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Abstract

Background: The SIV/rhesus macaque model for HIV/AIDS is a powerful system for examining the contribution of T cells in
the control of AIDS viruses. To better our understanding of CD8" T-cell control of SIV replication in CD4* T cells, we asked
whether TCRs isolated from rhesus macaque CD8* T-cell clones that exhibited varying abilities to suppress SIV replication
could convey their suppressive properties to CD8* T cells obtained from an uninfected/unvaccinated animal.

Principal Findings: We transferred SIV-specific TCR genes isolated from rhesus macaque CD8* T-cell clones with varying
abilities to suppress SIV replication in vitro into CD8" T cells obtained from an uninfected animal by retroviral transduction.
After sorting and expansion, transduced CD8" T-cell lines were obtained that specifically bound their cognate SIV tetramer.
These cell lines displayed appropriate effector function and specificity, expressing intracellular IFNy upon peptide
stimulation. Importantly, the SIV suppression properties of the transduced cell lines mirrored those of the original TCR donor
clones: cell lines expressing TCRs transferred from highly suppressive clones effectively reduced wild-type SIV replication,
while expression of a non-suppressing TCR failed to reduce the spread of virus. However, all TCRs were able to suppress the
replication of an SIV mutant that did not downregulate MHC-|, recapitulating the properties of their donor clones.

Conclusions: Our results show that antigen-specific SIV suppression can be transferred between allogenic T cells simply by
TCR gene transfer. This advance provides a platform for examining the contributions of TCRs versus the intrinsic effector
characteristics of T-cell clones in virus suppression. Additionally, this approach can be applied to develop non-human
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primate models to evaluate adoptive T-cell transfer therapy for AIDS and other diseases.
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Introduction

Due to the central role of T lymphocytes in the cellular immune
response, adoptive immunotherapy using autologous 1" cells is being
evaluated In cancer treatment trials and as a means to suppress
opportunistic virus outbreaks that occur in hematopoietic stem cell
transplant patients [1,2,3,4,5,6,7,8,9,10,11,12,13]. Of the key factors in
this approach, the isolation of T cells with the appropriate antigen
specificity and robust effector functions is paramount. These
requirements can be met by transferring highly effective TCR o/
chain gene pairs from donor antigen-specific T cells into recipient
CD8" T cells, thereby reprogramming them to display the antigen
specificity of the donor cell [14,15,16,17,18,19,20,21,22,23,24,25,26].
Indeed, TCR-engineered autologous T cells have recently been
successfully used in human clinical trials to treat melanoma
[6,27,28,29,30,31,32].

Drug-based anti-HIV therapies are the clinically relevant tool
against AIDS, yet emerging drug resistance remains a practical
concern. While immune-based therapies hold great theoretical
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promise, practical treatments have not realized their potential due
to an inability to understand the immune basis of immune control of
HIV replication, the role CD8" T cells play, the importance of the
many effector functions, and the intrinsic difficulties with formulating
and evaluating vaccines against HIV/AIDS. Unlike the theory
behind cancer T-cell immunotherapy, it is unclear whether simply
supplying more HIV-specific CD8"* T cells would necessarily provide
better control of virus replication due to shortcomings of the HIV-
reactive T cells themselves or the seemingly inexhaustible ability
of HIV to escape the immune response by mutation
(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47]. Thus, while one of
the basic problems in cancer therapy is a paucity of anti-tumor CD8*
T cells, one problem with T-cell-mediated control of HIV appears to
be that while a broad CD8* T-cell repertoire is generated, only a few
of these T cells are effective at suppressing viral replication. Indeed,
our prior studies of CD8" T cells from either vaccinated or infected
rhesus macaques found that actually only a fraction of the SIV-specific
clones isolated could effectively suppress wild-type SIV in vitro even
though all had similar IFNy and degranulation properties [48].
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One roadblock to our understanding of CD8* T cell-mediated
control of HIV/SIV is the lack of a suitable experimental in vivo
model to answer these questions. Based on the intense interest and
promise of adoptive transfer of TCR-engineered T cells for
effective cancer therapy, we decided to apply this approach to the
SIV/rhesus macaque model. Previous studies have transferred a
single HIV-1 specific TCR between human CD8" T cells and
demonstrated the ability of the transduced cells to suppress HIV-1
replication [49,50]. Here, we extended this approach to the rhesus
macaque system, transferring three different TCRs cloned from
SIV-specific CD8" T cells into PBMC from an uninfected
macaque. The resulting three transduced CD8* T-cell lines stably
expressed the transferred TCRs of the donors as measured by
specific tetramer binding, exhibited CTL effector functions, and
suppressed SIV replication in vitro to similar extent as the original
donor clones, demonstrating effective transfer of TCR function to
T cells from a SIV-naive animal.

