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Abstract

Background: The helminth Schistosoma mansoni parasite resides in mesenteric veins where fecundated female worms lay
hundred of eggs daily. Some of the egg antigens are trapped in the liver and induce a vigorous granulomatous response.
High Mobility Group Box 1 (HMGB1), a nuclear factor, can also be secreted and act as a cytokine. Schistosome HMGB1
(SmHMGB1) is secreted by the eggs and stimulate the production of key cytokines involved in the pathology of
schistosomiasis. Thus, understanding the mechanism of SmHMGB1 release becomes mandatory. Here, we addressed the
question of how the nuclear SmHMGB1 can reach the extracellular space.

Principal Findings: We showed in vitro and in vivo that CK2 phosphorylation was involved in the nucleocytoplasmic
shuttling of SmHMGB1. By site-directed mutagenesis we mapped the two serine residues of SmHMGB1 that were
phosphorylated by CK2. By DNA bending and supercoiling assays we showed that CK2 phosphorylation of SmHMGB1 had
no effect in the DNA binding activities of the protein. We showed by electron microscopy, as well as by cell transfection and
fluorescence microscopy that SmHMGB1 was present in the nucleus and cytoplasm of adult schistosomes and mammalian
cells. In addition, we showed that treatments of the cells with either a phosphatase or a CK2 inhibitor were able to enhance
or block, respectively, the cellular traffic of SmHMGB1. Importantly, we showed by confocal microscopy and biochemically
that SmHMGB1 is significantly secreted by S. mansoni eggs of infected animals and that SmHMGB1 that were localized in
the periovular schistosomotic granuloma were phosphorylated.

Conclusions: We showed that secretion of SmHMGB1 is regulated by phosphorylation. Moreover, our results suggest that
egg-secreted SmHMGB1 may represent a new egg antigen. Therefore, the identification of drugs that specifically target
phosphorylation of SmHMGB1 might block its secretion and interfere with the pathogenesis of schistosomiasis.
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Introduction

Schistosomes are parasitic blood flukes infecting approximately

200 million people globally [1]. Schistosoma mansoni parasites reside

in mesenteric veins, where they lay hundreds of eggs per day, 4–5

weeks post-infection. After initial infection, larval and adult

parasites produce minimal inflammatory pathology in the host.

However, by the time the eggs are laid, some of them are trapped

in the microvasculature of the liver causing the granuloma, due to

a periovular inflammatory reaction. Granulomas are initially

macrophage reactions of the foreign body type, essentially

mobilizing the circulating monocytes. Following maturation of

the embryo (miracidium) and secretion of potent soluble egg

antigens, the T-lymphocyte circuits elicit an inflammatory reaction

promoting cellular recruitment and activation, which are depen-

dent upon the local production of a vast array of cytokines [2–4].

The pre-postural phase of schistosomal infection is characterized

by a Th1 dominant reaction. After the beginning of oviposition,

the egg-derived antigens elicit a strong Th2 reaction with high

levels of IL-4 and IL-5 [2]. The intensity of the granulomatous

reaction peaks in mice from the 7th week onwards, but

subsequently the inflammation reaction is down-modulated

despite the continuous production of adult worm and egg-derived

antigens. Much of the morbidity of schistosomiasis is attributed to

the egg-induced granulomatous responses, particularly to the

fibrosis associated with it, which is thought to be associated with

periportal hypertension. Although Praziquantel is highly effective

in curing S. mansoni infection, liver granulomas persist for life, as
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the eggs cannot be eliminated. Thus, chemotherapy to prevent the

morbidity associated with liver egg granulomas would represent a

major improvement in the pathology of schistosomiasis.

High Mobility Group Box 1 (HMGB1) is a highly conserved

component of eukaryotic nuclei [5–6]. HMGB1 is ubiquitous and

only slightly less abundant than core histones. It has a tripartite

structure, composed of two homologous DNA-binding domains,

the A and B HMG-boxes, and a C-terminal acidic domain [5].

HMGB1 is located in the nucleus, where it acts as an architectural

protein that can promote DNA bending, supercoiling and

unwinding. These DNA transactions performed by HMGB1

promote the assembly of site-specific DNA-binding factors, and

are involved in transcription [7]. The phenotype of Hmgb1

knockout mice confirmed the functional importance of HMGB1

as a regulator of transcription: they die shortly after birth showing

a defect in transcriptional control exerted by the glucocorticoid

receptor [8].

In addition to transcriptional regulation, HMGB1 has extra-

cellular roles. In 1999, during a course of experiments designed to

identify late-acting mediators of endotoxaemia and sepsis, it was

discovered [9] that activated macrophages secrete HMGB1 as a

delayed mediator of inflammation. HMGB1 is regarded as a

prototypic alarmin, a kind of endogenous danger-associated

molecular patter (DAMP), as it is released by necrotic (but not

apoptotic) cells or secreted by immune cells in response to tissue

damage [10]. Activated macrophages secrete HMGB1 as a

delayed mediator of inflammation, well after peak of TNF-a and

IL-1 [9]. HMGB1 promotes monocytes recruitment and release of

pro-inflammatory cytokines such as TNF-a, IL-1, IL-6 and IL-8

[9–12], signaling through RAGE (receptor for advanced glycation

end-products) [13], toll-like receptor 2 (TLR2) and TLR4 [14–15].

The delayed HMGB1 release can have lethal consequences in

sepsis, as administration of HMGB1-specific antibodies confers

significant protection against mortality in endotoxaemia [10].

Thus, secreted HMGB1 also functions as an inflammatory

cytokine, and its secretion is pivotal in sepsis. Nevertheless, the

exact mechanism(s) that control(s) its secretion is still poorly

understood.

Recent studies have shown that the post-translational modifi-

cation status of mammalian HMGB1 (mHMGB1) is related to its

translocation within cells and secretion by inflammatory cells, in

which it shuttles between the nucleus and cytoplasm through a

process that involves the HMGB1 hyperacetylation [6]. Cytosolic

mHMGB1 accumulates and is secreted through a vesicle-mediated

secretory pathway [6]. More recently however, it has been

reported that phosphorylation [16–19], methylation [20] and poly

(ADP) ribosylation [21] also play a role in the cellular traffic of

mHMGB1.

Along with histone H1, HMGB1 protein appear to be among

the most highly phosphorylated protein species in the nucleus [22].

Phosphorylation of HMGB1 proteins from plants and insects has

been reported to modulate their stability and DNA binding

activities [23–25]. For example, phosphorylation of maize

HMGB1 by CK2 increases the negative net charge of the acidic

tail, which strengthens electrostatic interactions with the HMG-

box basic domains. Accordingly, phosphorylation reduced the

affinity of maize HMGB1 for linear DNA [24]. Similarly,

phosphorylation of insect HMGB1 proteins by PKC resulted in

a tenfold reduction of their DNA binding strength [25]. For the

mammalian HMGB1 protein, the role of phosphorylation on its

DNA binding activities has not yet been well documented. On the

other hand, it has been recently reported that PKC and CaMK

phosphorylation plays an important role in the nucleocytoplasmic

transport of mHMGB1 [16–19]. It was shown that the shuttling of

mHMGB1 between the nucleus and cytoplasm is tightly controlled

by the phosphorylation of the two nuclear localization signals

(NLS) of mHMGB1 [20].

