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Abstract

Background: MicroRNAs (miRNAs) are aberrantly expressed in human cancer and involved in the (dys)regulation of cell
survival, proliferation, differentiation and death. Specifically, miRNA-143 (miR-143) is down-regulated in human colon
cancer. In the present study, we evaluated the role of miR-143 overexpression on the growth of human colon carcinoma
cells xenografted in nude mice (immunodeficient mouse strain: N: NIH(s) II-nu/nu).

Methodology/Principal Findings: HCT116 cells with stable miR-143 overexpression (Over-143) and control (Empty) cells
were subcutaneously injected into the flanks of nude mice, and tumor growth was evaluated over time. Tumors arose , 14
days after tumor cell implantation, and the experiment was ended at 40 days after implantation. miR-143 was confirmed to
be significantly overexpressed in Over-143 versus Empty xenografts, by TaqManH Real-time PCR (p,0.05). Importantly, Over-
143 xenografts displayed slower tumor growth compared to Empty xenografts from 23 until 40 days in vivo (p,0.05), with
final volumes of 9286338 and 25126387 mm3, respectively. Evaluation of apoptotic proteins showed that Over-143 versus
Empty xenografts displayed reduced Bcl-2 levels, and increased caspase-3 activation and PARP cleavage (p,0.05). In
addition, the incidence of apoptotic tumor cells, assessed by TUNEL, was increased in Over-143 versus Empty xenografts
(p,0.01). Finally, Over-143 versus Empty xenografts displayed significantly reduced NF-kB activation and ERK5 levels and
activation (p,0.05), as well as reduced proliferative index, evaluated by Ki-67 immunohistochemistry (p,0.01).

Conclusions: Our results suggest that reduced tumor volume in Over-143 versus Empty xenografts may result from increased
apoptosis and decreased proliferation induced by miR-143. This reinforces the relevance of miR-143 in colon cancer,
indicating an important role in the control of in vivo tumor progression, and suggesting that miR-143 may constitute a
putative novel therapeutic tool for colon cancer treatment that warrants further investigation.
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Introduction

microRNAs (miRNAs or miRs) are endogenously encoded short

non-coding RNAs (20–23 nt), pivotal players in posttranscriptional

gene silencing of target mRNAs. In mammals, incomplete

complementarity binding of the mature miRNA to the 39UTR

of target mRNA results in target gene silencing via translational

repression, or in some cases via mRNA degradation [1].

The strong focus on miRNA research in recent years has lead to

an exponential growth in the number of identified miRNAs, which

exceed 1000 in humans [2] and putatively regulate over 60% of

human genes [3]. Importantly, miRNAs are involved in the

regulation or fine-tuning of a myriad of crucial biological processes

commonly de-regulated in cancer, including cell proliferation,

differentiation, cell-cycle and apoptosis, among others [4,5].

Furthermore, it is now well known that miRNAs are aberrantly

expressed in several forms of human cancer, including colon

cancer [6,7,8]. However, and notwithstanding the fast growth of

knowledge on miRNAs, only a small fraction of the molecular

signaling circuitry regulated by miRNAs is known in cancer.

miR-143 expression has been reported as down-regulated in

colon cancer, both in adenomas [9,10] and colon carcinomas
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[6,9], as well as in colon cancer cell lines [11,12]. Further, miR-

143 relevance as a putative cancer biomarker is growing, as it is

down-regulated in various other human cancers, including B-cell

malignancies [13], non-small cell lung cancer [14], esophageal

squamous cell carcinoma [15], esophageal adenocarcinoma [16],

osteosarcoma [17], bladder [18], cervical [19], prostate [20], and

gastric [21] cancer. In addition, miR-143 is considered a pivotal

regulator of gene expression, since it directly targets multiple

mRNAs coding for proteins involved in cell proliferation,

differentiation, survival and apoptosis, including KRAS [22,23],

DNMT3A [24], ELK1 [25], MYO6 [26], Bcl-2 [17] and ERK5

[27]. Interestingly, ERK5 is the most widely reported direct target

of miR-143, which is downregulated by miR-143 overexpression

[11,12]. Finally, growing evidence supports an anti-proliferative,

pro-apoptotic and chemosensitizer role for miR-143 in colon

cancer, since it reduces cell viability and increases sensitivity to 5-

fluorouracil (5-FU), the drug of choice in colorectal cancer

treatment and a known inducer of apoptosis in colon cancer cell

lines [28,29].

Increased expression of mature miR-143 was found to occur

following p53 up-regulation by doxorubicin in HCT116 colon

cancer cells [22], and also in response to 5-FU exposure [12].

Furthermore, miR-143 may be involved in apoptosis proceeding

via the intrinsic and/or extrinsic pathways, since it down-regulates

anti-apoptotic protein Bcl-2, and is up-regulated after Fas-

mediated apoptosis. The latest is accompanied by ERK5

downregulation [27], which we have previously demonstrated to

directly induce apoptosis and chemosensitization in ERK5 siRNA-

mediated knockdown experiments in colon cancer cells [12].

ERK5 is a mitogen-activated protein kinase (MAPK), activated

by a wide range of cellular stresses and mitogens, and involved in

the regulation of cellular survival, differentiation and proliferation.