Results

Transfer of SIV-specific TCRs into primary rhesus
macaque T cells

To transfer SIV-specific TCRs, we produced three TCR
expressing vectors using TCR o and B chain-coding sequences
that were cDNA cloned from two CD8* T cell clones specific for
the SIV . 239 CM9 peptide, clones CM9-6 and CM9-14, and
one that recognizes the SIV,,,,. 239 SL8 peptide, clone SL8-42, all
isolated from the SIV ,,c039 -infected animal, DAJ [51]. TCR o
and B chain-coding sequences were inserted into the pMSGV
murine retroviral vector [19] as a continuous open reading frame
with the TCR genes (Fig. 1) separated by a spacer consisting of a
furin protease cleavage site, which liberates the o chain protein
from the linker leaving a 4 amino acids at its C-terminus, a Ser-
Gly-Ser-Gly linker, and the P2A peptide from fowlpox virus
[52,53], which allows for expression of the B chain free from the
N-terminal spacer polypeptide. Immunoblot analysis showed that
this construct produced both o and B chains in the TCR-deficient
human Jurkat J.RT3-T3.5 T cell line (data not shown).
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Figure 1. Diagram of TCR expressing retroviral vector and the
mature TCR chains. The MSGV1 murine retroviral vectors sequences
are displayed as black boxes and lines while the TCR expression cassette
is in white. The fine structure of the TCR chain fusion cassette is
presented below the vector with the different MamuA*Q1-restricted
TCRs molecularly-cloned from DAJ T-cell clones that were inserted into
the vectors indicated above the cassette. The sequences separating the
TCR genes, the furin recognition sequence, KAKR, the S-G-S-G spacer,
and the P2A fowl pox self-cleaving peptide, are shaded gray. The furin
cleavage site and the P2A self-cleavage site are indicated below the
cassette with arrows. The mature o and B chains produced by this
vector are displayed at the bottom of the figure.
doi:10.1371/journal.pone.0023703.g001
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To transfer the donor Mamu A*01-restricted TCRs to primary
rhesus macaque T cells, we transduced stimulated PBMC from a
Mamu A*0l-positive SIV-naive monkey EZP with CM9-6,
CM9-14, and SL8-42 TCR MSGV-based vectors. Flow cytom-
etry analysis for tetramer binding by the transduced cells 48 hr
post-transduction revealed that 5-9% of the CD8" T cells bound
their cognate tetramer with only a low background of staining cells
detectable in an untransduced culture (data not shown). After
expansion by anti-CD3 antibody stimulation, the cell cultures were
sorted using tetramers and immunomagnetic beads, yielding cell
lines that were between 84 and 96% positive for their cognate
tetramer with low to no staining for an irrelevant tetramer (Fig 2).
The density of TCR on the transduced T cells was similar to that
on typical native clones (Fig. 2 and data not shown) and was
maintained for the life-span of the cells (greater than 3 months,
data not shown). Thus, we have stably transferred and expressed
three SIV-specific TCRs isolated from DAJ into rhesus primary
CD8" T cells from EZP at levels similar to those observed on
typical rhesus macaque T-cell clones.

