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Abstract

The ability to generate whole genome data is rapidly becoming commoditized. For example, a mammalian sized genome
(,3Gb) can now be sequenced using approximately ten lanes on an Illumina HiSeq 2000. Since lanes from different runs are
often combined, verifying that each lane in a genome’s build is from the same sample is an important quality control. We
sought to address this issue in a post hoc bioinformatic manner, instead of using upstream sample or ‘‘barcode’’
modifications. We rely on the inherent small differences between any two individuals to show that genotype concordance
rates can be effectively used to test if any two lanes of HiSeq 2000 data are from the same sample. As proof of principle, we
use recent data from three different human samples generated on this platform. We show that the distributions of
concordance rates are non-overlapping when comparing lanes from the same sample versus lanes from different samples.
Our method proves to be robust even when different numbers of reads are analyzed. Finally, we provide a straightforward
method for determining the gender of any given sample. Our results suggest that examining the concordance of detected
genotypes from lanes purported to be from the same sample is a relatively simple approach for confirming that combined
lanes of data are of the same identity and quality.
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Introduction

Recent advances in sequencing throughput offer the ability to

generate useful data from multiple individuals on a single run. For

example, on the Illumina platform, multiple samples are typically

separated into different lanes, and then combined together based

on sample identity [1]. Other technologies have similar approach-

es to running multiple samples on a single run [2,3]. While

methods exist to ‘‘barcode’’ samples to confirm the downstream

identity of the generated sequences [4–6], this requires significant

modifications to sample preparation methods and is more

appropriate for pooling multiple samples in the same lane (so-

called ‘‘multiplexing’’). Currently, no independent methods have

been published to computationally determine if two lanes of data

are from the same sample.

We sought to develop a validation approach that could be used

without any upstream sample preparation modifications. The

impetus for this work came from our increased use of the newly

developed HiSeq 2000, which allows us to generate high-

coverage (30X or greater) whole-genome data with approximate-

ly 10 lanes. This means we frequently run more than one human

sample on a flowcell. Additionally, the Illumina workflow

introduces a ‘‘flowcell flip’’ between the cBot cluster station and

the HiSeq 2000 sequencing instrument, which requires samples

to be initially loaded on to the flowcell in reverse order. This

confusing and potentially error-prone step, combined with the

ability to run two flowcells at once, increases the importance of

verifying the identity of combined lanes, especially when a

flowcell contains more than one sample from the same species

(and thus simple reference genome alignment statistics cannot

verify flowcell orientation).

Our approach relies on the inherent diversity in the human

population; unrelated humans vary in roughly 1 out of 1000 bases

[1,7]. We propose that a sufficient number of genotype calls can be

made with data from a single HiSeq 2000 lane, resulting in enough

overlapping positions between any two lanes of data to produce an

accurate concordance rate. Two lanes from the same individual

should have a relatively high concordance rate, while two lanes

from different individuals should have a lower concordance rate.

We suggest that the difference in concordance rates can be used to

accurately determine if two lanes of data are from the same library

and of comparable quality.
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In this paper, we show that there are enough data in a single

HiSeq 2000 lane to produce genotype concordance rates between

lanes from the same sample that do not overlap with concordance

rates between lanes from different samples. We illustrate our

findings by analyzing 24 lanes of HiSeq 2000 data from three

different human samples. Our method proves to be robust even

when different numbers of reads are analyzed. Finally, we also

provide a straightforward method for determining the gender of a

given sample.

Results

Before looking at the similarity of polymorphisms within the

autosomes, one must first determine if the data from different lanes

are from humans of the same gender. For this we identified a

straightforward approach that examines the depth of coverage at

specific ‘‘well-behaved’’ regions on the X and Y chromosomes (see

Methods). Once the predicted gender matches between different

lanes, a more robust and sensitive approach can then be applied to

determine if the data from different lanes came from the same

sample.

We first wanted to determine if there were sufficient data from a

typical (circa fall 2010) single lane of HiSeq 2000 data to call

genotypes in a subset of the human genome. Based on the Lander-

Waterman statistics [8], we do not expect completely uniform read

coverage across the genome, but rather there will likely be small

regions of the genome with sufficient coverage for accurately

calling genotypes (see Figure 1). Indeed, from 24 lanes across three

flowcells, we were able to call an average of 233 million autosomal

genotypes per lane (see Table 1). There were also sufficient data to

unambiguously determine the gender of each sample.

