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Abstract

Our knowledge about affective processes, especially concerning effects on cognitive demands like word processing, is
increasing steadily. Several studies consistently document valence and arousal effects, and although there is some debate
on possible interactions and different notions of valence, broad agreement on a two dimensional model of affective space
has been achieved. Alternative models like the discrete emotion theory have received little interest in word recognition
research so far. Using backward elimination and multiple regression analyses, we show that five discrete emotions (i.e.,
happiness, disgust, fear, anger and sadness) explain as much variance as two published dimensional models assuming
continuous or categorical valence, with the variables happiness, disgust and fear significantly contributing to this account.
Moreover, these effects even persist in an experiment with discrete emotion conditions when the stimuli are controlled for
emotional valence and arousal levels. We interpret this result as evidence for discrete emotion effects in visual word
recognition that cannot be explained by the two dimensional affective space account.
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Experiment 1

Introduction
Single word recognition, that is the mechanisms of identifying

the meaning of a written or spoken word, is standardly investigated

by means of the lexical decision task (LDT), where participants

judge the lexical status of a presented letter string on whether it is a

correct word (e.g. ‘PAPER’), or not (pseudo- or nonwords, e.g.

‘PAPET’). Given that cognitive and affective processes highly

interact, it is not surprising that psycholinguistic research revealed

effects of affective variables in word recognition by manipulating

the emotionality of the presented words [1–9]. These experimental

manipulations are often operationalized along the two dimensions

of the affective space, namely emotional valence, which indicates

whether a stimulus is positive or negative, and emotional arousal,

which describes the emotional intensity associated with the

stimulus that can be linked to physiological activation [10–13].

Both, effects of emotional valence and arousal on word

processing are well documented. While positive valence is known

to facilitate lexical processing in the LDT [2,4,5,8,9], a facilitatory

effect for negatively valenced words is observed only at high levels

of emotional arousal [1,2,6,7]. At low arousal levels, negative

stimuli are sometimes processed even slower than comparable

neutral words [1,6].

Concerning the valence effects, two theoretically distinct

explanations dominate the literature on emotional word recogni-

tion. A first explanation is based on the view that emotions emerge

from two underlying motivational systems, appetitive and aversive

[3,14,15]. According to this view, highly valenced stimuli lead to

faster approach or avoidance responses than less valenced stimuli

and therefore to differences in processing speed. Valence is

considered a continuous dimension in these approaches, with a

stepless transition from the positive to the negative pole and a

neutral midpoint. Estes and Adelman [16,17], in contrast, derived

their categorical valence conception from the automatic vigilance

[18] and automatic affective evaluation [19] models, which state

that all stimuli are evaluated automatically on their affective value

as either being positive (appetitive) or negative (aversive). In this

conception, emotional stimuli vary more between the affective

categories than within [17] . According to Estes and Adelman a

further differentiation within the positive category and within the

negative category is not reasonable. Both theories are supported by

experimental evidence (for continuous valence, see [3,6]; for

categorical valence, see [16,17,20–22]).

As a consequence, Estes and Adelman correctly predict that

response times (RTs) in visual word recognition vary with

emotional categories, but not as a function of emotional intensity

within the positive or negative category [16,17]. Moreover, they

are able to show that their model explains a comparable amount of

variance as the continuous model [6] in a multiple regression

analysis on lexical decision performance data, while being more

parsimonious in terms of the models’ explanatory value due to five

fewer explanatory variables. Still, criticism was raised regarding

the appropriateness of the database used in Estes & Adelman

[16,17]. Kousta et al. [3] discussed that the valence norms in Estes

& Adelman are not normally distributed which might bias the

results of the regression analyses reported therein, and that the

amount of neutral words was underrepresented in this study.

Accordingly, relying on a larger corpus with more neutral stimuli
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Kousta et al. [3] again found evidence in support of the continuous

valence conception (but didn’t directly contrast the two accounts).

Models relying on emotional valence and arousal are the most

dominant models in the literature on emotional processing, but

they are not without alternatives. From an evolutionary view, it is

often assumed that human emotions are categorized in terms of

discrete emotions [23–26]. Unlike the continuous valence model,

discrete emotion theories suggest discrete emotion categories. And

unlike the categorical valence model, it is suggested that both,

positive and negative valence category are further differentiated.