Transduced TCR cell lines exhibit specific effector
function

To establish whether these cell lines exhibited antigen-induced
effector properties, we assayed the cell lines for expression of
mtracellular IFNy after stimulation with antigenic peptide, a
hallmark of CTL effector function. Stimulation of the TCR cell
lines with cognate peptide induced robust IFN7y responses (Fig. 3)
and moderate CD107 degranulation (9—24%, data not shown)
with only a low background of staining in the corresponding
unstimulated control cultures, confirming the antigen-specific
effector function of these TCR-transduced cells.

Transduced T cell lines suppress SIV replication in vitro
Since in vivo depletion experiments demonstrate that
CD8" T «cells can suppress SIV infection in monkeys
[64,55,56,57,58,59,60,61], the CM9-14, CM9-6 and SL8-42
TCR cell lines were tested for their ability to suppress SIV. To
model this function in vitro, we have previously developed a virus
suppression assay that determines whether SIV-specific CD8" T-
cell clones can reduce the spread of SIV in autologous CD4* T-
cell clones exposed to SIV,,,c039 at relatively low multiplicities of
infection [48,51]. Because CD4" downregulation in infected target
cells makes it difficult to clearly distinguish them from effector
cells, CD8" T cells added to the co-cultures were stained with
CellTrace Violet® and excluded from the analysis so that only the
original CD4" targets are analyzed. Co-cultures of infected EZP
CD4" T-cell cultures with untransduced EZP CD8" T cells
contained many SIV Gag staining cells (43% in this representative
experiment) 7 days after infection. The rise in the proportion of
infected cells was accompanied by a loss of surface CD4 expression
on some cells (34%) due to downregulation by SIV protein
expression (Fig. 4). In contrast to the untransduced CD8" T cell
negative control, co-culture of CM9-6 TCR cells with infected
CD4" T cells dramatically reduced the spread of the virus as
evidenced by the presence of only 4% Gag positive target cells in
the mixed culture (Fig. 4). This was also reflected in a 6-fold
decrease in the supernatant viral RNA load 7-days post infection
versus the control culture as measured by real-time RT-PCR
(Fig. 5). The CM9-14 TCR cells were somewhat less effective at
suppression than the CM9-6 TCR cells with 11% of the target
cells being SIV Gag positive with a 4-fold suppression in viral
RNA load. The SL8-42 TCR cells were ineffective at suppressing
SIV spread with 52% of the target cells being SIV Gag positive
(Fig. 4), essentially the same level of infection as the negative
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Figure 2. Flow cytometry analysis of transduced T cells. A, analysis of the TCR-transduced EZP cell lines for CM9 peptide/MHC tetramer and
SL8 peptide/MHC tetramer is presented with that of the untransduced CD8" control cell line from recipient animal EZP. B, tetramer analysis of two
SIV-specific CTL clones isolated from donor animal DAJ is presented above tetramer-sorted TCR transduced CD8" cell lines. The DAJ SL8-42 clone is
the TCR gene donor for the SL8-42 TCR EZP cell line.

doi:10.1371/journal.pone.0023703.g002
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Figure 3. Intracellular IFNy assay of TCR-transduced cell lines. Flow cytometry analysis of intracellular IFNy production induced by the
antigenic peptide is presented. Panel A, an assay of the CM9-6 TCR cell line stimulated with the CM9 peptide is displayed with its corresponding
untransduced EZP CD8" T-cell line control. Panel B, an assay of the CM9-14 TCR and SL8-42 TCR cell lines stimulated with either the CM9 or SL8
peptide is presented below their corresponding untransduced CD8" T-cell controls. The stimulating peptide used is indicated above the respective

plots.
doi:10.1371/journal.pone.0023703.g003

control with no noticeable effect on viral RNA load in the 7-day
culture (Fig. 5) .