We have previously cloned the S. mansoni HMGB1 cDNA and

have fully characterized its DNA-related activities [26].

SmHMGB1 showed a high degree of conservation among the

HMG box domains when compared to its mammalian counter-

part [26]. However, SmHMGB1 differed significantly in its C-

terminal acidic tail, consisting of only five acidic residues

(mHMGB1 contains 30 continuous acidic residues in its tail).

Results from Gnanasekar et al [27] investigating the pro-

inflammatory activities of SmHMGB1, showed in vitro that

significant levels of SmHMGB1 were present in excretory

secretions of eggs. They also showed that SmHMGB1 was a

potent inducer of pro-inflammatory cytokines such as TNF-a, IL-

1Ra, IL-2Ra, IL-6, IL-13, IL-13a1, IL-15 and MIP-1a from

peritoneal macrophages [27]. The TNF-a-inducing effect was a

function of the B box domain of SmHMGB1 (similar to the

mammalian HMGB1) and this effect could be blocked by

neutralizing antibodies against SmHMGB1 [27]. These findings

pose SmHMGB1 as a major inflammatory factor among egg

excretory secretions and an attractive candidate to be targeted by

chemotherapy in schistosomiasis.

Hyperacetylation of SmHMGB1 is important for its exit to the

extracellular milieu, as we have recently shown [28]. Here, we

showed that besides acetylation, SmHMGB1 is phosphorylated by

CK2, PKA and PKC, and provided evidence that phosphoryla-

tion by CK2 plays an important role in the translocation of

SmHMGB1 from the nucleus to the cytoplasm. However, we

demonstrated that phosphorylation of recombinant or endogenous

SmHMGB1 did not affect its DNA binding activity. Finally, we

showed that SmHMGB1 proteins that were located in the

cytoplasm of adult worms, in egg secretions or in the periovular

granuloma, were phosphorylated, indicating that phosphorylation

actively participates in SmHMGB1 secretion.

In the present work we describe the molecular characterization

of the mechanism of SmHMGB1 transfer from the nucleus to the

cytoplasm, culminating with its extracellular release. Furthermore,

we hypothesize that SmHMGB1 might act as an important

immune modulator for the development of the hepatic schistoso-

motic granuloma.

Materials and Methods

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by Animals Use Ethics Committee of UFRJ

(Universidade Federal do Rio de Janeiro), with approval ID #
IBqM 038. The study was conducted adhering to the institution’s

guidelines for animal husbandry.

Plasmids
Complementary DNAs encoding recombinant SmHMGB1-FL,

SmHMGB1-DC, SmHMGB1-box domain A and SmHMGB1-

box domain B were previously described [26]. Complementary

DNAs encoding recombinant single or double amino acid mutants

(S172A, S174A and S172A/S174A) were amplified by RT-PCR

using sense primer F1 (59-GGATCCATGGCTGAAGACAAGGG-

TAAG- 39) (BamHI restriction site is in italic and initiation codon is

underlined) and anti-sense primers M1 (59AAGCTTCTAATCGT-

CAGACTCTGCATCTTC39) for the SmHMGB1 S172A, M2

(59AAGCTTCTAATCGTCTGCCTCTGAATCTTC39) for the

SmHMGB1 S174A and M3 (59AAGCTTCTAATCGTCTGC-

CTCTGCATCTTC39) for the SmHMGB1 S172A/S174A (Hin-
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dIII restriction site is in italic, and the termination codon is

underlined). RT-PCR was performed on S. mansoni adult worm

cDNAs, sub-cloned into pCR2.1 TOPO plasmid (Invitrogen), and

sequenced on both strands (Macrogen Inc., Korea). In order to

generate recombinant his-tagged proteins, plasmids were digested

with the appropriate enzymes (Promega) and cloned into the pQE-

80L expression vector (Qiagen), according to the manufacturer’s

instructions. For EGFP analysis, cDNAs encoding SmHMGB1

full-length (SmHMGB1-FL, aa residues 1–176) or SmHMGB1

mutated at both serines located in its C-terminus (S172A/S174A)

were cloned downstream of EGFP in pEGFP-C3 vector (BD

Clontech), and these constructs named EGFP-SmHMGB1 and

EGFP-SmHMGB1-S172A/S174A, respectively. We generated

these constructs by PCR amplifications using S. mansoni adult

worm cDNAs with the sense primer F2 (59-AAGCTTATGGCT-

GAAGACAAGGGTAAG-39) (HindIII restriction site is in italic

and initiation codon is underlined) and anti-sense primers F3

(59GGATCCCTAATCGTCAGACTCTGAATC39) and M4

(59GGATCCCTAATCGTCTGCCTCTGCATC39) for the full-

length SmHMGB1.

Expression of recombinant proteins and polyclonal
antibody production

Full-length SmHMGB1 (aa residues 1–176), the protein lacking

its acidic tail, SmHMGB1-DC (aa residues 1–169), domain A only

(aa residues 1–83), domain B only (aa residues 84–169) and

SmHMGB1 mutants (S172A, S174A and S172A/S174A) were

expressed with (His)6-tag at their N-termini as previously described

[26]. Protein concentration was determined by the Bio-Rad

Protein Assay (Bio-Rad). Purity of HMGB1 proteins was checked

by 12 or 15% SDS-PAGE, followed by Coomassie Blue R-250

staining. Polyclonal rabbit serum was produced against prepara-

tions of recombinant SmHMGB1-box domain B. Rabbits were

inoculated with 50 mg of protein mixed with complete Freund’s

adjuvant (SIGMA) and boosted four times with 50 mg of protein

mixed with incomplete Freund’s adjuvant (SIGMA). Pre-immune

serum was collected before the first immunization.

Phosphorylation assays
Recombinant SmHMGB1 proteins (1 mg) were phosphorylated

by commercial rat protein kinase CK2 (Promega), human protein

kinase A (PKA) (Millipore), rat protein kinase C (PKC) (Promega)

or by using S. mansoni total protein extract as a source of kinases.

Reactions were carried out in CK2 buffer (25 mM Tris-HCl,

pH 7.4, 200 mM NaCl, 10 mM MgCl2, and 0.1 mM ATP), at

37uC at different times, PKA buffer (100 mM HEPES, pH 7.0,

KCl 200 mM , 20 mM MgCl2, 0,1 mM ATP) and PKC buffer

(30 mM Tris-HCl, pH 7.6, 2 mM dithiothreitol, 6 mM

Mg(CH3COO)2, 0.4 mM CaCl2, 0,6 mg 1,2-Diacyl-sn-glycero-3-

phospho-L-serine, 0,12 mM ATP) for one hour at 30uC.

Reactions were carried out in the presence of 1 mCi [c 32P]ATP

(PerkimElmer). The reaction was stopped by adding SDS-PAGE

sample buffer (50 mM Tris-HCl pH 6.8, 2% SDS, 0.1%

bromophenol blue, 10% glycerol and 100 mM dithiothreitol).