At least five different discrete emotion categories – happiness,

sadness, anger, fear, disgust – can be identified from facial or vocal

expression. This ability to discriminate biologically significant

expressions is discussed as an inborn ability and has been shown to

generalize across different human cultures. Besides their origin in

biological markers, discrete emotions are also elicited by other

types of ecological valid stimuli, such as film clips [27,28], complex

pictures [29] and verbal descriptions [30–32].

An evolutionary explanation is not plausible for these stimulus

types, but contextual learning has been suggested as a key process

in linking such stimulus material to discrete emotions [31].

Emotion categories acquired during childhood may facilitate the

perception of discrete emotions in different circumstances, a

mechanism that is most probably moderated by the use of

language [31] which itself is known to be closely linked to

phylogenetically old brain systems responsible for emotional

processes [33]. Accordingly, it seems plausible to assume that

single word stimuli are also linked to discrete emotion categories.

First evidence already documents that discrete emotion data affect

lexical decision performance in clinical [34,35] and non-clinical

populations [36].

The present study was designed to further examine the role of

discrete emotion categories in visual word recognition and to

contrast these data with the predictions of continuous and

categorical models of the affective space. In the first step, an

automatic selection procedure was computed to reveal the best

predicting affective variables for lexical decision RTs derived from

a large corpus of lexical decision data. These were then validated

using multiple regression analyses in a second step. Analyses were

computed using the ANEW database [10] and the ANEW discrete

emotion extension by Stevenson, Mikels and James [37] to predict

normative lexical decision human performance data provided by

the English Lexicon Project database (ELP, [38]). The ANEW

contains normative valence and arousal rating data for more than

1000 English words, which has been extended to also account for

normative discrete emotion rating data for happy, anger, sad, fear

and disgust discrete emotion categories by [38]. The ELP was

chosen as the dependent variable because it contains lexical

decision performances from more than 800 subjects on more than

40.000 words. This data was collected across six universities, and

has become a standard tool for the investigation of lexical

processing [6,16,17], thus allowing for a maximum reproducibil-

ity. The results of our analyses suggest that discrete emotion

information has a comparable or even enhanced explanatory

value as the continuous and the categorical model. To further

verify these results on independent data and to overcome the

problems of the ANEW database [3], a final lexical decision

experiment comprising a factorial variation of discrete emotion

content while controlling for effects of valence and arousal was

conducted to replicate the multiple regression results.

Backward elimination. Automatic selection procedures are a

good possibility to statistically explore which predictors explain most

variance in a dependent variable (for details, see [39]). Reisenzein

[32] documented a close relationship between discrete emotion

labels and the dimensional affective space model by showing that

discrete emotion words show stable patterns across different

intensities along the valence-arousal dimensions. Thus, all three

models, the continuous valence model, the categorical valence model

and the discrete emotion model, are likely to share considerable

variance, which can cause the problem of multicollinearity.

Automatic selection procedures in multiple regression analyses

avoid multicollinearity, and help to identify the variables that

individually account for a significant amount of variance.

Searching for the most promising predictors, we presented

affective variables from all three models to the automatic selection

procedure, together with other psycholinguistic predictors known

to affect lexical decisions (e.g., stimulus length and frequency, see

[3,6,40], using the average lexical decision times taken from the

ELP as the dependent variable. Because of the very univocal

literature, valence and arousal were expected to explain reliable

variance in the human performance data. Finding discrete

emotion variables among the selected variables would, however,

strongly support the hypothesis of discrete emotion influences on

single word processing.

Materials and Methods
To obtain a data set for the subsequent regression analyses, we

followed the procedure described by Estes and Adelman [16,17]

and Larsen et al. [6]. Stimulus data from ANEW [10] was merged

with lexical decision RTs collected from the ELP [37]. The ELP

has collected the performance data in a standardized lexical

decision implementation: 40,481 words and 40,481 nonwords

were presented to 816 native English subjects in uppercase

QBASIC font letters. Each trial began with the presentation of

three asterisks for 250 ms, followed by a 50 ms tone and a blank

screen for 250 ms. Stimuli remained on screen until button press

or for 4 seconds, whichever occurred first. The next trial started

after a fixed inter-stimulus-interval of 1,000 ms, and behavioral

errors were reported back to the subject.