Using these datasets, we wanted to test the hypothesis that there

exist a sufficient number of genotype comparisons between two

different lanes to distinguish higher concordance rates, which

result from lanes with the same sample, versus lower concordance

rates, which result from lanes with different samples. To do this,

we performed an all-by-all pair-wise lane comparison of

genotypes; this allowed us to generate distributions of concordance

rates for multiple same- and different-sample comparisons. For this

experiment, we took all 24 lanes from the three flowcells listed in

Table 1, and performed 276 pair-wise lane comparisons. On

average, there were 42 million positions compared between any

two lanes.

The results of this analysis support our hypothesis that

concordance rates can be used to distinguish same-sample versus

different-sample comparisons with single lanes of HiSeq 2000 data

(Figure 2). Importantly, data from each type of comparison have

tight non-overlapping distributions when considering all callable

positions or variant (nonreference) callable positions (Figures 2A

and B). Same-sample lane comparisons have the highest

Figure 1. Overview of approach. Several lanes of HiSeq 2000 data are typically combined together for a comprehensive genome analysis, giving a
high depth of coverage (A), and the ability to accurately call genotypes in the majority of the genome. In (B), two individual lanes of HiSeq 2000 data
are depicted, with a lower average depth of coverage. By chance, some regions of the genome have enough data to be genotyped in both lanes
(shaded gray).
doi:10.1371/journal.pone.0023683.g001
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concordance rates and between-sample comparisons have the

lowest concordance rates. Interestingly, the all-positions concor-

dance rates between samples B and C have a distinct non-

overlapping distribution that is slightly more concordant than the

other two different-sample comparisons (A–B and A–C)

(Figure 2A), which reflects the partial consanguinity (likely going

back . 6 generations) that exists between these two individuals (T.

Markello, personal communication). These results are also

illustrated as a heat map (Figure 2C), which nicely distinguishes

same- versus different-sample comparisons.

We noted some small fluctuation in the concordance rates

across multiple same-sample lane comparisons, particularly among

lanes with a greater difference in total numbers of genotype calls

(e.g. the occasional outlier in Figures 2A or B). To determine the

extent to which the amount of data influences concordance rates

of called genotypes, we performed two sets of comparisons

between related and unrelated lanes by titrating sequenced reads.

In the first set of comparisons, we kept the number of reads from

one lane constant (at 140M reads) and varied the number of reads

in the other lane in 20M read increments (Figure 3A). We also

performed a series of comparisons whereby the number of reads

was the same in both lanes, but varied between 40M and 140M

reads, also in 20M read increments (Figure 3B). For the same-

sample comparisons, the number of reads had a minor effect on

the resulting concordance rate. However, the change in concor-

dance rate was larger for the different-sample comparisons. As

more reads were used, we were able to better distinguish the

different-sample concordance rate from the same-sample concor-

dance rate. However, even with 40M reads in at least one sample,

the concordance rates are sufficiently different between same-

sample vs. different-sample comparisons to accurately determine

sample identity. We note that using more reads is preferable

because it allows for increased resolution between the same-sample

and different-sample comparisons.

Discussion

Here we show that it is possible to determine if two lanes of data

generated on the HiSeq 2000 are from the same individual. In

addition to providing a straightforward gender prediction method,

we also leverage the natural variation in the human population to

uniquely ‘‘fingerprint’’ a sample from a subset of genotypes that

can be accurately called. Using this detected variation, we can

accurately distinguish samples based on concordance rates

between lanes from the same sample versus lanes from different

samples. This analysis is robust even with different read counts in

the lanes being compared, and it can distinguish samples where

partial consanguinity exists. Our approach is not limited to HiSeq

2000 data and can be applied to data generated on any high

throughput platform. We have found this relatively straightfor-

ward method extremely useful in validating that lanes that are

combined come from the same individual. It is potentially a

particularly useful approach for genomes where polymorphic loci

are not known. It might also be useful to identify lanes of data with

differing/lower qualities, which would have a negative impact on

downstream analyses. As high throughput sequencing becomes

commoditized, such an approach will be increasingly important

for validating large sequencing datasets.

Methods

Data generation
All data were generated on an Illumina HiSeq 2000 using

standard library preparation and sequencing protocols provided

by the manufacturer. These genomes have been sequenced for

other on-going research projects, and the raw sequence data will

be published in its entirety elsewhere for those purposes. Sample A

is an unrelated male of Caucasian descent. Samples B and C are

Caucasian male and female respectively with known partial

consanguinity going back several generations (T. Markello,

personal communication).