For the unphosphorylated control reactions, proteins were

incubated in phosphorylation reactions lacking the protein kinase,

ATP or buffer. The phosphorylation status of the proteins was

examined by autoradiography and protein input controls were

examined by Coomassie Blue R-250 staining.

DNA supercoiling assay
DNA supercoiling assays were carried out as previously

described [24]. Briefly, CsCl-purified supercoiled plasmid

pTZ19R was relaxed at a DNA concentration ,170 mg/ml in

Topoisomerase I (Topo I) relaxation buffer (50 mM NaCl, 50 mM

Tris–HCl, pH 7.5, 1 mM EDTA, 20% glycerol and 1 mM

dithiothreitol) in the presence of topo I (2 units/mg DNA;

Promega) at 37uC for 90 min. The relaxed DNA (0.5 mg DNA)

was then diluted to final 40 mM NaCl, then the same amount of

the Topo I was added, followed by the addition of recombinant

SmHMGB1 proteins. The 20 ml reactions were allowed to

proceed at 37uC for 60 min after which they were terminated

by addition of SDS and NaCl to final 1% and 1 M, respectively.

DNA was deproteinized by chloroform/isoamyl alcohol (24:1)

extraction in the presence of 0.02% linear polyacrylamide (LPA,

SIGMA). Deproteinized DNA was then precipitated with 2.5

volume of ethanol, washed with 70% ethanol, air-dried and finally

dissolved in TE buffer. The occourance of DNA topoisomers was

analyzed by electrophoresis in 1% agarose gels in 16TBE buffer

at 3 V/cm for 17 h. The gels were stained with 0.5 mg/ml

ethidium bromide, distained in water and photographed through a

red filter in an UV-transilluminator (Mini-Bis Pro, Bio Imaging

Systems).

T4 DNA ligase-mediated circularization assay
The circularization assay (or bending assay) was carried out as

previously described [26]. Briefly, a 32P-labeled-66-bp or a 32P-

labeled-123-bp DNA fragments [29] (1 nM) with cohesive BamHI

ends were pre-incubated on ice for 20 min with appropriate

amounts of recombinant proteins (50 ng), total (10 mg), nuclear

(4 mg) or cytoplasmic (4 mg) adult worm extracts, in 16T4 DNA

ligase buffer (30 mM Tris–HCl, pH 7.8, 10 mM MgCl2, 10 mM

dithiothreitol, and 0.5 mM ATP; Promega) in a final volume of

20 ml. The DNA was then ligated with T4 DNA ligase (0.6 unit/

reaction; Promega) at 30uC for 30 min, and the ligation reactions

were terminated by incubation of samples at 65uC for 15 min.

Some of the ligation mixtures were digested after termination of

ligations with ,25 units of Exonuclease III (Promega) at 37uC for

30 min. Recombinant SmHMGB1 or protein extracts were pre-

incubated in the presence or absence of anti-SmHMGB1

antibody, pre-immune serum or heparin for 30 min at room

temperature before ligase reactions. Before electrophoresis, all

DNA samples were deproteinized as described in the DNA

supercoiling assay. The protein-free DNAs were loaded on pre-run

6% polyacrylamide gels in 0.56TBE buffer, and finally resolved

at 200 V for 2.5 h at 4uC. After electrophoresis, the gels were

vacuum-dried and visualized by autoradiography or Phosphor-

Imager STORM 860 (Molecular Dynamics) using Image Quant

5.2 software.

Cell culture and transfections
For cell work, a heterologous system was chosen since there is

no schistosome cell line available until today (recently reviewed by

Quack et al. [30]. HeLa cells (CCL-2, purchased from ATCCTM)

were plated on glass coverslips in 24-well dish (80,000 cells/dish)

and cultured in RPMI 1640 medium supplemented with 10% fetal

bovine serum, in 5% CO2 humidified atmosphere. The cells were

transiently transfected with 1 mg of pEGFP-SmHMGB1, pEGFP-

SmHMGB1-S172A/S174A or empty pEGFP plasmids, using

LipofectamineTM 2000 (Invitrogen). Cells were observed 24 h

after transfections and proceeded with the treatment of 100 nM

okadaic acid (OA) for 6 h to inhibit protein phosphatases and thus,

enhance phosphorylation. Another batch of cells was pre-treated

with 75 mM 4,5,6,7- tetrabromobenzotriazole (TBBt, a specific

CK2 inhibitor) [31] for 1 h and then treated with OA (as above).

Controls included cells expressing EGFP-SmHMGB1, EGFP-

SmHMGB1-S172A/S174A or empty EGFP, without any treat-
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ment. Cell viability was assayed by measuring LDH activity

(CytoTox 96, Promega) and by Trypan Blue staining.

EGFP imaging
Cells expressing EGFP-SmHMGB1, EGFP-SmHMGB1-

S172A/S174A or EGFP alone, treated with TBBt and/or OA,

and non-treated controls were fixed in 4% Paraformaldehyde for

1 h at room temperature. After fixation, cells were washed with

PBS 16. Nuclei were stained with DAPI for 5 min at room

temperature. Images were taken on a Zeiss Axio Observer.Z1

invert microscope equipped with 1006 objective lens and an

AxioCam MRm camera, in the ApoTome mode.

Transmission Electron Microscopy and Immunolabeling
S. mansoni male-adult worms were obtained from saline hepatic

perfusion, fixed in 0.7% glutaraldehyde (v/v), 0.1% picric acid,

1% sucrose, 2% paraformaldehyde, and and 5 mM CaCl2 in

0.1 M cacodylate buffer (pH 7.2), dehydrated in ethanol and

embedded in Unicryl (Ted Pella, Redding, CA). Ultrathin sections

were quenched in 50 mM NH4Cl for 30 min and incubated in the

presence of polyclonal anti-SmHMGB1 antibodies. After several

washes in PBS 16 and 1% BSA, sections were incubated in the

presence of 10 nm of gold-labeled goat anti-rabbit IgG (BB

International, UK), washed, and observed in a Zeiss 900 electron

microscope. Negative control sections were performed using pre-

immune serum (Figure S2).

Western blotting
Total extract of adult paired-worms was generated by tissue

homogenization with PBS 16 in the presence of a protease inhibitor

cocktail (SIGMA) followed by 14.0006g centrifugation. Supernatant

was collected and contained total soluble proteins. The cytoplasmic

and nuclear fractions from 100 couples of adult worms were

separated using Cell LyticTM NuclearTM Extraction Kit (SIGMA).

Briefly, the worms were washed in cold PBS 16, incubated in a

hypotonic lysis buffer (100 mM HEPES, pH 7.9, 15 mM MgCl2,

100 mM KCl) and centrifuged at 1.0006 g. The supernatant

(cytoplasmic fraction) was kept in cold and the pellet (nuclear fraction)

was resuspended in extraction buffer (20 mM HEPES pH 7.9,

1.5 mM MgCl2, 0.42 M NaCl, 0.2 mM EDTA and 25% (v/v)

glycerol). The nuclear fraction was obtained by 20.0006 g

centrifugation. Protein concentration was determined by the Bio-

Rad Protein Assay (Bio-Rad). Western blot analysis was carried out

using polyclonal anti-SmHMGB1 or anti-acetylated histones (a kind

gift of Dr. Cristina Motta, Instituto de Biofı́sica, UFRJ), and a HRP-

labeled anti-rabbit as the secondary antibody. Blots were developed

with ECL enhanced chemiluminescent reagents (Pierce).

