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Abstract

Listeria monocytogenes is a food-borne intracellular bacterial pathogen capable of causing serious human disease. L.
monocytogenes survival within mammalian cells depends upon the synthesis of a number of secreted virulence factors
whose expression is regulated by the transcriptional activator PrfA. PrfA becomes activated following bacterial entry into
host cells where it induces the expression of gene products required for bacterial spread to adjacent cells. Activation of PrfA
appears to occur via the binding of a small molecule cofactor whose identity remains unknown. Electrostatic modeling of
the predicted PrfA cofactor binding pocket revealed a highly positively charged region with two lysine residues, K64 and
K122, located at the edge of the pocket and another (K130) located deep within the interior. Mutational analysis of these
residues indicated that K64 and K122 contribute to intracellular activation of PrfA, whereas a K130 substitution abolished
protein activity. The requirement of K64 and K122 for intracellular PrfA activation could be bypassed via the introduction of
the prfA G145S mutation that constitutively activates PrfA in the absence of cofactor binding. Our data indicate that the
positive charge of the PrfA binding pocket contributes to intracellular activation of PrfA, presumably by facilitating binding
of an anionic cofactor.
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Introduction

L. monocytogenes is a gram-positive environmental bacterium that

survives as a saprophyte in soil but is capable of causing disease

when ingested by susceptible individuals [1,2,3,4,5]. This faculta-

tive intracellular pathogen has been responsible for some of the

most extensive and expensive food recalls in U.S. history, and

invasive L. monocytogenes infections have resulted in thousands of

reported illnesses and hundreds of deaths within recent years

[3,6,7,8,9]. The transition from bacterial life in the outside

environment to life within the mammalian cell cytosol requires the

transcriptional upregulation of a number of gene products that

contribute to host cell invasion, dissolution of the phagosomal

membrane, replication within the cytosol, and bacterial spread to

neighboring host cells [10,11,12,13]. The expression of the gene

products that enable L. monocytogenes to establish its intracellular

replication niche is regulated by a transcriptional activator known

as PrfA [12,14,15]. PrfA is essential for L. monocytogenes virulence as

mutants lacking this regulator are unable to cause disease in mouse

models of infection [16].

PrfA is a 27kDa protein that belongs to the cAMP receptor

protein (Crp)-Fnr family of transcriptional regulators whose

members appear to require the binding of a small-molecule

cofactor for full activity [17,18]. PrfA has been shown to be

structurally similar to the most well studied member of this family,

the Escherichia coli Crp protein [19]. PrfA monomers consist of an

N-terminal b-barrel domain and a C-terminal DNA-binding helix-

turn-helix (HTH) domain that are linked by a long a-helix that

mediates monomer-monomer contacts and the formation of PrfA

dimers [19]. The PrfA N-terminal domain consists of an eight-

stranded antiparallel b-barrel; in Crp, this domain contains a

conserved cyclic nucleotide monophosphate binding pocket that

binds the Crp activating cofactor cAMP. Structural analysis of

PrfA has indicated the presence of a putative cofactor binding

pocket in a region similar to that of the Crp cAMP binding site,

however in contrast to Crp, key residues involved in the binding of

nucleotide sugars are absent in PrfA [19]. The absence of

conserved residues that contribute to the binding of nucleotide

sugars is consistent with studies reporting that neither cAMP nor

cGMP serve as activating cofactors for PrfA [12,18]. The nature of

the cofactor that leads to PrfA activation is not presently known

but has been speculated to be a host-derived small-molecule

second messenger. In addition, functional linkages between carbon

metabolism and PrfA-dependent virulence gene expression have

led to the suggestion that available nutrients may serve to trigger

the generation of the activating signal for bacteria located within

host cells [20,21,22,23,24,25].