In addition to the ELP and ANEW data, we added English

discrete emotion norms to the data set, collected and published by

Stevenson et al. [38] for the ANEW. This resulted in a list of 1.023

words. A total of 14 variables was used for backward elimination,

namely the psycholinguistic variables logarithm of HAL frequency

[41], stimulus length [42], orthographic neighborhood size [43–

45], syllables, mean bigram frequency [46], plus the following

affective variables: The continuous model variables’ continuous

valence, arousal and their first-order interaction, the categorical

model variable categorical valence, with ANEW valence greater

than 5 assigned to positive and ANEW valence smaller than 5

assigned to negative category (definition taken from [16]; the word

’TAXI’, having ANEW valence of 5, was excluded, leaving 1022

words for analysis), and the discrete emotion variables happiness,

anger, fear, disgust and sadness [38]. All variables were centered,

and entered in a second step into a multiple regression analysis,

using RT as the dependent variable. A backward elimination

procedure was applied using SPSS software (version 13.0, SPSS

Inc., USA), with standard p-to-leave of 0.1.

Results
An overview of the selection results including the estimated

betas is given in Table 1. Six variables survived the backward

elimination procedure, among them the three discrete emotions

variables happiness, fear and disgust. No other affective variable

survived. The valence*arousal interaction was eliminated as first

affective predictor at second position, categorical valence as last

(see Table 1). As expected, frequency and length were the best

predictors.

Discrete Emotion Effects
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Experiment 2

The automatic selection results show a consistent picture in

favour of a discrete emotion explanation of lexical decision times.

Neither continuous valence, as expected according to Larsen et al.

[6] or Kousta et al. [3] for example, nor categorical valence as

expected according to Estes and Adelman [16,17], nor emotional

arousal or the valence*arousal interaction were identified as

predictive affective variables, but three out of five discrete emotion

variables, suggesting that happiness, fear and disgust explain

significant variance in human RTs. This analysis clearly

documents that discrete emotions predict word processing

performance in healthy subjects [36].

Still, these results should be interpreted with caution. Automatic

selection procedures select the variables that individually account

for most variance, but they do not necessarily identify the best

theoretically reasonable model. A final conclusion concerning the

predictive power of the three emotion models discussed above is

not possible on the basis of this analysis alone. In fact, it is quite

likely that dimensional models, which claim to account for the

entire affective space [32], perform much better than a model

including only a limited number of discrete emotions, each of

which is by definition limited in explanatory value.

To directly compare the predictive power of the continuous

valence model as published by Larsen et al. [6] and the categorical

model published by Estes and Adelman [16] with a model

including five discrete emotions (i.e., happiness, anger, fear, disgust

and sadness), a multiple regression analysis was conducted. Again,

best overall performance would be expected from the categorical

model [16,17] or the continuous model [3,6], considering the

literature. Given the automatic selection results and the behavioral

relevance of discrete emotions, however, we expected the discrete

emotion model to perform at least comparably well.

Materials and Methods
Again, the ELP, the ANEW and the discrete emotion data from

Stevenson et al. [38] were merged. All three models were used to

predict standardized RTs with centered variables, following

Larsen et al. [6]. As suggested in Larsen et al. [6], the continuous

model contained the predictors length, log HAL frequency,

orthographic neighborhood size, syllables, valence, arousal,

squared valence, valence by arousal interaction, cubed valence,

squared valence by arousal interaction and cubed valence by

arousal interaction. The categorical model, following Estes and

Adelman [16], predicted RTs with the variables length, log HAL

frequency, orthographic neighborhood size, syllables, arousal and

categorical valence. Contextual diversity was included, which

however does not significantly affect overall performance of the

regression model as published by Estes and Adelman [16]. Finally,

in the discrete emotion model, length, log HAL frequency,

orthographic neighborhood size, syllables, and the five discrete

emotion variables happiness, anger, fear, disgust and sadness were

used to predict RTs. Except for the affective variables, all three

regressions used the same predictors. Although the original

continuous model from Larsen et al. [6] did not contain syllables

as predictor, it was added in this analysis to ease interpretation of

the results. Linear multiple regressions were calculated using SPSS

software, level of significance was set to 0.05.