Immunoprecipitation
Total extract of adult worms was generated as described above.

Nuclear and cytoplasmic fractions were pre-cleared by incubation

with protein A/G-Sepharose (Santa Cruz) at 4uC for 30 min. The

pre-cleared extracts (500 mg) were incubated with rabbit poly-

clonal anti-SmHMGB1 for 15 h at 4uC and then protein A/G-

Sepharose was added and incubated for 3 h at 4uC. Immunepre-

cipitated complexes were collected by centrifugation and extensive

washed with PBS 16. Collected complexes were fractionated by

12% SDS-PAGE, blotted to membranes, and detected by rabbit

polyclonal anti-phosphoserine antibodies (Chemicon).

Immunohistochemistry
Livers from 60 day-S.mansoni infected Swiss mice were

immediately embedded in OCT medium in a pre-cooled breaker

of isopentene and frozen in liquid N2. Seven micrometer cryostat

sections were adhered to glass slides and fixed in cold acetone for

30 minutes at 220uC. The sections were washed three times with

PBS 16, 0.03% Triton X-100 and blocked with PBS 16and 5%

BSA for 30 minutes. The sections were incubated with polyclonal

anti-SmHMGB1 and/or monoclonal anti-phosphoserine (SIG-

MA) in PBS 16 for 15 h at 4uC. After washing, an Alexa Fluor

488 conjugated anti-rabbit (Invitrogen) and/or an Alexa Fluor 555

conjugated anti-mouse (Invitrogen) were added for 1 h at room

temperature. Negative controls were obtained using only second-

ary antibodies. The sections were mounted in prolongH Gold

antifade reagent with DAPI (Invitrogen). All experiments were

repeated three times, and representative images were taken by a

Leica TCS SP5 AOBS confocal microscope.

Results

In vitro analysis of SmHMGB1 phosphorylation
HMGB1 from different organisms (mammalian, insects and

plants) have been shown to be substrates for different kinases

(CaMK, PKC, cdc2, CK2) [16–19]. Since these phosphorylations

proved to be important for the biological functions of these

different HMGB1 proteins, we asked the question whether

SmHMGB1 could also be phosphorylated. First, we subjected

the full amino acid sequence of SmHMGB1 to an in silico analysis

using the software NetPhosK 1.0 server (http://www.cbs.dtu.dk/

services/NetPhosK). The program revealed putative phosphory-

lation sites for CK2, PKC and PKA. The CK2 putative sites were

identified at positions S167, T169, S172 and S174 and we used an

in vitro biochemical approach to identify the actual CK2

phosphorylation site(s) of SmHMGB1. We performed phosphor-

ylation reactions with recombinant full length SmHMGB1 (FL),

but also assayed other SmHMGB1 gene constructions (Figure 1),

individually (see below). We showed that SmHMGB1-FL was a

specific substrate for commercial CK2 (Figure 2A). Specificity was

demonstrated by addition of heparin, a well-known inhibitor of

CK2, which completely abolished SmHMGB1 phosphorylation

(Figure 2A, lane 6). Moreover, the use of a synthetic specific

inhibitor of CK2, tetrabromobenzotriazole, TBBt, completely

abolished phosphorylation of SmHMGB1 (not shown). Since

CK2, PKA and PKC of S. mansoni were identified in the genome

and transcriptome database of the parasite, we assumed that the

parasite total protein extract could be a good source of

endogenous kinases. We then tested the capacity of this extract

to phosphorylate SmHMGB1. In fact, we were able to show that

endogenous kinases present in the extract of adult worms were

able to phosphorylate the recombinant SmHMGB1-FL

(Figure 2B). To evaluate the participation of the endogenous

schistosome CK2 in this process, we made use of the CK2 specific

inhibitor, TBBt (we avoided using heparin because being a

polyanion it could be sequestered by positive molecules present in

the extract). TBBt was able to consistently inhibit to 43%

(quantified by ImageJ-NIH Software) the phosphorylation of

SmHMGB1 (Figure 2B, lanes 2 and 3). Knowing that TBBt

inhibited phopshorylation by CK2 only, we assumed that other

kinases could be active in the extract of S. mansoni. Considering the

results from the NetPhosK program, that also identified putative

sites for PKC and PKA, we tested the ability of these two enzymes

to phosphorylate recombinant SmHMGB1-FL. The results

showed that commercial PKC and PKA were able to phosphor-

ylate SmHMGB1-FL (Figure 2C, lanes 1 and 3). When we tested

several concentrations of PKC (Bisindolylmaleimide II, Calbio-

chem) or PKA (H89, LC Laboratories) inhibitors in reactions

containing commercial PKC, PKA or the total protein extract (as
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source of endogenous kinases) of the parasite, inhibition of

phosphorylation of recombinant SmHMGB1 were discrete (data

not shown). Although it is not clear to us why these inhibitions

were weak, it is relevant to point out that commercially available

inhibitors of PKA or PKC have been previously described to be

somewhat inefficient and/or non-specific in some biological

systems [18,32]. We next wanted to determine what regions or

domains of SmHMGB1 were being targeted by CK2. For these

phosphorylation experiments, we expressed the first four gene

constructs depicted in Figure 1 (recombinant His6-tagged

SmHMGB1 proteins: full length [FL], the protein lacking its

acidic C-terminal tail [DC], the HMG box domain A [domain A]

and the HMG box domain B [domain B]). We showed that only

the full length protein was phosphorylated by CK2 (Figure 3A,

lane 1). Importantly, the protein construct lacking its acidic C-

terminal tail (see Figure 1, DC and Figure 3B, DC) failed to be

phosphorylated (lane 2). This result indicated to us that the

phosphorylation site (s) of CK2 was (were) localized within the

seven acidic residues contained in the acidic tail of SmHMGB1 (aa

170–176, see Figure 1, FL).

Protein kinase CK2 phosphorylates serine and/or threonine

residues that are embedded around negatively charged amino

acids. The acidic tail of SmHMGB1 contains two serine residues

surrounded by three aspartic acid and two glutamic acid residues

(see Figure 3B, FL). This observation prompted us to introduce

point mutations at these two serine residues (see Figure 3B, S172A,

S174A and S172A/S174A) and perform phosphorylation reac-

tions using these mutants as substrates for CK2. The results

obtained with the double mutant (S172A/S174A) showed that the

two serine residues present in the acidic C-terminal tail of

SmHMGB1 were indeed the phosphorylation sites for CK2

(Figure 3C, lane 5). Phosphorylation reactions using the mutant

S172A consistently revealed a slight decrease in phosphorylation

signal when compared with the FL phosphorylation (Figure 3C;

compare lane 1 with lane 4). The weaker CK2-phosphorylation of

S172A could be due to partial conformational constraint of this

specific mutant.