Importantly, ERK5 targets c-Myc, cyclin D1 and nuclear factor

(NF)-kB, well known cell proliferation regulators [30]. In

particular, NF-kB is involved in the promotion of cell proliferation

and suppression of apoptosis, playing a pivotal role in tumor

progression. NF-kB is constitutively activated in several malignant

cells, including colon cancer [31,32]. Importantly, ERK5

activation of NF-kB is involved in cellular transformation [33]

and is critical for normal progression of the cell cycle from G2-M

and timely mitotic entry [34]. Inhibition of NF-kB activation may

be useful in antitumor therapy by increasing colon cancer cell

sensitivity to 5-FU [35]. In addition, we have recently demon-

strated that miR-143 overexpression significantly increases in vitro

HCT116 colon cancer cell sensitivity to 5-FU, with a marked

decrease in ERK5, NF-kB, and Bcl-2 steady-state levels [12]. This

suggests that miR-143 overexpression in colon cancer cells may be

an important strategy to reduce tumor growth and aggressiveness,

and increase chemotherapy response.

In the present study, we evaluated the role of miR-143

overexpression on growth of HCT116 human colon carcinoma

cells xenografted in mice, and the putative involvement of

apoptosis and proliferation on miR-143 mechanism of action.

Our results show that miR-143 markedly reduces human colon

cancer cell xenograft growth in vivo, causing increased tumor cell

apoptosis and decreased proliferation. In addition, miR-143

overexpression in human tumor xenografts in mice leads to

significantly reduced NF-kB activation, and ERK5 expression and

activation. These results underscore the relevance of miR-143 in

colon cancer, suggesting an important role in the control of tumor

progression in vivo, and expanding its anti-proliferative, pro-

apoptotic and chemosensitizer role that we had previously

demonstrated in vitro.

Results

miR-143 increases HCT116 cell growth inhibition
We initially confirmed the production of mature miR-143 from

the pCR3-pri-miR-143 vector, and the effect of transient miR-143

overexpression from this DNA vector on HCT116 colon

carcinoma cell growth. This was performed by co-transfection of

pCR3-pri-miR-143 (miR-143 expression vector), a firefly lucifer-

ase miR-143 reporter for mature miR-143 detection (miR-143

sensor), and with either miR-143 specific inhibitor (anti-miR-143),

or control (anti-miR-control). pRL-SV40 was also co-transfected

and used as a normalization control. Our results clearly show that

mature miR-143 was expressed from pCR3-pri-miR-143, since

reduction of mature miR-143 bioavailability via anti-miR-143 co-

transfection led to a significant increase in firefly activity

(Figure 1A, left panel, middle bar), as compared to controls

(p,0.05). Importantly, transient miR-143 overexpression signifi-

cantly increased cell growth inhibition (Figure 1A, right panel,

middle bar), compared to empty vector transfected cells (p,0.05),

as evaluated by the MTS metabolism assay.

To evaluate the impact of miR-143 overexpression on the

growth of human colon cancer cells xenografted in mice, we next

produced HCT116 cells with stable miR-143 overexpression (Over-

143) and control cell lines (Empty), by transfection with pCR3-pri-

miR-143 or pCR3-empty, respectively, followed by selection and

propagation of stably transfected cells with G418. Over-143 and

Empty cells with 5 to 25 days of G418 selection were processed for

total RNA extraction to evaluate mature miR-143 expression by

TaqManH Real-time PCR using specific primers for mature miR-

143, and RNU6B for normalization to endogenous control.

Importantly, our results show that high and stable mature miR-

143 expression was consistently obtained in Over-143, as compared

to Empty cells (Figure 1B) (p,0.01).

miR-143 overexpression decreases the growth of HCT116
human colon carcinoma cells xenografted in mice

Having validated our cell model in vitro, we next evaluated the in

vivo effect of miR-143 overexpression on HCT116 tumor xenograft

growth. Over-143 or Empty cell suspensions were injected s.c. into

the flanks of 6-week-old immunodeficient mice, and tumor growth

was evaluated and registered periodically, to plot tumor growth

curves. Tumors arose , 14 days after subcutaneous administra-

tion, and tumorigenicity studies were terminated at day 40 after

cell implantation. Our results demonstrate a significant and

marked reduction of tumor volume in Over-143 xenografts

compared to Empty xenografts, from day 23 after implantation

until the end of the experiment, at day 40 (Figure 2A) (p,0.05 and

p,0.01 from 23 to 30, and from 33 to 40 days after implantation,

respectively). Therefore, Over-143 xenografts showed a significantly

slower tumor growth compared to the Empty xenografts, display-

ing final tumor volumes of 9286338 and 25126387 mm3,

respectively.

Tumors were collected after sacrificing the animals at the end of

in vivo tumor growth evaluation, 40 days after Over-143 or Empty

cell implantation. Subsequently, total RNA was extracted from

Over-143 and Empty xenografts (t = 40), and also from Over-143 and

Empty cells before injection into nude mice (t = 0). RNAs were then

used to evaluate mature miR-143 expression. Our results show

that at tumor cell implantation (t = 0), miR-143 levels were more

than 200-fold increased in Over-143 compared to Empty cells,

demonstrating that the injected cell lines were in the desired

experimental conditions at implantation (Figure 2B). Importantly,

after 40 days of xenograft growth in vivo, Over-143 xenografts still

miR-143 and Growth of Colon Carcinoma Xenografts
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presented a significant increase in mature miR-143 expression

compared to Empty xenografts (p,0.05) (Figure 2B).