Results
The continuous regression model altogether accounted for

59.0% of the variance (adjusted R square), with length, log HAL

frequency, syllables, valence, valence by arousal interaction, cubed

valence and cubed valence by arousal interaction as significant

predictors. Overall model performance differs from Larsen et al.

[6] because we did not use hierarchical regression analysis, which

overestimates predictive power. The categorical regression model

explained a total of 58.7% variance (adjusted R square) with

length, log HAL frequency, syllables, categorical valence and

arousal as significant predictors. The discrete emotion model,

finally, with significant predictors length, log HAL frequency,

syllables, happiness, fear and disgust, accounted for 59.6%

variance in RTs (adjusted R square). All three models are

summarized in Table 2.

Discussion
Three affective variables signaling the amount of happiness, fear

and disgust significantly predict lexical decision RTs according to

the automatic selection procedure. When comparing the overall

performance of a regression model with five discrete emotion

variables with those of categorical and continuous models

discussed in the literature [6,16], all three perform more or less

equally well. This is not trivial, since dimensional models often

claim to account for the entire affective space, while discrete

emotions, by definition, are more specific [47]. The multiple

regression analysis, however, documents that five discrete

emotions explain just as much (or even slightly more) variance

as both, the dimensional and the categorical model.

The overall RT pattern known from the experimental visual

word recognition literature was replicated [1,4,5,7]. Positive

valence is consistently accompanied by faster RTs, whereas

negative words show indifferent results with sometimes increased

and sometimes decreased RTs as compared to neutral words [1,5].

According to the above regression analyses, negative betas for

valence and arousal indicate that the dimensional and the

categorical model both predict that positive stimuli are processed

faster than negative stimuli and that high arousal facilitates

processing. The dimensional and the categorical model only differ

in their expectations for within valence effects, which is discussed

excellently and in great detail in Estes and Adelman [17].

Concerning discrete emotions, the regression model predicts

faster RTs with increasing values of happiness and fear, and slower

RTs when disgust levels increase. Happiness related words (i.e.,

Table 1. Backward elimination results.

Step Variable beta t-value p-value

1. removal bigram frequency -0.002 -0.067 0.947

2. removal valence*arousal -0.003 -0.106 0.915

3. removal anger -0.007 -0.148 0.883

4. removal sadness -0.014 -0.305 0.760

5. removal arousal -0.026 -0.888 0.375

6. removal N 0.031 1.082 0.280

7. removal dimensional valence 0.084 1.087 0.277

8. removal categorical valence -0.055 -1.318 0.188

9. final model log HAL frequency -0.469 -18.791 ,0.001

length 0.261 7.565 ,0.001

syllables 0.131 3.950 ,0.001

happiness -0.091 -2.983 0.003

disgust 0.089 2.948 0.003

fear -0.083 -2.721 0.007

Note: N = orthographic neighborhood size.
doi:10.1371/journal.pone.0023743.t001

Discrete Emotion Effects
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positive words) are predicted to elicit faster RTs, whereas negative

words would show indifferent results depending on the proportion

of fear and disgust-related words in the stimulus set. Following the

predictions of the discrete emotion model, the proportions of the

different negatively valenced discrete emotion words in a given data

set explain the indifferent results regarding negative words. So far,

the two dimensional affective space models and the discrete emotion

model basically predict the RT pattern. Considering the bivariate

relationships between the valence and arousal norms from the

ANEW database and the discrete emotion norms, there is an

interesting and crucial difference between the models, however.

According to Stevenson, Mikels and James [48] and as visible in

Figure 1, all discrete emotion variables are positively related to

emotional arousal, even disgust. Higher levels of disgust are

therefore related not only to higher negativity, but also to higher

arousal (see Figure 1 and [48]). This can explain why arousal did not

account for a significant proportion of RT variance under the

discrete emotion model. Moreover it challenges the two dimen-

sional approaches which both predict that highly arousing negative

stimuli are processed faster instead of being processed more slowly,

as expected from the discrete emotion models’ regression data.