Processed data needed to reproduce our results here are

provided below. 100 base reads that pass the Illumina chastity

filter and contain at least 32 bases with Phred-scaled qualities Q20

or greater were aligned to the hg18 reference sequence using BWA

[9] with default parameters. To make genotype calls, we only

consider reads with mapping qualities of Q30 or greater and

positions within the read with base qualities of Q20 or greater. See

Table 1 for a summary of the data used in these analyses.

Genotype calling
Genotypes on the autosomes were called with a Bayesian

algorithm called MPG (for the Most Probable Genotype) [10] and

only compared at positions where both lanes had an MPG score

greater than or equal to 10 and had a confidence threshold,

defined as the ratio of MPG to Q20-coverage, greater than or

Table 1. Summary of data used in these analyses.

Sample ID Lane
Number
of Reads

Number of
Genotypes
called Gender

A 1 113,453,840 20,184,635 Male

A 2 137,855,285 63,745,441 Male

A 3 136,937,966 60,964,182 Male

A 4 138,649,724 62,318,000 Male

A 5 140,173,232 68,523,311 Male

A 6 139,484,272 66,008,548 Male

A 7 138,052,195 63,689,638 Male

A 8 137,106,804 61,172,939 Male

B 1 183,082,811 333,308,543 Male

B 2 184,740,055 342,648,944 Male

B 3 183,494,075 334,034,308 Male

B 4 185,367,578 345,182,564 Male

B 5 184,384,025 342,715,958 Male

B 6 182,873,463 329,476,404 Male

B 7 185,063,316 345,695,140 Male

B 8 186,383,475 359,973,464 Male

C 1 186,723,675 305,090,551 Female

C 2 186,823,494 306,386,070 Female

C 3 186,767,296 303,986,501 Female

C 4 183,046,388 274,637,962 Female

C 5 185,501,762 296,607,392 Female

C 6 185,939,130 295,223,049 Female

C 7 187,938,913 311,994,826 Female

C 8 186,314,862 302,012,031 Female

Number of reads reflects the number of aligning reads after removing duplicate
read pairs and filtering for low quality alignments (see Methods). Gender was
determined by looking at coverage of reads in specific representative regions of
the X and Y chromosomes (see Methods). Number of genotypes called is from
the autosomes only, which is what was used for downstream comparisons.
doi:10.1371/journal.pone.0023683.t001
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equal to 0.5. This latter filter scales the confidence measure of the

genotype caller such that we require higher confidence at higher

depths of coverage. We have found this eliminates a large fraction

of erroneous genotype calls [11]. Concordance rates for each pair

of lanes are provided as supplementary material at ftp://ftp.nhgri.

nih.gov/pub/outgoing/elliott/plos_one/. The concordance rate

Figure 2. Concordance between lanes. Distributions of genotype concordance rates from same- and different-sample comparisons are non-
overlapping. The box plot in (A) shows the distributions of concordance rates when using all callable positions for all combinations of pairs of the
three samples being analyzed. The x-axis denotes each pair being compared (A, B, and C, refer to the sample IDs in Table 1), and the y-axis represents
the distribution of concordance rates for all pair-wise combinations of lanes representing the specific pair of samples on the x-axis. It is likely that the
detected differences from same-sample comparisons (B–B, C–C, and A–A) arise solely from sequencing and genotyping error. The box plot in (B) is
similar to (A), except that here only variant (nonreference) positions are considered. The symmetrical heat map in (C) summarizes the data from panel
(A); the blue boxes represent low concordance rates and correspond to different-sample comparisons, while the yellow boxes along the diagonal
represent high concordance rates and correspond to same-sample comparisons. Note that comparisons between samples B and C (gray boxes) are
slightly more similar to each other than the other different-sample comparisons, but still sufficiently distinct from same-sample comparisons. This is
expected given the known partial consanguinity between these individuals.
doi:10.1371/journal.pone.0023683.g002
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between the lanes was calculated as the number of concordant

positions that met the thresholds in both lanes, divided by the

number of total positions that met the thresholds in both lanes.

Genotype calls that did not meet the above-described thresholds

were not considered in concordance calculations.

Gender prediction
In order to easily determine if samples are male or female, we

examined a number of genomes and identified representative

regions on the X and Y chromosomes where coverage generally

reflects the presence or absence of these chromosomes. Our

methods for determining coverage, as well as the identity of these

regions are provided in a shell script at ftp://ftp.nhgri.nih.gov/

pub/outgoing/elliott/plos_one/.
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