Figure 1. Schematic diagram of the Schistosoma mansoni HMGB1 gene structure and constructed mutants. SmHMGB1 full length (FL)
consists of two DNA-binding domains, the HMG box A (aa 1–83), HMG box B (aa 84–169) and a short acidic C-terminal domain (170–176). DC (aa 1–
169) refers to SmHMGB1 lacking only its acidic C-terminal domain; domain A (aa 1–83) refers to SmHMGB1 lacking its HMG box B domain; domain B
(aa 84–169) refers to SmHMGB1 lacking its HMG box A domain; S172A refers to SmHMGB1 with a point mutation at serine 172, substituted by alanine;
S174A refers to SmHMGB1 with a point mutation at serine 174, substituted by alanine; S172A/S174A refers to SmHMGB1 with two point mutations at
serines 172 and 174, both substituted by alanine.
doi:10.1371/journal.pone.0023572.g001

Figure 2. In vitro kinase assay of SmHMGB1 phosphorylation.
(A) One mg of the recombinant SmHMGB1 full length protein (FL) was
used as a substrate for commercial CK2, at various incubation times, in
the presence of [c 32P]ATP. Heparin was included to show specific
inhibition of CK2. Phosphorylations were analyzed by 15% SDS-PAGE
and autoradiography (top panel). Bottom panel is the Coomassie blue
stained gel of the SmHMGB1-FL used in the reactions; (B) S. mansoni
adult worm total protein extract (4 mg) was used, as a source of kinases,
in in vitro phosphorylation reactions. One mg of recombinant
SmHMGB1-FL was incubated with the extract for 1 h in the presence
of [c 32P]ATP, and with (1.8 and 3.6 mM) or without TBBt, a specific CK2
inhibitor. TBBt was dissolved in DMSO and we used it as control. Top
panel: phosphorylation; bottom panel: Coomassie blue staining; (C) One
mg of recombinant SmHMGB1 full length protein (FL) was used as a
substrate for commercial PKA and PKC in phosphorylation reactions for
1 h in the presence of c[32P]ATP. These experiments were repeated
three times.
doi:10.1371/journal.pone.0023572.g002
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DNA binding activities of phosphorylated SmHMGB1
Differently from canonical transcription factors, HMGB1

proteins do not exhibit DNA-sequence specificity. Alternatively,

HMGB1 exhibits a remarkably high affinity for distorted DNA

conformations such as supercoiled DNA, four-way junction DNA

and DNA bulges, but it can also actively distort DNA by bending

or supercoiling and changing of DNA topology [5]. In this work,

we used two well-established DNA assays for HMGB1 proteins

(supercoiling assay and T4 DNA ligase-mediated circularization

assay; see legend for details of the technique), to determine

whether phosphorylation influences SmHMGB1 DNA transac-

tions. Our data consistently showed that the supercoiling activities

of SmHMGB1 that was not phosphorylated (FL) or SmHMGB1

that was phosphorylated (pFL) by CK2 were basically the same

(Figure 4A; compare lanes 3–5 with 6–8). When we used the

double mutant in the supercoiling experiment (they were also

submitted to phosphorylation), no difference was observed

(compare lanes 3–5 with 9–11). The inclusion of the mutants in

this experiment aimed at certifying that, even though they would

not be phosphorylated, the amino acid substitutions themselves

would not alter the functionality of the protein. Similarly with the

supercoiling assay, when we performed DNA bending assays using

either a 123 bp-DNA fragment (Figure 4C) or a 66 bp-DNA

fragment (data not shown), the formation of minicircles were not

affected by phosphorylated SmHMGB1 (Figure 4C, compare

lanes 7–9 with lanes 10–18, which are controls lacking

components of the phosphorylation reaction). Recombinant

SmHMGB1 proteins were tested for their integrity and activity

before being submitted to phopshorylation reactions (lanes 4–6),

see figure legend for details (panels B and D are controls showing

that the SmHMGB1 proteins that were used in the reactions were

phosphorylated [pFL] or not [FL]). A pixel quantification of the

bands were performed and confirmed that no significant

differences were observed between phosphorylated (lanes 7–9)

and non-phosphorylated (lanes 10–18) SmHMGB1 (data not

shown).

Effect of phosphorylation in the nucleocytoplasmic
shuttling of SmHMGB1

To investigate whether phosphorylation of SmHMGB1 influ-

ences its nuclear transport in vivo, we made use of a mammalian

heterologous system (remember that heterologous cells had to be

used since a schistosome cell line is not yet available [30]. In

Figure 5, HeLa cells were transiently transfected with either EGFP

plasmid alone, EGFP-SmHMGB1 or EGFP-SmHMGB1-S172/

174A, and received treatments of okadaic acid (OA, a protein

phosphatase inhibitor that enhances phosphorylation) or TBBt (a

specific inhibitor of CK2).

Control cells that were transfected with EGFP plasmid alone,

not treated or treated with OA or/and TBBt revealed the presence

of EGFP either in the nucleus or in the cytoplasm (Figure 5, panels

A, B and C). Transfected cells that were not treated with OA

revealed the presence of EGFP-SmHMGB1 exclusively in the

nucleus (Figure 5, panel A). Treatment of transfected cells with

OA resulted in a significant translocation of nuclear EGFP-

SmHMGB1 to the cytoplasm (Figure 5, panel B). When

transfected cells were treated with TBBt prior to addition of

OA, no EGFP-SmHMGB1 was observed in the cytoplasm

(Figure 5, panel C), indicating that CK2 phosphorylation played

an important role in the traffic of SmHMGB1 from the nucleus to

the cytoplasm. Cells that were transfected with EGFP-

SmHMGB1-S172A/S174A (the construct that contains the

mutations at the two serine residues) but that received no

treatment, showed localization of the protein exclusively in the

nuclei (Figure 5, panel A). When these transfected cells were

treated with OA (panel B) or OA plus TBBt (panel C), no

cytoplasmic translocation was observed whatsoever, showing that

the CK2-phosphorylation sites of SmHMGB1 are important

mediators for the protein translocation.

Presence of native SmHMGB1 in the nucleus and
cytoplasm of adult S. mansoni cells

We have shown (figure 5) that SmHMGB1 can traffic between

the nucleus and cytoplasm of mammalian cells. In order to

determine whether SmHMGB1 can be found in these two cellular

compartments of S. mansoni cells, we used transmission electron

microscopy and immunolabeling of ultra-thin sections of male

adult worms (Figure 6). The electron microscopy of a male worm

cell depicts clearly the nucleus (N), nucleolus (Nc), and cytoplasm

(C). The nuclear membrane (arrowheads) is also registered

(Figure 6, panels a and b). Boxes a1, a2, b1 and b2 show at a

higher magnification the intense immunogold labeling of

SmHMGB1. The arrows indicate the presence of endogenous

SmHMGB1 in the nucleus, on the nuclear membrane and in the

cytoplasm of a schistosome cell. No labeling was observed (control)

when sections were performed with pre-immune serum (Figure

S2).