The results above essentially mirror those that we observed for
the original DAJ donor clones: the CM9-6 (unpublished data) and
CM9-14 [48] donor clones suppressed SIV ;039 while the SL8—
42 DA]J clone failed to do so (unpublished data). However, we also
had found that many clones, including the SL8-42 donor clone,
while ineffective against the wild-type SIV,,,c039, were effective at
suppressing the replication of an SIV Nef myristylation mutant,
STV nyr- [48], which does not down-regulate MHC-I on the surface
of infected cells. To determine whether the SL.8-42 TCR cells can
suppress SIV in this less stringent system, we examined our panel
of transduced cells using SIV,,. in parallel with the wild-type
suppression experiment. In agreement with data from the original
DAJ donor SL8-42 clone, the SL8-42 TCR EZP cells were very
effective in suppressing SIV,,. replication when measured by
both flow cytometry analysis (Fig. 4) and by viral load
measurement 7-days post infection (Fig. 5). By flow cytometry
analysis, the suppression was similar to that observed for the
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CM9-6 and CM9-14 TCR cells (Fig. 4). Correspondingly, the
viral RNA loads in the SL8-42 TCR co-cultures revealed
dramatically increased suppression of SIV ... viral loads com-
pared to that observed with wild-type SIV (Fig. 5). Both CM9
TCR cell lines suppressed SIV .. viral RNA loads to a greater
extent than that of wild-type SIV (Fig. 5), though the increase in
suppression was less than that observed for SL8-42 TCR cells.
These data show that while EZP CD8" T cells expressing the SL8—
42 TCR can suppress SIV replication, they can only do so in the
absence of MHC-I down regulation, indicating a weaker avidity of

the SL8—42 TCR.

Discussion

The data presented here demonstrate the first transfer of
antigen specificity via TCR transduction from T-cell clones
1solated from an SIV-infected rhesus macaque into SIV naive T
cells from an uninfected animal. Retroviral vector-mediated
transduction of TCR genes resulted in a reprogramming of the
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Figure 4. In vitro virus suppression assay of TCR-transduced cell lines. Flow cytometry analyses of mixed cultures consisting of effector CD8"
T-cell lines and a target autologous CD4" T-cell clone that was untreated or exposed to either wild-type SIViaca30 OF SV, are presented. Effectors
are labeled above each column and targets are labeled at the left of each row. The effector CD8" T cells in the co-cultures were stained with CellTrace
Violet® and excluded from the analysis so that only the target cells were counted.

doi:10.1371/journal.pone.0023703.g004
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Figure 5. Suppression of viral RNA load. A graph of the viral load
in the TCR-transduced T-cell mixed cultures relative to those containing
untransduced CD8" T cells is presented. The amount of viral
suppression for each culture (viral load of the untransduced CD8" cells
co-culture divided by the load of anti-SIV effector cultures) is indicated
above each bar. The average viral loads from duplicate independent
PCR-based measurements of the untransduced CD8" cell co-cultures
were 6.6x10® copies of SIV Gag per ml, SD 8.7x10° for wild-type
SIVmaca3e and 3.8x108 copies of SIV Gag per ml, SD 1.7x107 for the
myristylation mutant SIV,,,,.. Error bars represent standard deviations.
doi:10.1371/journal.pone.0023703.g005
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recipient CD8" T cells that conveyed SIV specific effector
functions and virus suppression capabilities, i.e. the ability to
curtail the spread of SIV in CD4" target cells. While we present
three intensively studied lines here, to date we have produced
more than 20 TCR-transduced cell lines from EZP and two other
animals with similar expression levels and properties (data not
shown).