Experiment 3

In order to directly test the predictions of the regression model on

discrete emotions, an additional experiment was designed. Follow-

ing the above analyses one would expect faster RTs to both

happiness and fear-related words and slower responses to disgust-

related words in a LDT. Since the backward elimination regression

did not reveal effects of valence or arousal, we predict that discrete

emotion effects are still observed even when the stimulus material is

controlled for levels of valence and arousal (according to the

dimensional affective space model). Five stimulus conditions were

created containing words which, according to the discrete emotion

model, are related to either happiness, disgust, fear, anger, or no

other discrete emotion (i.e., neutral). The neutral condition consisted

of words that show overall low levels of discrete emotion intensities.

Sadness was not included as a further condition in the experiment

because the German database that provides the discrete emotion

norms does not contain sufficient sadness related stimuli to fulfill the

high matching standards used in this study. Still, based on the

regressions analyses presented above one would not have predicted

sadness related effects on the lexical decision performance data.

Across all conditions, arousal was carefully controlled, and as an

additional constraint, the three negative conditions did not differ in

valence. Both the dimensional and the categorical model predict a

valence effect with faster responses to happiness related words,

intermediate responses to neutral and slowest responses to negative

words (at intermediate levels of arousal). Since all three negative

discrete emotion conditions have similar levels of valence and

arousal, the dimensional models would not predict RT differences

between them. In contrast, we expected to find strong discrete

emotion influences on word processing. Following the direction of

the respective beta values from the regression analysis, we predict to

observe slowed-down processing of disgust-related and speeded

processing of happiness related words, with RTs to anger and fear-

related words lying in between. Even between the latter two discrete

emotion conditions a slight processing advantage for fear-related

words could be predicted based on differences in the respective

betas in Table 2.

Materials and Methods
Ethics. The authors took care that this study was conducted

in accordance with the declaration of Helsinki and under the

Table 2. Comparison of three affective regression models.

Variable Categorical model Continuous model Discrete emotion model

beta t-value p-value beta t-value p-value beta t-value p-value

Log HAL -0.505 -21.477 ,0.001 -0.501 -21.408 ,0.001 -0.482 -20.423 ,0.001

Length 0.294 8.308 ,0.001 0.301 8.525 ,0.001 0.316 8.983 ,0.001

Syllables 0.131 4.129 ,0.001 0.125 3.961 ,0.001 0.131 4.160 ,0.001

N 0.041 1.475 0.140 0.043 1.555 0.120 0.045 1.661 0.097

Val (cat) -0.101 -4.650 ,0.001

arous -0.046 -2.207 0.028 -0.009 -0.250 0.802

Val (con) -0.201 -3.820 ,0.001

Val*arous 0.197 3.496 ,0.001

Val2 -0.028 -1.079 0.281

Val2*arous -0.020 -0.581 0.561

Val3 0.127 2.156 0.031

Val3*arous -0.190 -3.066 0.002

Happiness -0.114 -3.818 ,0.001

Disgust 0.137 4.542 ,0.001

Fear -0.075 -2.018 0.044

Sadness -0.025 -0.658 0.511

Anger -0.046 -1.185 0.236

Adj. R2 0.587 0.590 0.596

Note: Log HAL = logarithm of HAL frequency, N = orthographical neighborhood size, Val (cat) = categorical valence, Val (con)/Val = continuous valence, arous =
arousal.
doi:10.1371/journal.pone.0023743.t002

Discrete Emotion Effects

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e23743



Discrete Emotion Effects

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e23743



ethical guidelines of the German science foundation, although the

study was not presented to and therefore not approved by any

ethical committee or institutional board. Since the lexical decision

paradigm is a standard paradigm in psycholinguistic research that

involves no harm to the subjects, collects no personally critical

information and has a long history in psycholinguistic research, a

specific approval for this study was considered not necessary by the

authors. All subjects were informed prior to their inclusion in the

study on their right to decline to participate and to abort the

experiment without consequences, and they were informed about

the goals of the study. All participants gave their informed consent

verbally prior to their inclusion. Written consent was not

considered to be necessary by the authors since verbal consent

already is a legal contract according to the German law. The

authors alone are responsible for any decision concerning the

ethics of this study.

Participants. A total of 21 native German subjects (19

female; 19 right handed, 1 reporting to be ambidextrous; mean

age = 25.4, S.D. = 6.6, range = 19 to 42), recruited at the Freie

Universität Berlin, participated in this study. Some of them

received course credit for participation, others participated

without recompense.