Active and phosphorylated SmHMGB1 in the cytosolic
fraction of S. mansoni cells

Besides electron microscopy, we used biochemical approaches

with protein extracts from adult worms to determine if

SmHMGB1 is endogenously phosphorylated. When we reacted

the total extract of S. mansoni against SmHMGB1 antibody, two

bands with slightly differences in size were consistently detected

(Figure 7A, top panel, lane 1). When the nuclear extract was

reacted against SmHMGB1 antibody, only the lower molecular

Figure 3. Mapping of CK2 phosphorylation sites in SmHMGB1.
(A) One mg of the recombinant SmHMGB1-FL, SmHMGB1-DC,
SmHMGB1-domain A and SmHMGB1-domain B were assayed for CK2
phosphorylation, as described in Figure 2. Top panel shows phosphor-
ylation of SmHMGB1-FL (lane 1); no phosphoprylation was observed
with the deleted constructions (lanes 2–4). Bottom panel shows the
Coomassie blue staining of the purified recombinant proteins used in
the phosphorylation assay. (B) Only part of the protein is represented
(from aa 162 to the end of the protein) to show where the point
mutations took place. The two serine residues located at the acidic C-
terminal tail of SmHMGB1-FL were substituted to alanines (in red),
accordingly. (C) One mg of the recombinant SmHMGB1-FL, SmHMGB1-
DC or mutated constructs were assayed for CK2 phosphorylation. These
experiments were repeated three times.
doi:10.1371/journal.pone.0023572.g003
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weight band was detected (Figure 7A, top panel, lane 2). However,

when the cytosolic extract was reacted against the same antibody,

only the higher molecular band was detected (Figure 7A, top

panel, lane 3). These results prompted us to test whether this slight

difference in protein size found only in the cytosolic fraction could

be due to phosphorylation. When we immunoprecipitated

SmHMGB1 proteins from the nuclear or cytosolic extracts and

then reacted them against an anti-phosphoserine antibody, we

observed that the cytosolic SmHMGB1 was highly phosphorylated

(Figure 7A, bottom panel, lane 3). Alternatively, SmHMGB1 that

was present in the nucleus showed only residual phosphorylation

(Figure 7A, bottom panel, lane 2).

Since we showed that phosphorylation of recombinant

SmHMGB1 did not interfere with its DNA binding activity

(Figure 4), we then wanted to test if phosphorylation of

endogenous SmHMGB1 would behave similarly. For this, we

performed the T4 DNA ligase-mediated circularization assay (or

DNA bending assay) using S. mansoni total, nuclear or cytosolic

extracts as source of phosphorylated or non-phosphorylated

SmHMGB1 (Figure 7B). When we used the total extract, a

significant formation of circles (DNA bending) was observed

(Figure 7B, lane 4). When the nuclear or cytosolic extracts were

used, the formation of circles was also observed (Figure 7B, lanes 5

and 6). It is important to point out that the activity of the nuclear

Figure 4. DNA supercoiling and bending assays by phosphorylated SmHMGB1. (A) Circular relaxed plasmid pTZ19R DNA was incubated in
the presence of topoisomerase I with 1 mg of recombinant SmHMGB1-FL or SmHMGB1-S172A/S174A that were phosphorylated (lanes 3–5) or not
(lanes 6–8 and 9–11), by CK2. Deproteinized DNA topoisomers were resolved on 1% agarose gels, followed by staining of the gels with ethidium
bromide. Form I, supercoiled DNA; form II, relaxed circular DNA. (B) Top panel: autoradiography; bottom panel: Coomassie staining. (C) A 32P-labeled
123-bp DNA fragment (,1 nM) was pre-incubated with 50 ng of recombinant proteins, that were phosphorylated (lanes 7–9) or not (lanes 4–6, 10–
12, 13–15 and 16–18), followed by ligation with T4 DNA ligase. Exonuclease III was used to verify the identity of DNA circles. The deproteinized DNA
ligation products were subjected to electrophoresis on 6% non-denaturing polyacrylamide gels and visualized by autoradiography. Controls are as
follows: FL(c1): SmHMGB1-FL without CK2; FL(c2): SmHMGB1-FL without phosphate; FL(c3): SmHMGB1-FL without CK2 buffer. Linear: linear DNA; Lm:
linear multimers. (D) Top panel: autoradiography; bottom panel: Coomassie staining. These experiments were repeated four times.
doi:10.1371/journal.pone.0023572.g004

Figure 5. Phosphorylation of SmHMGB1 mediates its cellular traffic in HeLa cells. HeLa cells were transfected with empty control plasmid
pEGFP, pEGFP-SmHMGB1-FL or pEGFP-SmHMGB1-S172A/S174A plasmids and untreated (panels A) or treated with 100 nM okadaic acid (OA) for 6 h
(panels B) or with OA+75 mM TBBt (panels C). SmHMGB1-EGFP fusion proteins were detected by fluorescence microscopy. Nuclei were stained with
DAPI. Cell viability was assessed by Trypan blue and LDH activity (data not shown). Scale bar 3 mm. This result is a representative of four independent
experiments.
doi:10.1371/journal.pone.0023572.g005
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SmHMGB1 (presumably not phosphorylated) or cytosolic

SmHMGB1 (presumably phosphorylated) were comparable. We

were able to prove that the formation of the circles was a result of

the activity of the nuclear or cytosolic SmHMGB1 by the addition

of an anti-SmHMGB1 antibody prior to the bending reaction,

where no circles were formed (Figure 7B, lanes 7 and 8). To

further confirm that SmHMGB1 antibody was not unspecifically

targeting the ligase reaction, we carried out an additional DNA

bending reactions containing SmHMGB1 specific antibody,

heparin (which can sequester HMGB1) or the pre-immune serum

(Figure S1, see legend for details).

The formation of circles was determined by the treatment of

Exonuclease III (Exo III), an enzyme that degrades only linear

DNA, but not circular DNA. Linear multimers (Lm) were also

observed (HMGB1 proteins are known to enhance the formation

of linear multimers by the T4 DNA ligase) [33].

To certify that the cytosolic extract was not contaminated with

nuclear proteins, we performed a Western blot (Figure 7C) with S.

mansoni nuclear or cytosolic extracts and reacted them against anti-

acetylated histone antibodies. Figure 7C shows that histones were

only detected in the nuclear extract.

Phosphorylated SmHMGB1 is amply distributed in
schistosomotic granuloma

Considering the role of phosphorylation in the extracellular

release of mammalian HMGB1 as well as the pro-inflammatory

activity of the protein in modulating the pathogenesis of several

inflammatory diseases, we next evaluated the phosphorylation

status of SmHMGB1 proteins that were secreted and lodged in

the schistosomotic liver granuloma. By immunofluorescence

assays using an anti- SmHMGB1 antibody, we were able to

demonstrate the presence of a significant amount of SmHMGB1

in the eggshell and a considerable amount of egg-released

SmHMGB1 throughout the granulomatous liver tissue (Figure 8,

panel 2). We next used anti-phosphoserine antibodies and

showed that a number of proteins present in the host

granulomatous liver were phosphorylated (Figure 8, panel 3).