miR-143 overexpressing tumor xenografts display
reduced ERK5 steady-state levels, and NF-kB nuclear
translocation

miR-143 directly regulates the expression of several proteins

involved in crucial biological processes, whose deregulation is

commonly associated with cancer. Importantly, transient overex-

pression of miR-143 mimetics in HCT116 [12], SW480 and

DLD-1 [11] colon cancer cell lines has been shown to down-

regulate ERK5 steady-state levels. In addition, modulating mature

miR-143 levels by transient co-tranfection of miR-143 mimetics

and inhibitors regulates ERK5 protein [12]. Furthermore,

activated ERK5 modulates cell survival, differentiation and

proliferation, through c-Myc, cyclin D1 and NF-kB activation

[30]. Therefore, we extracted total proteins from Over-143 and

Empty xenografts (t = 40) and from Over-143 and Empty cells prior

Figure. 1. Mature miR-143 overexpression increases cell
growth inhibition. A, HCT116 cells were co-transfected with the
indicated plasmids and anti-miR inhibitors, and analyzed 48 h post-
transfection. Cells were lysed and firefly and renilla luciferase activities
determined by the dual luciferase assay (left panel). Cell growth
inhibition was evaluated by MTS metabolism assays, and cells were
then lysed for dual luciferase assay, to normalize the MTS metabolism
assay (right panel). B, HCT116 cells were transfected with pCR3-pri-miR-
143 and pCR3-empty and selected with G418, to generate Over-143 and
Empty cells, respectively. Cells were harvested for total RNA extraction
after 5 to 25 days of selection. miR-143 expression was evaluated from
1.4 ml cDNA of 10 ng total RNA RT reactions, using specific primers for
miR-143 and RNU6B for normalization. miR-143 expression levels were
calculated by the ããCt method, using Empty cells as calibrator. Results
are expressed as mean6SEM of at least 3 independent experiments.
*p,0.05 from controls and 1p,0.01 from Empty.
doi:10.1371/journal.pone.0023787.g001

Figure. 2. miR-143 overexpression decreases human colon
carcinoma cell tumor xenograft growth in nude mice. Forty-
eight hours after release from dual-thymidine block, 56105 miR-143
overexpressing (Over-143), or control (Empty) cells, were s.c. injected
into the flanks of nude mice. A, Tumor xenograft size was regularly
measured (every 2-3 days), from the initial signs of tumor development,
until the end of the experiment (, 14 and 40 days after cell
implantation, respectively), to plot tumor growth curves. Animals were
then sacrificed and tumors excised. B, Total RNA was extracted from
Over-143 and Empty cells prior to implantation into animals (t = 0 days)
and from snap frozen tumor xenograft samples (t = 40 days), and used
to quantify mature miR-143 expression. miR-143 expression was
evaluated from 1.4 ml cDNA of 10 ng total RNA RT reactions, using
specific primers for miR-143 and RNU6B for normalization. miR-143
expression levels were calculated by the ããCt method, using Empty cells
as calibrator. Two independent experiments were performed using a
total of 12 animals for Over-143 and 10 animals for Empty. Results are
expressed as mean6SEM. *p,0.05, 1p,0.01 from Over-143 and
{p,0.05 from Empty.
doi:10.1371/journal.pone.0023787.g002
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to implantation into nude mice (t = 0), and evaluated ERK5

steady-state levels by Western blot (Figure 3, top). Our results

demonstrate that Over-143 xenografts displayed reduced ERK5

protein levels compared to Empty xenografts (Figure 3, bottom left)

(p,0.05). Furthermore, we also evaluated p-ERK5, the dual

phosphorylated (Thr218/Tyr220) active form of ERK5. Over-143

xenografts presented reduced p-ERK5 compared to Empty

xenografts, which resulted in decreased ratios of p-ERK5/total

ERK5 (Figure 3, bottom right) (p,0.05).

Evidence suggests that ERK5 activation of NF-kB promotes

cellular transformation [33], and that NF-kB is a critical factor for

G2–M cell cycle progression and timely mitotic entry [34]. NF-kB

is also involved in inhibition of apoptosis and stimulation of

cellular growth, thus contributing to tumor promotion, and

chemoresistance. Curiously, our results indicate that NF-kB

steady-state levels were increased in Over-143 xenografts at day

40, compared to Empty xenografts (Figure 4A, bottom left)

(p,0.01). Nevertheless increased steady-state levels of IkB in

Over-143 versus Empty xenografts at day 40 (Figure 4A, bottom

right) (p,0.05) suggest that NF-kB is less activated in Over-143

xenografts. This was further confirmed by the reduced ratio

between nuclear and cytoplasmic NF-kB levels in Over-143

compared to Empty xenografts (Figure 4B) (p,0.05).

miR-143 overexpressing tumor xenografts display
increased apoptosis and reduced proliferation

Our results demonstrate that miR-143 overexpression increased

colon tumor cell growth inhibition in vitro, and decreased the

growth of tumor cells xenografted in mice. In addition, miR-143

overexpresion reduced ERK5 steady-state levels, ERK5 activa-

tion, and NF-kB nuclear translocation, suggesting regulation of

colon cancer cell survival, and proliferation capabilities. Impor-

tantly, we and others have previously reported that ERK5

knockdown by RNA interference induces apoptosis in vitro

[12,36]. We next evaluated the effect of miR-143 on apoptosis

and proliferation of human tumor xenografts in mice. Over-143

Figure. 3. miR-143 overexpression decreases ERK5 expression
and activation in tumor xenografts. Total proteins were extracted
from Over-143 and Empty cells prior to implantation into animals (t = 0
days) and from snap frozen tumor xenograft samples (t = 40 days), and
used to evaluate ERK5 and p-ERK5 steady-state levels by Western blot.
Results are expressed as mean6SEM. *p,0.05 from Empty.
doi:10.1371/journal.pone.0023787.g003

