region of zebrafish embryos: i) the control; j) embryo treated with butenolide at 1.25 mg ml21, revealing an
enlarged space in the pericardial region (arrowhead) and blood congestion (arrow). k–l) HE staining of the transverse sections through optic nerves of
zebrafish embryos 48 hpf (treated at the 2-cell stage): k) control; l) embryo treated with 1.25 mg ml21 butenolide, note that the butenolide-treated
zebrafish embryo had a smaller brain (see arrowhead) than the control. le, lens; ipl, inner plexiform layer; inl, inner nuclear layer; pcl, photoreceptor
cell layer; pe, pigmented epithelium; bar is 50 mm. m–n) Whole mount TUNEL assay on m) 24 hpf control embryo; n) 24 hpf embryo treated with
1.25 mg ml21 butenolide from the 2 cell stage, revealing the signal on the embryo fish body (arrowhead).
doi:10.1371/journal.pone.0023803.g002
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Figure 3. The effect of butenolide on HeLa cells. a) The cytotoxicity of butenolide in HeLa cells (observed at 17 h). The curve was generated
according to the logistic regression (R2 = 0.897). b) Effect of butenolide on several apoptosis-related proteins in HeLa cells. GADPH and cdc-2 served
as the internal loading controls. c) Over-expression of Bcl-2 family members protected-HeLa cells from butenolide-induced apoptosis at different
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which prevents apoptosis by inhibiting MOMPP formation [28],

decreased in expression level after 1.5 h (Figure 3b), which is later

than PUMA’s response, and earlier than the cleavage of PARP,

suggesting that Mcl-1 is also involved in the early regulation of

butenolide-induced apoptosis. The over-expression of Bcl-2 family

members that inhibit MOMPP formation (Bcl-2, Bcl-XL or Mcl-1)

[25,28] protected cells from butenolide-induced apoptosis

(Figure 3c), indicating that Bcl-2 family members mediate

butenolide-induced apoptosis.

Proteases are executioners of apoptosis. After apoptosis begins,

cellular organelles undergo organized degradation by activated

proteases [29,30]. Proteases also play a regulatory role in

apoptosis. For example, proteases in proteasome regulate the

degradation of some endogenous Inhibitors of Apoptosis (IAP)

[31]. If the proteasome activity is inhibited, the degradation of

some IAP would be subsequently inhibited, leaving more IAP

available to inhibit apoptosis. In this study, both pan-caspase

inhibitor and proteasome/lysosome inhibitors partially protected

HeLa cells from butenolide-induced apoptosis (Figure 3d), indi-

cating the necessity of these proteases in butenolide-induced

apoptosis. Whether caspase and proteasome/lysosome were

involved before the execution of butenolide-induced apoptosis

remains unclear.

Besides apoptosis, we also tested the effect of butenolide on

several other cell signaling pathways. Butenolide treatment did not

change the proportion of interphase cells (up to 50 mg l21), which

was verified by FACS analysis (data not shown); 10 mM purvalanol

A (a CDK1 inhibitor) did not inhibit butenolide-induced apoptosis

(data not shown), suggesting that butenolide may have less effect

on the cell cycle.

In the cyprid larvae of the marine fouling organism Balanus

amphitrite, caspase-3 activity decreases 24 h after molting, but it is

partially sustained by butenolide treatment [32]. However, butenolide

can inhibit the positive phototactic behavior of B. amphitrite cyprids

within a few minutes after treatment [33], which is unlikely to be due

to a pro-apoptotic effect, suggesting that butenolide has other effects

on B. amphitrite than only pro-apoptotic activity. The relationship

between the pro-apoptotic effect and the antifouling effect of

butenolide remains unknown. Another type of butenolide [2-(6-

hydroxy-6-methyl-octyl)-2H-furan-5-one], which is structurally similar

to the butenolide studied here, exhibited novel anti-parasitic activities

specifically against Trypanosoma brucei brucei [34]. It is possible that anti-

parasitic butenolide also has pro-apoptotic effects.

In summary, the antifouling compound butenolide’s PNEC was

0.016 mg l21 according to the European Chemicals Bureau, and

0.16 mg l21 according to the Organization for Economic Co-

operation and Development (OECD). As of now, the fouling species

Hydroides elegans was found to be the most sensitive species to butenolide

treatment and it could be chosen for chronic toxicity tests.

Mechanistically, butenolide induced apoptosis in both zebrafish

embryos and HeLa cells. JNK activation, Bcl-2 family members,

caspases and proteasome/lysosome activation were involved in

butenolide-induced apoptosis in HeLa cell lines. The results reported

here increased our understanding on butenolide’s toxicity and

degrees. Note that the PARP is cleaved after 2 h of butenolide treatment. d) Effect of inhibitors on butenolide-treated HeLa cells (see text). JNK-I: JNK
inhibitors. ** indicates significant difference between the treatment and the control (100 mg ml21 butenolide) at p,0.01. NS indicates no significant
difference between the treatment and the control. Error bars represent standard deviations.
doi:10.1371/journal.pone.0023803.g003

Table 6. Species-selectivity ratio of biocides1.

Biocide Species

Highest
EC50 in
target
organism

Lowest
L(E)C50 in
non-target
organism Endpoint

Species-selectivity
ratio Reference

Butenolide Balanus amphitrite (cyprid) 0.518 48 h settlement rate 0.64 [5]

Skeletonema costatum 0.33 5 d I(E)C50 This work

Chlorothalonil Hydroides elegans (trochophore) 0.012 48 h LC50 0.37 [38]

Thalassiosira pseudonana 0.0044 96 h EC50 [38]

TBT Balanus amphitrite (cyprid) 0.034 24 h LC50 0.032 [38]

Skeletonema costatum 0.0011 96 h EC50 [38]

CuPT Balanus amphitrite (cyprid) 0.063 24 h LC50 0.011 [38]

Thalassiosira pseudonana 0.0007 96 h EC50 [38]

ZnPT Balanus amphitrite (larvae) 0.21 24 h LC50 0.0024 [38]

Thalassiosira pseudonana 0.0005 96 h EC50 [38]

Seanine 211 Bugula neritina (swimming larvae) 2.5 48 h settlement EC50 0.00108 Unpublished data

Oncorhynchus mykiss 0.0027 72 h IC50 [4]

Diuron Balanus amphitrite (larvae) 21 24 h LC50 0.0002 [38]

Thalassiosira pseudonana 0.0043 96 h EC50 [38]

Irgarol Hydroides elegans (trochophore) 2.6 48 h LC50 0.00015 [38]

Thalassiosira pseudonana 0.0004 96 h EC50 [38]

All concentrations are in mg ml21.
1The species-selectivity ratios for antifouling compounds other than butenolide are tentative estimations from limited sources.
doi:10.1371/journal.pone.0023803.t006
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toxicology. For risk assessment, the degradation, bioaccumulation,

and the predicted environment concentration (PEC) of butenolide

should be further measured and calculated [6] in the future.
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