The transduced CD8" T cells exhibited SIV epitope-specific
CTL responses and virus suppression levels that were similar to
their corresponding original TCR donor clones. Of the original
CTL clones isolated from the DAJ animal, CM9-14 and CM9-6
were able to suppress wild-type SIV in our in vitro assay system
while SL8-42 clone did not. Nevertheless, the DAJ SL8-42 clone
could suppress SIV,,,,. replication, indicating that, while this TCR
was functional, it required higher levels of antigen density for anti-
viral activity, reflecting a functional yet weaker TCR. The ability
to faithfully recapitulate these SIV suppression properties by TCR
transfer into the CD8" T cells of another allogeneic MamuA*01
animal hints that this function is determined to a large extent by
the nature of the TCR, rather than an intrinsic property of the T
cell itself. It is important to note that we found essentially no
difference in the TCR density on EZP CD8" T cells transduced
with the CM9 or SL8 TCRs from those on the original DAJ clones
or other typical rhesus macaque T-cell clones (Fig. 2 and data not
shown). However, an important caveat to this unexpected
observation is that our TCR-transduced cell lines are populations
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of cells and not clones. Therefore it is possible that only a fraction
of the transduced cells have strong suppressive function, thus are
not representative of the population as a whole. Hence, the
hypothesis suggested here requires additional investigation,
including transducing T-cell clones with suppressive and non-
suppressive TCRs that recognize the same epitope to establish this
observation.

This advance now allows for more in-depth experiments that
extend our initial studies by examining the relative contributions of
TCR and T cell to virus suppression and effector function.
Transfers of TCR genes isolated from both suppressive and non-
suppressive clones into characterized T-cell clones that have well
defined properties are currently underway to build on our
preliminary results presented here. Conversely, it is now feasible
to place a well-defined TCR into different effector clones to
address this question from the cellular side of CD8" T-cell-
mediated suppression.

To examine the role of CD8" T cells in HIV-1 immunity,
adoptive transfer experiments in the SIV model system have been
employed to address questions about the qualitative and
quantitative aspects of virus control. Indeed, other groups and
we are investigating the potential of infusing large numbers of
autologous anti-viral CD8" CTL clones [62,63]. These studies are
hampered by difficulties in isolating and characterizing effective
CD8" CTL from virus-naive vaccinees. By transducing CTL
clones with TCRs isolated from CD8" T cells exhibiting strong
effector/suppressor properties, it may be possible to develop more
potent anti-viral C'TLs for evaluation in the rhesus/SIV system
with the potential to apply the same approach to HIV/AIDS.
Furthermore, placing an effective MHC restriction-matched TCR
into a large and heterogeneous population of autologous T cells
that contain an array of properties as accomplished here as
opposed to relying on a single clone might also help overcome
these difficulties. Therefore, the adaption of the TCR gene transfer
system that has shown great promise in mice and human cancer
studies to the SIV/rhesus macaque model provides for the direct
assessment of anti-viral T-cell biology and a potential approach for
antiviral therapy, especially to HIV/AIDS.

The ability to functionally transfer TCRs also provides for many
exciting possibilities to manipulate the specificities of rare or
unconventional T-cell phenotypes. Properties of T cells with
different phenotypes or possessing important attributes, such as
homing or persistence, could be comparatively studied with a
defined TCR. Using this approach, the important relationship
between the T-cell type, differentiation state, lifespan, or effector
properties and the establishment of virus control/protection could
be examined in adoptive immunotherapy experiments.

Despite years of study, the choice for the most reliable marker
for highly effective functional anti-viral CD8" T cells is not clear.
One routinely used property is the induction of IFNy upon peptide
stimulation. However, the differences in wild-type SIV suppression
seen here were not predicted by the level of IFNy induction; all cell
lines had similar induction profiles. We and others have previously
observed a similar lack of correlation between viral suppression
and detectable peptide titers that induce effector functions in vitro
[48,64,65,66]. Thus, our results support the conclusion that the
widely used IFNy induction marker does not necessarily predict
anti-viral function and underscore the importance of testing for
viral suppression to demonstrate bona fide anti-viral activity.