Figure. 4. miR-143 overexpression decreases NF-kB nuclear
translocation in tumor xenografts. A, Total proteins were extracted
from Over-143 and Empty cells prior to implantation into animals (t = 0
days) and from snap frozen tumor xenograft samples (t = 40 days), and
used to evaluate NF-kB and IkB steady-state levels by Western blot. B,
cytosolic and nuclear proteins were extracted from snap frozen tumor
xenograft samples (t = 40 days; Over-143 and Empty), to evaluate NF-kB
nuclear translocation by Western blot. Results are expressed as
mean6SEM. *p,0.05 and 1p,0.01 from Empty.
doi:10.1371/journal.pone.0023787.g004
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xenografts displayed reduced steady-state levels of the anti-

apoptotic protein Bcl-2 (Figure. 5A) (p,0.05), together with

increased caspase-3 processing and PARP cleavage (Figure. 5B

and C) (p,0.05). As expected, the frequency of TUNEL-positive

cells was increased in Over-143 versus Empty xenograft tumoral

tissue, which displayed 3.860.2 and 2.260.1 cells per 103 mm2 of

tumor area, respectively (Figure. 6A) (p,0.01). This data re-

enforce the notion that induction of apoptosis is part of the in vivo

mechanism of action of miR-143 in this xenografted tumor model.

Importantly, immunohistochemistry for Ki-67 in xenograft tissue

sections showed that the fraction of proliferating cells is lower in

Over-143 versus Empty xenografts, with percentages of proliferation

of 40.66 1.1 and 63.760.9%, respectively (Figure. 6B) (p,0.01).

Thus, miR-143 overexpression induces apoptosis and reduces

proliferation of human colon carcinoma cells xenografted in mice,

further re-enforcing the potential deleterious effects arising from

loss of miR-143 expression in human colon cancer.

Discussion

The relevance of miRNAs in human cancer is growing

exponentially, with this class of small non-coding RNAs

considered pivotal gene expression regulators, and carrying

enormous potential as diagnostic, prognostic and therapeutic

tools. Aberrant miRNA expression may negatively impact on the

regulation of multiple important cellular processes, such as cell

proliferation, differentiation and turnover, commonly de-regulated

events in cancer. In particular, miR-143 is gaining increasing

relevance as putative cancer biomarker and therapeutic tool in

human cancer. Its reduced expression has been demonstrated in

multiple cancer types, including those of the gastrointestinal tract.

In addition to colon cancer, miR-143 has been reported down-

regulated in oesophageal squamous cell carcinoma [15], oesoph-

ageal adenocarcinoma [16], and gastric cancer [21]. Further, we

and others have previously demonstrated that miR-143 expression

is reduced in human colon cancer [6,7,10], and also that miR-143

overexpression markedly reduces the viability of several colon

cancer cell lines in vitro [11,12]. In the present study, we evaluated

the effect of miR-143 overexpression on HCT116 human colon

cancer tumor xenograft growth in nude mice.

Initially, we demonstrated transient miR-143 overexpression

from pCR3-pri-miR-143 in HCT116 cells, which significantly

increased cell growth inhibition as compared to pCR3-empty

transfection, in accordance with our previous results [12]. To

evaluate the in vivo effect of miR-143 overexpression on colon

cancer tumor xenograft growth, we next created HCT116-derived

stable miR-143 overexpressing cells, and confirmed in at least

three independent batches evaluated at multiple random selection

times that miR-143 expression was consistently highly increased in

Over-143 versus Empty cells, attesting to the robustness of miR-143

overexpression in our cell model. Such a high differential

expression has not been reported before for miR-143 in human

colon cancer samples. However, a recent report in ulcerative

colitis patients, which are at increased risk for development of

colorectal cancer, demonstrated that miR-143 expression is

downregulated up to 20-fold, compared to normal colon [37].

Several other reports have shown differential miRNA expression

of . 100-fold in biological samples using different miRNA

detection methods and models [38,39,40,41,42,43]. Importantly,

we have also shown that miR-143 expression is 100-fold lower in

SW480 as compared to HCT116 cells [12]. In addition, higher

levels of miRNA overexpression can be achieved, without a

corresponding effect on cell viability, or other cellular functions

[44].

Stable miR-143 overexpression significantly decreased the rate

of xenografted tumor growth, as clearly evidenced by the reduced

Over-143 tumor xenograft volumes as compared to Empty. Further,

tumor xenografts from Over-143 and Empty cells were first

detectable 14 days after cell implantation. In the following week,

the impairment of tumor growth in result of miR-143 overex-

pression was already evident, becoming statistically significant 9

days later, at 23 days after cell implantation. Our results clearly

demonstrate that miR-143 overexpression in colon cancer cells,

delays xenografted tumor growth, highlighting the relevance of

miR-143 as a putative therapeutic agent for the treatment of this

disease. Interestingly, this is in agreement with a recent study using

prostate cancer cell lines, in which repeated xenograft intratu-

moral injection (3x) of miR-143 mimetics at 5000 nM, followed by

in vivo electroporation, resulted in tumor growth abrogation or

decrease, in mice grafted with LNCaP and C4-2 prostate cancer

cells, respectively [20]. Mature miR-143 expression was increased

from 1 to 3 fold in LNCaP and C4-2 xenografts. Here, we

demonstrate that we are able to maintain higher levels of mature

miR-143 expression throughout the xenografted tumor growth

evaluation period, by transfecting HCT116 cells in vitro and

selecting with G418 prior to subcutaneous injection, which

resulted in a marked decrease in colon cancer xenograft tumor

growth. Our results are also in line with another recent study

where liposome entrapped 39-modified miR-143 mimetics were

administered by intravenous injection following a regimen of

weekly administration (5x), in mice xenografted with human DLD-

1 colon cancer tumors [9]. The authors reported a higher stability

of the miR-143 mimetics to nuclease degradation and a significant

dose-dependent decrease in tumor xenograft size in modified-miR-

143 treated mice as compared to control miRNA (non-specific

sequence), with a final tumor xenograft size reduction of , 50%

two weeks after the five week treatment at a dose of 50 mg per

mouse.