Co-localization analysis confirmed that a large amount of egg-

secreted SmHMGB1 proteins were phosphorylated (Figure 8,

panel 4, merge of 2 and 3, orange arrows). Immunoreaction with

the secondary antibody only, revealed the previously described

auto-fluorescence of the eggshell [34] (Figure 8, panels 2, 3 and

4; Figure S3). Molecules that were red-labeled only (in panel 3,

and red arrows in panel 4), likely represent serine-phosphory-

lated proteins from the host and possible from the schistosome

eggs. However, a smaller proportion of the SmHMGB1 proteins

that were not modified by phosphorylation were identified in the

granulomatous liver tissue (green arrows in panel 4). It is possible

that this population of SmHMGB1 proteins (green fluorescence

only) could have reached the extracellular space through other

modifications, such as acetylation and/or methylation. Indeed,

acetylation of SmHMGB1 plays a role in its cellular exit [28]. In

addition, we have shown that SmHMGB1 is arginine-methylated

(unpublished results). Importantly, one cannot exclude the

possibility that extracellular SmHMGB1 molecules carry multi-

ple modifications. In fact, the interdependence of the post-

synthetic acetylation and phosphorylation of mHMGB1 has

been reported [35].

In order to evaluate the biochemical profile of extracellular

SmHMGB1 proteins located in the granuloma (Figure 8, panel 4),

we performed a Western blot analysis and confirmed that egg-

secreted SmHMGB1 proteins were modified by phosphorylation

(Figure 8B, top band).

Discussion

HMGB1 proteins have evolved and developed the ability to act

both as nuclear factors for the regulation of gene transcription and

to contribute to the induction of innate and adaptive immune

responses by activating membrane receptor-mediated signal

transduction pathways. The combination of transcriptional and

extracellular capabilities provides them with the dual capacity of

promoting gene expression and mobilizing host defense.

Treatment with inhibitors (anti-HMGB1 antibodies and

pharmacological agents) of the mammalian HMGB1 pro-inflam-

matory activity is beneficial and reduces inflammation in a dozen

of preclinical animal studies [9–10,36–38]. Therefore, substantial

work has been conducted to elucidate the mechanisms by which

HMGB1 is released. Current data support an active process

initiated by HMGB1-histone disengagement, HMGB1 hyperace-

tylation, and shuttling of the protein from the nucleus to cytoplasm

[6]. Phosphorylation of HMGB1 has also been demonstrated to be

essential for this translocation event [16–18].

In the present work we aimed to determine the role of

phosphorylation of SmHMGB1 in its nucleocytoplasmic shuttling

and to correlate its extracellular location to its ability to trigger

inflammation.

Despite the overall homology between SmHMGB1 and

mHMGB1, their phosphorylation statuses are somewhat distinct.

Mammalian HMGB1 has been shown to be phosphorylated by

CaMK [17] and PKC [18] and at serine residues located at the

two putative NLS, one localized in the HMG box A and the other

localized between the HMG box B and the acidic tail [6].

Recently, it has been assumed that serine phosphorylation of

mHMGB1 NLS may reduce its DNA-binding and cooperates to

Figure 6. In situ localization of native SmHMGB1 protein in the
nucleus and cytoplasm of S. mansoni cells. (a and b) Transmission
electron microscopy (TEM) of cells from S. mansoni male adult worms
showing the nucleus (N), nucleolus (Nc), cytoplasm (C) and the nuclear
membrane (arrowheads). Insets a1, a2, b1 and b2 depict a closer
visualization of the interface between the nucleus and the cytoplasm.
The immunogold staining shows the labeling of SmHMGB1 in both
cellular compartments (arrows indicate representative SmHMGB1
labeling). Bars: a and b = 100 nm; a1 and a2 = 50 nm. This image is a
representative of several cells observed under TEM.
doi:10.1371/journal.pone.0023572.g006
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its cytoplasmic transport [19]. However, no experiments have

been performed by these authors to prove this assumption.

In the case of SmHMGB1, phosphorylation was achieved by

PKC, PKA and CK2 (figure 2). CK2 phosphorylation (but not

PKC or PKA) was mapped at serines 172 and 174, both located

within the short C-terminal acidic tail of the protein (Figure 3).

SmHMGB1 contains one putative nuclear localization signal

(NLS), at positions (residues) 87 to 90, localized in the linker

between the HMG box A and B, and a putative nuclear

exportation signal (NES), at positions 101 to 110, localized in

the HMG box B domain [26]. By performing DNA-binding assays

amply used to test HMGB1 activities, we clearly showed that

phosphorylation of either recombinant or native SmHMGB1, did

not enhance or reduce their DNA-binding activities (Figure 4 and

7).

Mammalian HMGB1 is a very mobile nuclear protein and the

association of mHMGB1 with chromatin is transient [39]. The

nucleosome would be visited by mHMGB1 every 2 seconds and

the protein would stay there for a small fraction of a second [40].

Thus, mHMGB1 is continuously and rapidly exchanged between

cytoplasm and chromosomes. Here, with the results of Figure 6,

we showed that under a physiological condition, SmHMGB1

protein was localized in the nucleus, in the nuclear membrane and

in the cytoplasm of an adult worm cell, supporting the notion that

SmHMGB1 traffics between these two compartments. Additional

data from this work suggested that phosphorylation of SmHMGB1

was involved in the shuttle of the protein from the nucleus to the

cytoplasm (Figure 5), with its subsequent release to the

extracellular space (Figures 8). It is worth to point out that in

the case of SmHMGB1, secretion seemed to be dependent of

phosphorylation by CK2.

For mHMGB1, it has been shown that the protein was

imported to the nucleus by KAP-a1 as a nuclear cargo carrier

protein after translation and eventually accumulated in the nucleus

[16]. However, a significant fraction of HMGB1 cannot re-enter

the nucleus if it has been exported from the nucleus due to

phosphorylation [16]. Moreover, inhibition of the exportin protein

Crm1 showed a marker reduction of cytoplasmic phosphorylated

HMGB1 [19]. Thus, in addition to acetylation, the subcellular

localization of mHMGB1 is finely tuned by phosphorylation,

although it is still unknown which modification is dominant under

physiological conditions.

In the case of SmHMGB1 phosphorylation, while at this

moment we can not anticipate which signaling pathway is

activated by this modification, with the data presented here we

can envision a remarkable role of SmHMGB1 phosphorylation in

the modulation of the pathophysiology of schistosomiasis.

In infection with S. mansoni, chronic disease is the result of the

ongoing host response to accumulating tissue-trapped eggs, with

the liver being the principal site affected. Hepatic granuloma are

pathogenic because they precipitate fibrosis, which obstructs blood

flow, increases portal blood pressure, and ultimately, promotes

development of portal-systemic venous shunts [41]. In this work,

based on the data that phosphorylated SmHMGB1 is extracellu-

larly released by tissue-trapped eggs, we would like to propose a

model where SmHMGB1 can act as a novel egg antigen,

promoting inflammation and contributing to granuloma forma-

tion.