Materials. Stimulus material consisted of 125 nouns taken

from the Discrete Emotion Norms for Nouns – a Berlin Affective

Word List (DENN-BAWL, [36]) and an equal number of

nonwords. Within the word set, five conditions (happiness,

neutral, fear, anger, disgust) were constructed, each containing

25 items of 4–6 letters length. Words defined as being neutral for

this study had valence ratings lying between 20.5 and +0.5

according to the Berlin Affective Word List Reloaded [49] and low

discrete emotion intensities (mean discrete emotion ratings below

2.25). ‘Positive’ words had a valence rating above 1 and their

happiness rating was higher than their respective rating in any

other discrete emotion category. ‘Negative’ words, finally, had a

valence rating below -1. Words in disgust condition had higher

disgust than fear, sadness or anger values, equivalent relations

were used to define fear and anger conditions.

All five conditions were matched on arousal [mean arousal (and

SD) for happiness = 3.4 (0.5); for fear = 3.4 (0.4); for anger = 3.4

(0.6); for disgust = 3.2 (0.4); for neutral = 3.3 (0.4)] as well as their

number of letters, syllables, phonemes and orthographical

neighbors, their frequency, their imageability and their averaged

bigram frequency using an ANOVA (F,1). Additionally, the three

negative basic emotion conditions were matched on valence [mean

valence (and SD) for anger = 21.5 (0.4); for fear = 21.6 (0.4); for

disgust = 21.6 (0.4), F,1; mean valence (and SD) for happiness

= 1.9 (0.5); for neutral = 0.0 (0.3)]. Estimates were taken from the

BAWL-R.

Nonwords were created by selecting an additional 125 words of

4–6 letters length from the BAWL-R and replacing one or two

letters, vowels with vowels and consonants with consonants, thus

creating pronounceable but meaningless letter strings. They did

not differ from words in length and number of syllables in a t-test

(t,1).

Procedure and data preparation. Participants were seated

in a quiet room in front of a 15 in. laptop screen. They were

instructed to decide as fast and as accurate as possible whether a

presented letter string is a correct German word or a nonword.

The decision was made using left and right index finger, lying on

the SHIFT buttons. The button-to-response assignment was

counterbalanced across subjects. After nine practice trials not

part of the stimulus set and therefore excluded from any analysis,

the experimenter left the room, provided that subjects did not have

further questions.

Stimuli were presented by Presentation 9.9 software (Neurobe-

havioral Systems Inc., Canada) in randomized order in the center

of the screen, written in black uppercase letters (font type ‘‘Arial’’,

size 24) on a blank white screen. Each trial began with a fixation

cross (+) presented for 500ms in the center of the screen, replaced

by the stimulus (500 ms) and another fixation cross, presented

until button press.

For analyses, error-free mean RTs were calculated for each

condition and each participant. Outliers (3.7%), defined as

responses faster or slower than the individual mean RT62 S.D.,

were excluded from analysis. For error analyses, behavioral errors

were summed up per participant and condition. Subjects

committed 7.5% errors on average. One subject was excluded

having committed more than 20% behavioral errors. All analyses

were computed using SPSS software at an a-priori significance

level of 0.05.

Results
A repeated measures ANOVA over all five conditions (happiness,

neutral, fear, anger, disgust) revealed a significant discrete emotion

effect in RTs [F(4,16) = 9.072, p,0.001]. Planned pairwise

comparisons using matched pairs t-tests revealed faster responses

to happiness related words (mean = 682.6 ms, S.D. = 128.4 ms)

when compared to neutral words (mean = 702.0 ms, S.D. =

118.0 ms; t(18) = 2.625, p = 0.017). Correct recognition of disgust-

related words (mean = 737.4 ms, S.D. = 129.9 ms) took signifi-

cantly longer than recognizing fear (mean = 714.6 ms, S.D. =

130.4 ms; t(18) = 22.349, p = 0.030) or anger related stimuli

(mean = 710.9 ms, S.D. = 127.8 ms; t(18) = 22.272, p = 0.035).