ERK5 is the most widely reported miR-143 direct target in

colon cancer, and ERK5 signaling is involved in the regulation of

cell survival, differentiation, proliferation and apoptosis. Our

results demonstrated a significant reduction in ERK5 and p-

ERK5 in Over-143 versus Empty xenografts. This suggests that in

human colon cancer cell tumor xenografts, ERK5 is targeted by

miR-143, leading to reduced protein steady-state levels and

activation. These results further expand previous reports of miR-

143-mediated ERK5 expression knockdown in colon cancer cell

lines in vitro [11,12], and are in agreement with reduced ERK5

expression following repeated (3x) miR-143 intratumoral injection

and in vivo electroporation in prostate cancer cell tumor xenografts

[20]. In addition, ERK5 activates multiple cellular proteins

involved in the regulation of cell proliferation and survival,

including NF-kB. ERK5 activation of NF-kB appears to be an

extremely relevant biological event, since it has been implicated in

cellular transformation [33], cell cycle progression from G2 to

mitosis, and timely mitotic entry [34]. Curiously, our results show

that Over-143 xenografts displayed increased expression of NF-kB,

compared to Empty xenografts. However, we also found increased

expression of IkB in Over-143 versus Empty xenografts, suggesting

that NF-kB may not be increasingly activated. In fact, reduced

NF-kB nuclear translocation in Over-143 versus Empty xenografts

confirmed a significant reduction of NF-kB activation. This

suggests that miR-143 overexpression diminishes ERK5 expres-

sion and activation, which in turn may lead to reduced NF-kB

activation, thus reducing tumor cell proliferation and growth in

this in vivo tumor model. This is also supported by previous studies,

where shRNA-mediated ERK5 knockdown in T lymphoma cell

line EL-4 decreased nuclear accumulation of the NF-kB p65

miR-143 and Growth of Colon Carcinoma Xenografts
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subunit, while ERK5 activation led to constitutive nuclear

localization of p65 and increased activation [45]. Further,

stimulation of ERK5 was shown to activate NF-kB via ribosomal

S6 kinase 2 (RSK2)-mediated phosphorylation, and degradation of

IkB [34]. In addition, nuclear translocation of NF-kB is greater in

proliferative compared to resting phase colon cancer cells [31].

Importantly, ERK5 knockdown abrogated the growth of EL-4

subcutaneous tumors in mice [45]. In addition, the ERK5/NF-kB

axis may be an important signaling pathway in mediating

sensitivity to anti-cancer drugs. Similar to the effects we reported

after exposure of HCT116 colon cancer cells overexpressing miR-

143 to 5-fluorouracil [12], exposure of MDA-MB-231 breast

cancer cells to genistein induced cell growth suppression and

induction of apoptosis, with down-regulation of ERK5, p-ERK5,

NF-kB and Bcl-2 steady state levels. Interestingly, genistein

exposure markedly reduced NF-kB DNA binding activity, via

MEK5/ERK5 pathway inhibition [46], which raises the possibil-

ity that miR-143 may also be involved in genistein mechanism of

cytotoxicity. Collectively, these data underscore the relevance of

ERK5/NF-kB signaling for xenografted tumor proliferation and

growth, and highlight the pivotal role of miR-143 in the regulation

of this molecular signaling pathway. The early loss of miR-143

expression in the transition of normal colon to adenoma [9], may

be a key event in colon cancer tumorigenesis by allowing

unchecked cell proliferation, and this may also contribute to

tumor growth and progression.

Another important aspect of miR-143 allowing the control of

tumor growth may be its putative pro-apoptotic role. In this

Figure. 5. miR-143 overexpression reduces Bcl-2, and increases caspase-3 processing and PARP cleavage in tumor xenografts. Total
proteins were extracted from Over-143 and Empty cells prior to implantation into animals (t = 0 days) and from snap frozen tumor xenograft samples
(t = 40 days), and used to determine by Western blot: A, steady state levels of Bcl-2; B, active caspase-3; and C, PARP cleavage. Results are expressed as
mean6SEM. FL, full length. *p,0.05 from Empty.
doi:10.1371/journal.pone.0023787.g005
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regard, it has been demonstrated that miR-143 overexpression

significantly decreases the steady-state levels of anti-apoptotic

protein Bcl-2 [12,17], inducing apoptosis and sensitization to Fas-

induced apoptosis [27]. In addition, we have also shown that miR-

143 induces sensitization of HCT116 colon cancer cell line to 5-

fluorouracil-induced apoptosis [12], which in turn is Fas-

dependent in this cell type [28]. Here, we show that Over-143

versus Empty xenografts displayed decreased steady-state levels of

Bcl-2, and increased caspase-3 activation and PARP processing,

suggesting that miR-143 overexpressing xenografts may present

higher levels of tumor cell apoptosis.

Finally, to confirm the indications that miR-143 may reduce

tumor xenograft growth by reducing proliferation and increasing

apoptosis of colon cancer cells, we evaluated apoptosis and

proliferation in tumor xenograft tissue sections, by TUNEL assay

and Ki-67 immunohistochemistry, respectively. Importantly, miR-

143 overexpression significantly increased apoptosis, and de-

creased proliferation, which is consistent with the marked

reduction in tumor growth. To our knowledge, this is the first

demonstration that miR-143 overexpression induces apoptosis in

human colon tumor cells xenografted in mice, and are in

agreement with reported decreased proliferation ratio of LNCaP

and C4-2 prostate cancer xenograft tumors injected with miR-143

and electroporated in vivo [20].