Figure 7. Endogenous phosphorylation of SmHMGB1 did not alter its DNA bending activity. (A) Western blot analysis was carried out
with S. mansoni protein extracts and an anti-SmHMGB1 polyclonal antibody. SmHMGB1 antibodies detected two proteins in the total extract (top
panel, lane 1). The lower molecular weight protein was detected in the nuclear extract only (top panel, lane 2); the higher molecular weight protein
was detected in the cytosolic extract only (top panel, lane 3). SmHMGB1 that was immunopreciptated from the nuclear or cytosolic extracts using
SmHMGB1 antibodies were reacted against anti-phosphoserine antibodies in a Western blot (bottom panel, lane 2 (nuclear extract) and 3 (cytosolic
extract); phosphorylation of SmHMGB1 at serines is indicated by pSmHMGB1). (B) Bending assay: a 32P-labeled 123-bp DNA fragment (1 nM) was pre-
incubated with 10 mg of total (lane 4), 4 mg of nuclear (lane 5) or 4 mg of cytosolic (lane 6) protein extracts from S. mansoni adult worms, and the
assay performed as described in Figure 4C. To make sure that the circles were formed by the activity of SmHMGB1, nuclear or cytosolic (lanes 7 and 8,
respectively) extracts were incubated with anti-SmHMGB1 antibodies prior bending reactions. Extracts that were incubated with SmHMGB1 antibody
did not show any circularization (or bending) activity (lanes 7 and 8). The Exo III control proved the identity of the circles. (C) Top panel: SDS-PAGE of
S. mansoni adult worm nuclear (N) or cytosolic (C) extracts. Bottom panel: Western blot with anti-acetylated histones, showing no cross-
contamination between the two extracts. These experiments were repeated three times.
doi:10.1371/journal.pone.0023572.g007
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Schistosoma mansoni HMGB1 has been previously shown to be

secreted by larvae schistosomula and eggs [27]. In vitro,

recombinant SmHMGB1 was shown to be a potent inducer of

pro-inflammatory cytokines including TNF-a, IL-13, IL-13Ra1,

MIP-1a and others [27]. Interestingly, migration of mHMGB1 to

organs or tissue sites induced similar pro-inflammatory cytokines,

such as TNF-a, IL-1a, IL-1b, IL-1RA, IL-6, IL-8, MIP-1a and

MIP-1 b [42].

Tumor necrosis factor-a and IL-13 are believed to provide

necessary immune priming for the formation of schistosomotic

granuloma [43–46]. Although the actual role of TNF-a in

schistosomiasis is still debated [47–49], several lines of research

have implicated this molecule in the chronic form of the disease

[50–52]. In this regard, TNF-a and HMGB1 have been intimately

linked to the pathology of several inflammatory diseases, such as

sepsis, rheumatoid arthritis and Crohn’s disease [53].

The inflammatory activity of mHMGB1 is dependent upon

the oxidation status of the cysteine 106 residue within the HMG

box B of the mammalian protein, a region that is critical for

stimulating cytokine release and inflammation [10,54–55].

Importantly, the pro-inflammatory activity of SmHMGB1 also

appears to be the function of its HMG box B domain [27]. In

addition, the cysteine residue 106 is conserved in the

SmHMGB1 molecule [26]. A recent study has revealed that

cysteine 106 is critically important for mHMGB1 binding to

TLR4 [56]. Together, these results indicate that cysteine 106 is

required for mHMGB1 (and we believe for SmHMGB1, as well)

signaling through TLR4 to stimulate cytokine release and

inflammation.

It has been recently demonstrated that the larvae schistosomula

tegument activated dendritic cells (DC) to produce IL-12p40,

TNF-a and also co-stimulatory molecules CD40 and CD86

through a TLR4-dependent pathway [57]. This finding is

especially important because it has been shown that mHMGB1

acts as adjuvant via DC activation, maturation and mobilization

[42].

In conclusion, in addition to previously described acetylation,

we showed in this study that the subcellular localization and

secretion of SmHMGB1 was regulated by phosphorylation.

Importantly, we showed that phosphorylated SmHMGB1 was

secreted by the eggs that were lodged in the liver of infected mice.

We believe that this study will open up a new area of investigation

for those interested in understating the pathogenesis of schistoso-

miais.

Figure 8. Localization of phosphorylated SmHMGB1 in the granulomatous liver. (A) Immunostaining of hepatic granuloma with a S.
mansoni egg in the center. Nuclei were stained with DAPI (1); Detection of SmHMGB1 using an anti-SmHMGB1 polyclonal antibody (2). Detection of
phosphorylated SmHMGB1 using an anti-phosphoserine monoclonal antibody (3). A significant amount of secreted SmHMGB1 detected in the
granulomatous liver is phosphorylated (merged images of panels 2 and 3). In panel 4, green arrows point to secreted but non-phosphorylated
SmHMGB1; red arrows point to phosphorylated proteins from the host; orange arrows point to secreted phosphorylated SmHMGB1. Controls with
the pre-immune sera (not shown) or with the secondary antibody only (Figure S3), exhibited a residual auto-fluorescence from the eggshell. Scale bar:
20 mm. This figure is a representative of the several egg-induced granuloma analyzed from three independent mice livers. (B) Eggs (,106 eggs) from
these livers were processed and egg secretions (ES) were assayed by Western blot using anti-SmHMGB1 antibody. The two isoforms (phosphorylated
and unphosphorylated) of SmHMGB1 were detected in egg secretions. However, the high molecular weight (phosphorylated) isoform is significantly
more abundant in egg secretions (top band).
doi:10.1371/journal.pone.0023572.g008
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Supporting Information

Figure S1 DNA bending assay. A 32P-labeled 123 bp-DNA

fragment (1 nM) was pre-incubated with 10 mg of total extract

from S. mansoni adult worms (lanes 3–7), 250 ng of recombinant

SmHMGB1 (lanes 8–12). Samples in lanes 5 and 9 were pre-

incubated with anti-SmHMGB1 antibody; samples in lanes 6 and

10 were pre-incubated with heparin; samples in lanes 7 and 11

were pre-incubated with the pre-immune serum. The ExoIII

control proved the identity of circles (lanes 3 and 12). Two

independent experiments showed the same results.

(TIF)

Figure S2 Negative control of the transmission electron
microscopy (TEM) of cells from S. mansoni male adult
worms. No immunogold staining was observed when the pre-

immune serum was used. Nucleus (N), nucleolus (Nc) and

endoplasmic reticulum (ER). Scale bar 150 nm.

(TIF)

Figure S3 Auto-fluorescence of S. mansoni eggshell.
Hepatic granuloma with a S. mansoni egg in the center was reacted

using an Alexa 555 anti-mouse secondary antibody. The auto-

fluorescence of S. mansoni eggshell is observed. Scale bar: 20 mm.

(TIF)

Acknowledgments

We thank Dr. Claudia Neto Paiva (Instituto de Microbiologia, UFRJ) for

fruitful discussions and critical reading of the manuscript, Dr. Ana Lúcia
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