One complication to introducing cloned TCRs into CD8" T
cells that already express o/ TCR complexes is the prospect of
forming hybrid dimers between the exogenous and endogenous
chains [25,67,68,69]. While we do not know to what extent hybrid
complexes are being formed in our TCR-transduced CD8" T
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cells, the T cells that we isolated by sorting the transduced
populations for high tetramer binding had similar receptor
densities to those of typical SIV specific CD8" T-cell clones.
Thus, cells forming large amounts of hybrid TCRs may not have
been selected for our study. Nevertheless, the formation of hybrid
dimers does not preclude the formation of functional exogenous
TCR dimers as expressed by our vectors. In addition to inhibiting
the formation of functional exogenous TCR complexes, in a
therapeutic setting these hybrid o/p dimers could have unpre-
dictable autoimmune specificities [70,71]. While this has not been
reported in cancer patients in TCR transfer trials, it is a concern
for this approach in general. The adaption of the TCR transfer
system to rhesus macaques presents an opportunity to examine the
impact of hybrid TCR formation on long-term adoptive therapy
in the monkey model with potentially important applications for
TCR transfer therapy in the clinic.

Taken together, our results provide an important experimental
tool for assessing and understanding T-cell function, especially
SIV suppression. The application of TCR transfer to the rhesus
macaque system could also make this important animal model
even more useful for studies of other diseases. Current experiments
are underway to answer fundamental and practical questions for
immune control of SIV in rhesus macaques with the goal of
developing a similar AIDS therapy in humans.

Materials and Methods

Ethical Treatment of Animals

Adult rhesus macaques (Macaca mulatta) were housed at the
NIH-Bethesda primate animal facility that is accredited by the
Association for the Assessment and Accreditation of Laboratory
Animal Care International and under an approved OLAW
Assurance #A4149-01. Research was conducted in compliance
with the Animal Welfare Act and other US federal statutes and
regulations relating to animals and experiments involving animals,
and adhered to principles stated in the Guide for the Care and Use
of Laboratory Animals, National Research Council, 1996 and
under a protocol approved by the National Institutes of Health
Intramural Institutional Animal Care and Use Committee,
approval AVP-022. All steps were taken to ameliorate the welfare
and to avoid the suffering of the animals in accordance with the
“Weatherall report for the use of non-human primates”
recommendations. Animals were housed either socially or in
adjoining individual primate cages allowing social interactions,
under controlled conditions of humidity, temperature and light
(12-hour light/12-hour dark cycles). Food and water were
available ad libitum. Animals were fed commercial monkey chow
and treats by trained personnel. Environmental enrichment
consisted of commercial toys. Blood draws were conducted under
sedation by trained personnel under the supervision of
veterinarians.

Primary SIV-specificCD8"* T-cell clones

CMO9-specific CTL clones were isolated by limited dilution
cloning of CD8" T cells from an SIV,;,.239 infected Mamu-A*01
positive Indian rhesus macaque, Macaca mulatta, as previously
described [72]. Cell cultures were expanded by anti-CD3 antibody
(BD Biosciences, Franklin Lakes, NJ) stimulation and cultured in
RPMI 1640 medium supplemented with 10% FBS and human IL-
2 (100 TU/ml). All culture media were obtained from Invitrogen
Inc. (Carlsbad, CA). CD8" T-cell clones CM9-14 [48], SL8-42
[51] and CM9-6 (unpublished) were selected for TCR gene
isolation and retroviral vector construction.
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Cloning of TCR o and B chain cDNAs