The results presented herein provide additional knowledge on

miR-143 mechanism of action in human colon tumor cells

xenografted in mice. miR-143 overexpression resulted in reduced

tumor xenograft growth, with tumors presenting decreased

proliferation and increased apoptosis. The mechanism of miR-

143 action in this model is suggested to involve modulation of

ERK5/NF-kB signaling pathways. Collectively, our data re-

enforces the notion that miR-143 loss may be a pivotal event in

colon cancer, suggesting an important function for miR-143 in the

control of tumor progression in vivo. Additional studies are needed

Figure. 6. miR-143 overexpression increases apoptosis and decreases proliferation in tumor xenografts. Tumor xenografts obtained by
s.c. injection of Over-143 or Empty cells were formalin fixed and paraffin embedded. Four and 3-mm-thick sections were cut and used for TUNEL assay
and Ki-67 immunohistochemistry, respectively. A, Analysis of in situ detection of apoptotic cells in tumor sections of Over-143 and Empty xenografts.
Representative images of TUNEL assay (100x) (left panel), and number of TUNEL-positive cells (right panel) of Over-143 and Empty xenografts. B,
Analysis of cell proliferation by Ki-67 immunostaining in tumor sections of Over-143 and Empty xenografts. Representative images of Ki-67
immunostaining (400x) (left panel), and percentage of Ki-67-positive cells (right panel) of Over-143 and Empty xenografts. Results are expressed as
mean6SEM. 1p,0.01 from Empty.
doi:10.1371/journal.pone.0023787.g006
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to further explore the re-introduction of miR-143 in colon cancer

cells, as this may prove to be a valid a therapeutic approach for

colon cancer treatment.

Materials and Methods

Ethics statement
All experimental procedures were carried strictly within the rules of

the Portuguese official Veterinary Directorate (Direcção Geral de

Veterinária, DGV), which follows the FELASA (Federation of

European Laboratory Animal Science Associations) guidelines and

recommendations concerning laboratory animal welfare. In this

regard, animal experiments at IPATIMUP, University of Porto

complied with the European Union legislations governing animal

experimentation, namely the Convention for the Protection of

Vertebrate Animals used for Experimental and other Scientific

Purposes (ETS123), the EC recommendation nu 2007/526/CE and

the Directive for the Protection of Vertebrate Animals used for

Experimental and other Scientific Purposes (86/609/EEC), which

was transposed to the National Laws through Decreto-Lei nu 129/92.

Experiments further complied with the remaining national legislation

for animal protection and welfare, namely Portaria nu 1005/92,

Portaria nu 466/95, Decreto-Lei nu 197/96, and Portaria nu 1131/97.

Cell culture
HCT116 human colorectal cancer cells [47] were grown in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% fetal bovine serum (Invitrogen Corporation, Grand Island, NY)

and 1% antibiotic/antimycotic solution (Sigma-Aldrich, St. Louis,

MO), and maintained at 37uC in a humidified atmosphere of 5% CO2.

Transfection of miR-143 vectors and anti-miR-143
inhibitor

HCT116 cells were transiently transfected with miR-143 overex-

pression vector, coding for the miR-143 precursor (pCR3-pri-miR-

143), and miR-143 sensor, comprising two sequences complementary

to mature miR-143 sequence (pGL3-miR-143 sensor) [48]. pRL-

SV40 (Promega, Madison, WI) was used for transfection normali-

zation. pGL3-control plasmid (Promega) and pCR3-empty vector

were used as negative controls. To further validate the experimental

model, cells were co-transfected with anti-miR inhibitors, by adding

50 nM anti-miR-143 or anti-miR-control inhibitors (Applied Biosys-

tems, Foster City, CA) to the vector mixture described above.

Transfections were performed using lipofectamine 2000 (Invitrogen),

according to the manufacturer’s instructions.

Evaluation of cell growth inhibition
Cell growth inhibition was evaluated with CellTiter96H

AQueous Non-Radioactive Cell Proliferation Assay (Promega),

using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4-sulfophenyl)-2H-tetrazolium inner salt (MTS), according to

the manufacturer’s instructions. Finally, cells were processed for

luciferase assay and transfection efficiency normalization.

Luciferase activity
Firefly and renilla luciferase activities were measured using the

Dual-LuciferaseH Reporter Assay System (Promega). Renilla

luciferase activity was used as a transfection normalization control.

Generation of HCT116 cells with stable expression of
miR-143

miR-143 overexpression and control cell lines were prepared

from HCT116 cells as previously described [12]. Briefly, , 80%

confluent HCT116 cells were trypsinized, counted and plated on 6

well plates at a density of 1.56105 cells/well. Twenty-four hours

after plating, cells were transfected with 4 mg of miR-143

expression vector (pCR3-pri-mir-143) [48] or 4 mg of the

respective empty vector control (pCR3-empty), using lipofecta-

mine 2000 (Invitrogen), according to the manufacturer’s instruc-

tions, to originate Over-143 and Empty cell lines, respectively.

Twenty four hours later, selection of transfected cells with 1 mg/

ml G418 (Invitrogen) was initiated, with transfected cell popula-

tions being propagated and maintained by splitting sub-confluent

cells into fresh complete media supplemented with 1 mg/ml

G418, every 3 days. After three weeks of selection, miR-143

expression was evaluated by TaqManH Real-time RT-PCR; after

confirming miR-143 overexpression in Over-143, cells were

xenografted in mice for evaluation of tumor growth in an in vivo

model. In our previous in vitro studies, we have used a single clone

with miR-143 overexpression in parallel with a miR-143

overexpressing cell population [12], similar to the one used in

the present study. All reported effects were similar in both

overexpression cell lines as compared to controls, with no marked

changes in the effects from the miR-143 overexpression single

clone cell line to the miR-143 overexpression cell population.