In the absence of a known cofactor for PrfA, mutations within

prfA have been identified (prfA* mutations) that serve to lock the

protein in a constitutively active form [26,27,28,29,30,31]. A

number of prfA* mutations have been mapped to different regions

within the protein, however the only structural information
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available thus far that describes the influence of a prfA* mutation

on PrfA function relates to the prfA* G145S mutation located in

the PrfA C-terminal domain [19]. The presence of the prfA*

G145S mutation results in the repositioning of the PrfA helix-turn-

helix DNA-binding domain so as to increase PrfA DNA-binding

affinity. Other prfA mutations, including Y63C and Y154C, both

of which map in or near the co-factor binding pocket region,

appear to activate (Y63C) or inhibit activation (Y154C) of the

protein without significant changes in PrfA DNA binding affinity;

the mechanistic basis of action of these mutations remains unclear

[26,31]. While the prfA* Y63C and prfA Y154C mutations

profoundly alter PrfA activity, they have provided few clues into

the nature or identity of the PrfA activating cofactor.

In this study, we use electrostatic modeling to reveal that the

putative cofactor binding pocket is characterized by a high density

of positive charge resulting from the presence of three key lysine

residues: K64 and K122 which are located at the opening of the

pocket, and K130 which is buried deep within the pocket interior.

Mutational analysis was used to investigate the contributions of

these lysine residues to PrfA function and activation. Our data

support a model in which the positive charge of the PrfA binding

pocket plays a key role in cofactor binding and optimal PrfA

activation within the cytosol of infected host cells.

Results

Electrostatic modeling reveals a high density of positive
charge within the putative PrfA cofactor binding site

PrfA is a 237 amino acid protein with an N-terminal domain

consisting of residues 1–108 and a C-terminal comprised of

residues 138–237 [19]. The N-terminal domain is comprised of

eight-stranded antiparallel b-barrel sheets flanked by two a-helices

(aA and aB), while the C-terminal is made up of six a-helices and

four antiparallet b-barrel sheets, two of which (aE and aF)

comprise the helix-turn-helix DNA binding motif. The N and C

terminal domains are linked via a long alpha helix (aC) consisting

of residues 109–137 [19]. The predicted cofactor binding site

identified by Eiting et al [19] in the PrfA x-ray crystal structure

consists of a tunnel-like region located between the N-terminal b-

barrel and C-terminal DNA-binding domains within the protein

monomer (Fig. 1A–B). Electrostatic modeling of PrfA was used to

probe the physical nature of the putative binding pocket and this

approach revealed a high density of positive charge stemming

from the presence of three lysine residues: K64, K122, and K130

(Fig. 1A). K64 and K122 are located on opposite sides of the

opening of the pocket (Fig. 1A–B), while the K130 lysine is buried

deep within the pocket interior. K64 is located within beta sheet

b5 (residues 56–64), while K122 and K130 are located within helix

aC (residues 109–137) [19]. In the structurally related activator

Crp, b4–b5 fold over the cAMP-binding pocket such that the

binding of cAMP bends the aC helix and results in a structural

shift that repositions the DNA binding HTH motif to enhance

DNA-binding [19]. A similar repositioning of the DNA HTH

domain has been shown to occur in PrfA as a result of a G145S

substitution; this mutation enhances PrfA DNA binding affinity

and results in the constitutive activation of PrfA in the absence of

cofactor [19,27].

Substitution of the lysine residues at position 64, 122, or
130 does not impact PrfA protein stability or dimer
formation

The high density of positive charge revealed via electrostatic

modeling of the putative PrfA cofactor binding pocket suggested

that charge may play a role in PrfA cofactor binding. To probe the

contributions of pocket charge to PrfA function and to cofactor-

induced activation, mutant strains containing the substitution of

glutamine for the positively charged lysine residues were

constructed via complementation of L. monocytogenes DprfA strains

with the plasmid single copy integration vector pPL2 containing

the mutant prfA alleles (along with all relevant promoters that

contribute to prfA expression [30]), and compared to L.

monocytogenes DprfA strains containing pPL2 encoding the wild type

prfA allele. PrfA proteins containing the substitution of glutamine

for lysine at position 64 (K64Q) or at position 122 (K122Q) would

be predicted to exhibit a limited decrease in overall positive charge

at the opening of the pocket, while the simultaneous substitution of

both lysines would result in a more substantial reduction in

positive charge (Fig. 1C). The lysine residue at position 130 is

buried deep within the interior of the pocket, and the substitution

of this lysine for glutamine would be anticipated to significantly

influence PrfA structure while not visibly affecting the positive

charge at the pocket entrance (Fig. 1C). If K64, K122, and/or

K130 contribute to the binding of the PrfA cofactor via positive

charge, neutral substitutions at these lysine residues would be

anticipated to interfere with cofactor binding and PrfA activation.