All three negative conditions yielded in slower RTs than happiness

related words (happiness vs. disgust: t(18) = 5.280, p,0.001; vs. fear:

t(18) = 3.973, p = 0.001; vs. anger: t(18) = 3.242, p = 0.004), but

unlike disgust, neither fear nor anger related words differed from

neutral stimuli (neutral vs. disgust: t(18) = 23.795, p = 0.001). These

results are also depicted in Figure 2.

Analysing the error rates, a repeated measures ANOVA over all

five conditions (happiness, neutral, fear, anger, disgust) revealed a

significant effect [F(4,15) = 19.970, p,0.001]. Planned pairwise

comparisons using matched pairs t-tests revealed more errors while

recognizing disgust-related words (mean sum of errors = 3.6, S.D.

= 1.6) than in any other condition (disgust vs. neutral: t(18) = 4.487,

p,0.001; vs. fear: t(18) = 3.012, p = 0.007; vs. anger: t(18) = 5.811,

p,0.001; vs. happiness: t(18) = 7.520, p,0.001). Fear-related

stimuli (mean sum of errors = 2.6, S.D. = 1.5) lead to more errors

than anger related (mean sum of errors = 1.2, S.D. = 1.1; t(18)

= 4.762, p,0.001), happiness related (mean sum of errors = 0.8,

S.D. = 0.9; t(18) = 6.514, p,0.001) and neutral stimuli (mean sum

of errors = 1.8, S.D. = 2.0; t(18) = 2.212, p = 0.040). Happiness

and neutral condition differed significantly (t(18) = -2.730,

p = 0.013).

Discussion
Discrete emotion conditions significantly affect subjects RTs

and error data in visual word recognition even when the stimuli

are controlled for their levels of arousal and valence (the latter

Figure 1. The relationship between the five discrete emotion variables happiness, anger, sadness, fear and disgust and the two
affective space variables valence (left column) and arousal (right column).
doi:10.1371/journal.pone.0023743.g001
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within the ‘negative’ conditions). As such, the present study

supports a discrete emotion model in visual word recognition that

incorporates an explanatory value which is superior to the

standard two-dimensional affective space model or the categorical

valence model. The LDT results resemble the predictions made

following the above regression analyses. In an automatic selection

procedure, the three discrete emotion categories happiness, fear

and disgust were selected as the only affective variables predicting

word recognition performance. Neither valence nor arousal

explained additional variance. A subsequent linear multiple

regression confirmed these predictors, extended by the observation

that such a discrete emotion model behaves comparably well and

accounts for just as much variance as a dimensional valence-

arousal model [3,6] or a categorical model [16,17].

Following the criticisms of Kousta et al. [3] in response to Estes

and Adelman [16], the final experimental study used German

nouns rated for valence, arousal and five discrete emotions to

overcome the methodological problems associated with the

ANEW data. A processing advantage of happiness related words

and a slowed processing of disgust-related words compared with

neutral words was observed. Fear-related words could not be

differentiated from neutral words in terms of their RTs and also

did not show the predicted processing advantage compared with

anger-related words. But looking at the error data, it seems that

the participants showed a (not predicted) trade-off, when fear-

related words led to more errors compared to the neutral and the

anger conditions. Probably, this speed-accuracy trade-off could be

attributed to differences in the lexical decision paradigm employed

here as compared with that of the ELP (e.g., shorter inter-trial

intervals, no feedback, shorter stimulus presentation duration), but

this explanation needs to be further examined in subsequent

studies.

Overall, these results have two immediate implications: First,

given the data we were not able to replicate the observed

processing advantage of both positive and negative words, as

proposed by Kousta et al. [3]. In contrast, our data correspond to

earlier findings, showing that processing of negative words is

slowed when emotional and neutral words are controlled for their

level of arousal [1,16,17], which is best explained by a non-linear

relationship between negative valence, arousal and RTs (see

Figure 2 in [6]). Only high arousal words show the proposed

processing advantage, whereas negative valence itself seems to

slow RTs. As such, our data support automatic evaluation

approaches [16–19] that propose a fast processing of stimulus’

valence. The contribution of arousal to this process, however, is

not clear yet, although first neurophysiological studies indicate that

words’ arousal may alter early lexico-semantic processing

independent of affective evaluation [1,50,51].