Processing of cells for xenograft tumor growth
evaluation

Prior to animal injection, cells were synchronized by dual-

thymidine block as previously described [12]. Briefly, sub-

confluent cell populations were trypsinized, counted, and plated

on T150 flasks, at a density of 1.56105 cell/ml, using 20 ml

complete media supplemented with 1 mg/ml G418. Eight hours

after plating, 2 mM thymidine (Sigma-Aldrich) in ddH20 was

added to the culture media, and cells were cultured for 14 h. Cells

were then released from first thymidine block by removing culture

media, washing 3 times with PBS and by adding fresh complete

media supplemented with 1 mg/ml G418, without thymidine.

Ten hours later, cells were submitted to a second thymidine block,

by replacing culture media with complete media supplemented

with 1 mg/ml G418 and 2 mM thymidine. Fourteen hours later,

cells were released from second thymidine block by removing

culture media, washing 3 times with PBS and by adding fresh

complete media supplemented with 1 mg/ml G418, without

thymidine. Cells were grown for additional 48 h, prior to animal

injection.

Xenograft growth evaluation
Forty-eight hours after release from second block, cells were

washed 3 times with PBS, trypsinized, counted and ressupended in

DMEM at a density of 56106 cells/ml DMEM for animal

injection. A total of 56105 Over-143 or Empty cell line suspension

(100 ml cell suspension), was injected subcutaneously into the

flanks of 6-week-old immunodeficient nude mice (strain N:NIH(-

S)II-nu/nu). Two independent experiments were performed, using

a total of 12 animals for Over-143 and 10 animals for Empty tumor

xenograft growth evaluation. From the moment of injection,

animals were inspected regularly for signs of tumor development,

and the size of the tumors regularly measured with calipers every

2-3 days, recorded in an individualized chart, and used to calculate

tumor volumes (WxLxH). Tumorigenicity studies in mice with

subcutaneous tumors were terminated at day 40 after subcutane-

ous injection of cells, when mice were sacrificed. At excision,

tumors were sectioned into two equal portions; one half was fixed

overnight in 10% buffered formalin for subsequent paraffin

embedding and sectioning; the other half was rinsed with sterile
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saline, snap frozen in liquid nitrogen and stored at -80uC for

subsequent RNA and protein extraction.

Total RNA extraction
Tissue from tumor xenografts was used for RNA extraction,

together with cell pellets from Over-143 and Empty cells prior to

injection into nude mice (t = 0). Total RNA containing small RNA

species was extracted from tissues and cell lines with TRIZOLH
reagent (Invitrogen) according to the manufacturer’s instructions.

Samples were homogenized in TRIZOLH reagent using a motor-

driven Bio-vortexer (No1083; Biospec Products, Bartlesfield, OK)

and disposable RNAse/DNAse free sterile pestles (Thermo Fisher

Scientific, Inc., Chicago, IL). RNA was quantified using a

NanoDropH spectrophotometer, and typically showed A260/280

ratios between 1.9 and 2.1.

Mature miR-143 expression
Real-time PCR was performed to determine the expression level

of mature miR-143, as previously described [12]. RT reactions

were performed using 20 ng of total RNA extracted from tumor

xenografts and also from cell lines prior to injection into the nude

mice (t = 0), using a TaqManH MicroRNA reverse transcription kit

and TaqManH MicroRNA assays specific for the mature form of

hsa-miR-143, and human RNU6B for normalization to endoge-

nous control. Real-time PCR reactions were performed using

standard TaqManH PCR reagents and TaqManH MicroRNA

assays for hsa-miR-143, and human RNU6B (all from Applied

Biosystems). Triplicate reactions were run per sample. Data were

collected with 7000 System Sequence Detection Software, version

1.2.3 (Applied Biosystems). The comparative threshold cycle

method was used to calculate the amplification factor, where the

threshold cycle (Ct) is defined as the cycle number at which the

fluorescence passes the fixed threshold intensity level. miR-143

expression levels in different samples were calculated on the basis

of DDCt method. Empty cells prior to injection into nude mice were

used as the calibrator. The n-fold change in miR-143 expression

was obtained using the formula: 2-DDCt.

Total, nuclear and cytosolic protein isolation
Total protein extracts were prepared from tumor xenograft

tissues and cell lines. Samples were homogenized in ice-cold buffer

containing 10 mM Tris-HCl, pH 7.6, 5 mM MgCl2, 1.5 mM

KAc, 2 mM dithiothreitol (DTT) and protease inhibitor cocktail

tablet (Roche Diagnostics GmbH, Mannheim, Germany), for 15

sec/tube using a motor-driven Bio-vortexer and disposable sterile

pestles. Subsequently, an equal volume of ice-cold 2X total protein

buffer, containing 10 mM Tris-HCl pH 7.6, 1% Nonidet-P40 and

protease inhibitor cocktail tablet was added, and the samples were

homogeneized by vortexing and incubated on ice for 30 min.

Next, samples were sonicated for 30 sec and centrifuged at

10,000 g for 10 min, with total proteins being recovered in the

supernatants. Total protein extracts were snap frozen in liquid

nitrogen and stored at -80uC.

To evaluate nuclear translocation of NF-kB, cytoplasmic and

nuclear extracts were prepared from tumor xenograft tissues.

Samples were homogenized as described above for total protein

extraction, and next centrifuged at 500 g for 10 min at 4uC.