Western blot analysis was used to confirm the expression and

stability of PrfA as encoded by the prfA lysine substitution mutant

strains (Fig. 2A). The analysis of cytoplasmic fractions of bacterial

lysates prepared from cells grown to mid-exponential phase

indicated that strains containing prfA K64Q, K122Q, K130Q and

K64Q/K122Q mutations resembled wild type strains in terms of

PrfA synthesis and stability (Fig. 2A). As PrfA forms dimers in

solution as detected both by x-ray crystallography structural

analysis and by chemical cross-linking studies [18,19,31,32],

mutant dimer formation was examined using chemical cross-

linking agents (Fig. 2B). Purified wild type PrfA, PrfA* (G145S),

and K64Q, K122Q, K130Q, and K64Q/K122Q were incubated

with the chemical crosslinkers sulfo-ethylene glycol bis[succinimi-

dylsuccinate] (S-EGS), which has a 16 Ångstrom linker arm, and

Bis [sulfosuccinimidyl] suberate (BS3), which has an 11 Ångstrom

linker arm; both of these reagents react with free amine groups. All

of the PrfA lysine substitution mutants formed homodimers as well

as the wild-type protein, while PrfA G145S exhibited reduced

dimer formation as previously reported [31] (Fig. 2C and data not

shown). These data confirm that the K64Q, K122Q, and K130Q

lysine substitution mutant proteins are stably expressed in L.

monocytogenes and retain sufficient structural conformation for dimer

formation.

Variable impact of the PrfA lysine substitutions on in vitro
PrfA-dependent gene expression

PrfA is required for the expression of the majority of L.

monocytogenes gene products associated with intracellular survival

and virulence within mammalian hosts [1,11,12,13,14]. While the

expression of PrfA-dependent genes is induced within infected host

cells, the activity of a number of gene products can still be detected

at low levels during bacterial growth in broth culture

[26,33,34,35]. We therefore first assessed the influence of the

PrfA lysine substitutions on the expression of selected L.

monocytogenes virulence gene products in vitro. The secreted

hemolysin LLO is produced at low levels by bacteria grown in

broth culture and contributes to bacterial lysis of the phagosome

following host cell entry [34,36]. Secreted LLO-associated

hemolytic activity can be assessed by monitoring the lysis of sheep

red blood cells in the presence of bacterial supernatant fractions. L.

monocytogenes strains containing the prfA K64Q and K122Q

mutations secreted levels of LLO-associated hemolytic activity

that were comparable to wild-type L. monocytogenes, whereas the

Mutational Analysis of PrfA Activation
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Figure 1. Electrostatic modeling of PrfA. (A) Electrostatic potential distribution on solvent-accessible surface of wild-type PrfA. Positive charge is
indicated in blue, negative charge in red. Arrows point to lysine residues within the putative PrfA cofactor binding pocket. The positively charged
DNA binding region located at the bottom of the PrfA monomer is indicated. (B) Close-up of lysine residues and pocket for wild-type PrfA, in
approximately the same orientation as A. (C) Electrostatic surface potentials at putative cofactor binding pocket for wild-type PrfA and lysine
mutants. The electrostatic potentials range from -4kT/e (red) to +4 kT/e (blue).
doi:10.1371/journal.pone.0023502.g001