TCR o and B chain coding sequences were isolated from the
CD8" T-cell clones using established cDNA cloning procedures.
Briefly, total RNA was isolated from the cells by RNeasy Mini Kit
(Qiagen, Valencia, CA), cDNAs were synthesized using an oligo-
dT primer, and full-length o and B chain sequences were PCR-
amplified by using a SMARTer RACE ¢cDNA Amplification Kit
(Clontech, Mountain View, CA). Full-length o chains were
amplified by using the Universal Primer A Mix and either a
rhesus macaque o or B chain constant region-specific primer. PCR
products were cloned into the PCR XL-TOPO plasmid using
TOPO XL PCR® Cloning Kit (Invitrogen, Carlsbad, CA) and the
mserts were analyzed by DNA sequencing. Sequence analysis and
alignments were performed using Vector NTT software (Invitro-
gen, Carlsbad, CA) and matched against the GenBank database.
The TCR gene sequences presented here have been deposited in
GenBank http://www.ncbi.nlm.nih.gov/sites/gquery (CM9-6 o
chain, No. HQ622178, CM9-6 B chain, No. HQ622179, CM9-
14 o chain, No. HQ622176, CM9-14 $ chain, No. HQ622177,
SL8-42 o chain, No. HQ622176, and SL8-42 B chain, No.
HQ622177).

TCR-expressing retroviral vectors

All DNA vector plasmids were constructed in the MSGV1
retroviral vector (kind gift of Richard Morgan National Cancer
Institute, NIH, Bethesda, MD) [19], into which the CM9-6,
CM9-14, and SL8-42 TCR o and B chain coding sequences were
inserted as PCR-generated tandem open-reading frames with an
intervening protein sequences consisting of: a furin protease
recognition site, Ser-Gly-Ser-Gly, P2A fowlpox peptide linker
(Fig. 1). The basic design of the PCR primers was to amplify both
chains and then fuse them together by overlap extension. A 5’
sense primer with a linker/3’ o-anti-sense primer was used to
amplify the o chain to produce a 5" half of the TCR fusion and a
linker/5" B-sense primer with a 3’ B antisense was used to amplify
the 3" half. The two halves were then mixed and amplified with
5'al sense and 3’ B antisense primers which were designed with
flanking Pci I and Not I sites, respectively, for cloning into the
MSGV1 plasmid, thereby generating TCR CM9-6, TCR CM9—
14, and SL8-42. All amplified regions were sequenced to ensure
no PCR-introduced mutations.

The CM9-14 TCR construct was modified to contain
additional cysteines to promote endogenous o/ dimer formation
through an ectopic disulfide bond by mutating the o chain
constant region Thryg and the B chain constant region Sers; to
Cys by using site-directed mutagenesis with QuickChange® Multi
Site Directed Mutagenesis Kit (Agilent Technologies, Santa Clara,
CA), and the codon replacement was confirmed by sequencing.

Generation of retroviral vector stocks

To produce the TCR retroviral vectors, the TCR plasmid
constructs were co-transfected with a gibbon ape leukemia virus
envelope expression construct (a kind gift of Paula Cannon
University of Southern California, Los Angeles, CA) at a ratio of
8:1 wt/wt into GP2-293 cells (Clontech, Mountain View, CA) by
using Lipofectamine 2000 (Invitrogen, Carlsbad, CA), and the cells
were cultured at 37°C. Vector-containing culture supernatants
were harvested at 48 and 72 hours post transfection, clarified by
low-speed centrifugation, buffered by 10 mM Hepes, and used for
transductions. GP2-293 cells were maintained DMEM supple-
mented with 10% FBS, penicillin (100 U/ml), and streptomycin
(100 pg/ml).
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Generation of TCR-transduced rhesus macaque T-cell
lines