Cytosolic proteins were recovered in the supernatant. Nuclear

pellets were washed in buffer containing 10 mM Tris-HCl,

pH 7.6, 5 mM MgCl2, 0.25 M sucrose, 0.5% Triton X-100,

and protease inhibitors, and then centrifuged at 500 g, resus-

pended, and sonicated in buffer containing 10mM Tris-HCl,

pH 7.6, and 0.25 M sucrose with protease inhibitors. Finally, the

suspension was centrifuged through 0.88 M sucrose at 2000 g for

20 min at 4uC, and nuclear proteins recovered in the supernatant.

Immunoblotting
Steady-state levels of Bcl-2, caspase-3, PARP, ERK5, p-ERK5,

NF-kB (p65), IkB, GAPDH and histone H3 proteins were

determined by immunoblot analysis. Briefly, 50-75 mg of total

protein extracts were separated on 6, 8 or 12% SDS-polyacryl-

amide electrophoresis gels. After electrophoretic transfer onto

nitrocellulose membranes, immunoblots were incubated with 15%

H2O2 for 15 min at room temperature. After blocking with 5%

milk solution, the blots were incubated overnight at 4uC with

primary mouse monoclonal antibody reactive to Bcl-2 (#sc-7382)

and GAPDH (#sc-32233), or with primary rabbit polyclonal

antibody reactive to caspase-3 (#sc-7148), PARP (#sc-7150), NF-

kB (p65) (sc-372), or to IkB (sc-371) (all from Santa Cruz

Biotechnology, Inc., Santa Cruz, CA). Blots were also incubated

overnight at 4uC with primary rabbit polyclonal antibody reactive

to ERK5, p-ERK5 (#3372 and #3371; Cell Signaling, Beverly,

MA) or to histone H3 (#06-755; Millipore, Billerica, MA). Finally,

the immunoblots were incubated with secondary anti-mouse or

anti-rabbit sera conjugated with horseradish peroxidase (Bio-Rad

Laboratories, Hercules, CA) for 3 h at room temperature. The

membranes were processed for protein detection using Super

SignalTM substrate (Pierce, Rockford, IL,) to visualize proteins of

interest by chemoluminescence. b-actin was used as a loading

control, using a primary mouse antibody reactive to b-actin (#A-

5441; Sigma-Aldrich). Protein concentrations were determined

using the Bio-Rad protein assay kit according to the manufactur-

er’s instructions.

Tumor processing for histological sections
Tumors fixed in 10% buffered formalin were embedded in

paraffin, using a tissue processor. Tumor samples were kept for

90 min in 70%, 95% and absolute ethanol, xylol and paraffin, and

then remained in paraffin (70uC) until paraffin inclusion. The

paraffin-embedded routine tissue blocks were stored at 4uC. Three

and 4 mm-thick sections were cut from paraffin blocks onto

superfrost ultra plus slides (Menzel-Glaser, Braunschweig, DE), for

later use in Ki-67 immunohistochemistry and DNA fragmentation

assay, respectively.

In situ detection and quantitation of apoptosis
Apoptotic cells were quantitated in tumor tissue sections using

the transferase mediated deoxyuridine triphosphate (dUTP)-

digoxigenin nick-end labeling (TUNEL) assay [ApopTagH Red

for indirect immunofluorescence staining kit (#S7165 Chemi-

con)], following the manufacturer’s instructions. Specimens were

then counterstained with Hoechst 5 mg/ml, for 10 min, at room

temperature. Finally, slides were rinsed, dehydrated and a glass

coverslip was mounted using Fluoromount-GTM mounting media

(Beckman Coulter Inc., Fullerton, CA). The specimens were

examined using a bright field microscope using a Axio Scope A.1

fluorescence microscope (Zeiss Axioskop; Carl Zeiss GmbH, Jena,

Germany). Images were acquired, under a 100x magnification,

using a DFC490 camera (Leica Microsystems AG, Heersbrugg,

Switzerland) with the IM50 software for image acquisition (Leica

Microsystems, version 1.20, Release 9). Positive apoptotic cells

were detected, and their frequency compared within the different

samples. Apoptosis index was evaluated in tumor section images at

100x, only being considered areas with dense tumor cell mass,

displaying similar cell density between Over-143 and Empty

xenografts. Quantitation of TUNEL positive cells and tumor area

were performed using Image J software (http://rsbweb.nih.gov/ij/
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). Apoptosis was expressed as number of TUNEL-positive cells per

103 mm2 of tumor tissue.

Immunohistochemistry for Ki-67 expression
Immunostaining was performed by the peroxidase-indirect-

polymer method. Tumor tissue sections were deparaffinized,

rehydrated and subjected to epitope antigen retrieval (20 min,

94uC) with target retrieval solution high pH 50x Dako EnvisionTM

Flex (DAKO A/S, Glostrup, Denmark) in a pre-treatment module

PTlink (Dako, Model PT 10130). Primary monoclonal mouse

antibody anti-human KI67 (Clone MIB-1, #M7240; Dako) at

1:300 was used. Immunohistochemistry was performed using an

automated stainer (Dako Autostainer, Link 48) by the peroxidase-

indirect-polymer method (#K8000, Dako) for Ki-67. Tonsil was

used as positive control. For negative controls, the primary

antibody was omitted during the staining. Proliferation was

evaluated in tumor section images at 400x, only considering areas

with dense tumor cell mass, displaying similar cell density between

Over-143 and Empty xenografts. Quantitation of Ki-67 positive cells

was performed using Image J software. Proliferation was expressed

as percentage of Ki-67-positive cells.

Densitometry and statistical analysis
The relative intensifies of protein bands were analyzed using the

densitometric analysis program Quantity One version 4.6 (Bio-

Rad Laboratories). All data are expressed as the mean6SEM of

similar samples, from two independent experiments. Statistical

significance was evaluated using the Student’s t-test. Values of

p,0.05 were considered statistically significant.
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