Secondly and most important, valence and arousal are not

sufficient to explain subjects’ word recognition performance within

negatively valenced words. A simple positive-negative evaluation

does not explain the processing differences within negative words

with slowed RTs and higher error rates for disgust-related words,

nor does it account for the relatively slowed processing and

decreased error rates for fear-related words. Thus, neither a

continuous valence arousal model of affective space [3,6] nor a

categorical valence model [16] can explain the performance effects

within these negative word categories. Additional knowledge of

discrete emotion category membership is required to explain the

performance differences. Although the processing of negative

words is slowed in general, different processes seem to distinguish

disgust, fear and anger related words. Disgust words are processed

slowest, thus seem to attract most processing resources according

to the automatic evaluation hypothesis [18,19]. In contrast, fear-

related words show a relative processing facilitation, indicated by

faster and more accurate responding as compared with disgust-

related words. In general, we propose contextual learning as

suggested by Feldman Barrett et al. [31] and as described in the

introduction to explain these effects. The contextual learning

hypothesis refers to the assumption that discrete emotion

categories acquired during early childhood may facilitate the

perception of discrete emotions in different circumstances and that

the perception itself is moderated by the use of language (see also

[31] for a discussion of the tight link between emotion and

language). The data presented here suggests that contextual

learning is indeed specific for discrete emotions and less powerfull

for the learning of dimensional or bi-modal models.

In sum, with the highly concordant data from different analyses

performed in different languages we present strong evidence for

the existence of a discrete emotion specificity in visual word

recognition. These results can be taken as an indication that the

dimensional models or bi-modal categorical models of affective

space are underdetermined in explaining human performance in

visual word recognition [52]. The results presented here

complement a previous study by Stevenson et al. [53], which

examined explicit evaluative judgments of emotionally and

sexually arousing words on 11 affective variables: the three

affective dimensions, five discrete emotion categories and three

additional rating of sexual categories. Based on a data-driven

Figure 2. Mean response times in ms (upper part) and summed
error rates (lower part) for the lexical decision task. Error bars
represent one standard deviation.
doi:10.1371/journal.pone.0023743.g002

Discrete Emotion Effects

PLoS ONE | www.plosone.org 7 August 2011 | Volume 6 | Issue 8 | e23743



factor analysis approach, four independent factors were identified

that account for most of the variance in the subjective ratings.

Three out of these four factors represent the discrete emotions

happiness, disgust, and a basic aversive category (covering both

fear and sadness), the fourth factor representing a sexual category.

Affective dimensions, in contrast, did not explain much variance in

the subjective ratings. Thus, the present results together with the

Stevenson et al. [53] study demonstrate the appropriateness of

discrete emotion categories in explaining affective rating behavior,

and furthermore, with the lexical decision data presented above

we are able to show that discrete emotion effects can also be

observed in visual word recognition, where the processing of the

emotional content is incidental to the task requirements. Of note

here is that Stevenson et al. [53] observed sex differences in their

rating data, a question that could not be addressed with the

present study because of an unbalanced proportion of female and

male participants. It remains for future studies to investigate

whether sex related differences can be observed within discrete

emotion effects on the LDT.
Implications for future studies. While the overall

performance of dimensional models is comparable to that of a

discrete emotion model, we show that a two dimensional

perspective - regardless of the specific valence conception

[3,6,16,17] - fails to correctly predict discrete emotion effects for

negative words in visual word recognition. Still, this paper is no

more than a first glimpse on discrete emotion effects on word

processing, leading to several implications for future studies. First

of all, it would be interesting to see which further discrete emotion

variables affect word processing. While sadness ratings are already

available in English and in German [36,38], further discrete

emotions have been suggested in the literature (i.e., surprise

[24,26,54]).

Furthermore, discrete emotion effects in single word processing

should not be specific to lexical decision but generalize to other

word recognition tasks. If contextual learning is the basis of the

discrete emotion effects discussed here, we would predict similar

effects in naming and recognition memory performance for single

words. Studies in the context of discrete emotion influences on

attention (e.g., in the emotional Stroop task, see [55]) may be of

special interest, too. Shifted attention is commonly used to

denominate effects of negative valence in word processing

(e.g.,[56]), and different attention demands across the discrete

emotion categories could bridge word processing and the

underlying neural systems for discrete emotions.
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