Freshly isolated PBMC from rhesus macaque EZP were
stimulated by anti-CD3 simulation and then transduced by
TCR-expressing retroviral vectors in the presence of RetroNectin®
(TaKaRA Bio, Madison, WI). Briefly, RetroNectin® was diluted in
PBS (Invitrogen) to 20 pg/ml and adsorbed onto the wells of 12
well tissue culture plates (Corning, Inc., Corning, NY) for two
hours at room temperature. The wells were then washed with
PBS, blocked with 2% BSA solution in PBS. Two ml of retroviral
vector stock were added to each well and the plates were spun
down at 3,000 rpm at 30°C for two hours. The target cells were
resuspended in the medium (RPMI 1640 with 10% FBS,
supplemented with 100 TU/ml of 11-2) at 1x10° cells/ml. The
wells were washed once with 2% BSA in PBS, the cells (1-2x10°
cells per well) were added and the plates were centrifuged at
1,000 rpm (30°C) for 40 min. The plates were placed at 37°C (5%
COy) and the cells were cultured for 48-96 hours before tetramer
binding by flow cytometry analysis using CM9 peptide/MHC
tetramer (Beckman Coulter, Brea, CA) or SL8-42 peptide/MHC
tetramer (NIH Tetramer Core Facility, Atlanta GA). Cultures
containing tetramer positive cells (at least 3% of the population)
were expanded by anti-CD3 antibody stimulation as previously
described [72] and then sorted for tetramer binding by
paramagnetic microbeads. TCR-expressing cells were labeled
with either CM9 or SL8-42 tetramer conjugated with PE, then
washed with PBS, bound to anti-PE Microbeads (Miltenyi Biotech,
Auburn, CA), and separated by using magnetic columns (Miltenyi
Biotech, Auburn, CA). Isolated T cells were expanded as described
above for the primary T-cell clones.

Flow cytometry analysis of TCR-transduced T- cell lines

1-2x10° TCR-transduced cells were harvested and washed
once in 2 ml of D-PBS, resuspended and stained with a cocktail
containing either CM9 peptide/MHC tetramer, or SL8-42
peptide/MHC tetramer, and CD3, CD8, CD45 antibodies (BD
Biosciences) and D-PBS in a final volume of 100 pl. Cells were
incubated 30 minutes at room temperature in the dark, washed
once in 4 ml of D-PBS and then analyzed immediately by an
LSRIT flow cytometer (BD Biosciences) Data analysis was
performed using FCS Express (De Novo Software, Los Angeles,
CA).

Intracellular IFNy assay

Intracellular IFNy production was measured as previously
described [72] with modifications as follows. For cach sample, 10°
cells from EZP CD8" T-cell lines were labeled as peptide
presenters with CellTrace Violet® (Molecular Probes/Invitrogen,
Eugene, OR) according to the manufacturer’s procedure and then
pulsed for 30 minutes with 2 pg of either CM9 or SL8 peptide
(SynPep, Dublin, CA) followed by two PBS washes before addition
of 10° TCR-transduced T cells. The rest of the analysis was
carried out using our previously published IFNy assay on an
LSRII flow cytometer. The pulsed CD8" T-cell presenters were
excluded from the analysis by virtue of their staining by CellTrace
Violet®.

SIV Suppression assay

Target CD4" T cells were activated with plate-bound anti-CD3
antibody in the presence of IL-2 (50 IU/ml) for 24 hours and
infected with either SIV ,,.039 or a Nef myristylation mutant
SIV e [48] by incubating virus stocks (~1 % 10° viral RNA copies
Eq/ml in a volume of 250 pl) with 2 ul of Viromag paramagnetic
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beads (OzBiosciences, Marseille, France) for 2-3 hours before
addition to 1x10° CD4" T cells. CD4" T cells were first labeled
with CellTrace Violet®. Incubations were carried out on a
magnetic plate at 37°C in a humidified atmosphere of 5% COs.
Virus-exposed CD4" T cells were washed twice with PBS to
remove residual non-incorporated virions before co-culture with
effector CD8" T cells as previously described. Both cells and virus
were analyzed on day 7 post co-culture by flow cytometry and
real-time RT-PCR, respectively, as previously described [51]. Our
previous experiments demonstrated that proviral loads matched
viral RNA loads in the mixed cultures so this redundant
measurement was omitted in this study. CD4" T cells were
differentiated from the effector GD8* T cells in flow cytometry
analysis by staining with CellTrace Violet®.
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