Figure 2. Substitution of prfA lysine residues for glutamines does not affect PrfA stability or the ability to form homodimers. (A)
Western blot of PrfA protein. Top panel: 20 ml of isolated bacterial cytoplasmic fractions normalized based on cell density were loaded onto a 12%
Bis-Tris polyacrylamide gel and proteins were separated by gel elecrophoresis. Polypeptides were visualized by staining with Coomassie blue. Bottom
panel: PrfA protein was detected in the cytoplasmic fractions of the various L. monocytogenes strains using a monoclonal antibody directed against
PrfA. All prfA lysine substitution mutants synthesized similar amounts of PrfA protein in comparison to the wild-type strain. Numbers below Western
panel indicate relative amounts of protein as determined by densitometry using ImageJ software (http://rsbweb.nih.gov/ij/download.html) in
comparison to wild type PrfA. (B) Chemical crosslinking of purified PrfA. 500 ng of purified PrfA proteins were chemically crosslinked with 10 mM of
sulfo-ethylene glycol bis[succinimidylsuccinate] (S-EGS) for 1 hour at room-temperature followed by SDS-PAGE and western blotting for detection of
PrfA dimers. All PrfA lysine mutant proteins formed homodimers at levels similar to those observed with the wild-type protein. All data is
representative of at least three independent experiments.
doi:10.1371/journal.pone.0023502.g002

Mutational Analysis of PrfA Activation

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e23502



prfA K130Q mutant produced no detectable LLO activity

(Fig. 3A). Interestingly, the combined K64Q/K122Q mutant

exhibited slightly increased amounts of LLO-associated hemolytic

activity compared to the wild type strain.

The expression of the PrfA-dependent gene product encoded by

actA was measured using strains containing an actA-gus transcrip-

tional reporter gene fusion within the L. monocytogenes chromosome,

for which ß-glucuronidase (GUS) activity serves as a read-out for

actA expression. Wild type L. monocytogenes and mutant strains

grown in BHI at 37uC were assayed for GUS activity at varying

time points of growth. The constitutively active prfA* G145S

mutant was included to provide a comparison for the expression of

high levels of actA expression as reflected by GUS activity. All

strains containing prfA K64Q, K122Q, K130Q, or K64Q/K122Q

mutation were found to express very low levels of actA similar to

those expressed by wild-type L. monocytogenes in broth culture

(conditions under which PrfA is not activated), and all were

significantly lower than those expressed by the prfA* G145S strain

(Fig. 3B). These data combined with the LLO-associated

hemolytic data indicate that the prfA K64Q and K122Q mutations

Figure 3. Effects of prfA lysine substitutions on PrfA-dependent virulence gene expression. (A) Assessment of LLO-associated hemolytic
activity by measuring lysis of sheep erythrocytes from serial dilutions of bacterial culture supernatants of strains grown for 5 hours at 37uC with
shaking in LB broth. Hemolytic activity was determined as the reciprocal of the supernatant dilution at which 50% lysis of erythrocytes was observed.
Data shown represents the mean 6 SEM activity measured in triplicate for three independent experiments. (B) Measurement of the levels of PrfA
activity in broth culture as assessed by actA expression. PrfA-dependent virulence gene expression was measured by monitoring the levels of GUS
activity of the various L. monocytogenes strains containing actA-gus transcriptional reporter fusions. Bacterial strains were grown in BHI at 37uC with
shaking and GUS activity was assayed from normalized samples collected at the indicated time points. Each data point is the mean 6SEM GUS
activity measured in duplicate, and the data shown is representative of at least two independent experiments. (C) Measurement of the levels of PrfA
activity in broth culture as assessed by actA expression under in vitro inducing conditions. Assays were carried out as described in (B) except under
inducing conditions in which bacterial strains were grown in LB broth containing 0.2% activated charcoal (C) and 25 mM glucose-6-phosphate (G6P).
Data is representative of at least three independent experiments. (D) Western blot of PrfA protein from cytoplasmic fractions of L. monocytogenes
prfA lysine mutants containing a prfA* G145S mutation. Numbers reflect the relative amounts of mutant PrfA protein in comparison to wild type
protein levels as determined by densitometry using ImageJ software. Bottom panel represents a prolonged exposure to aid in the detection of the
PrfA K130Q G145S protein band. Data is representative of at least three independent experiments. (E) Assessment of LLO-associated hemolytic
activity as described above in panel A in the presence of the prfA* G145S allele. (F) Measurement of the levels of PrfA activity in the presence of the
prfA* G145S mutations as determined by actA expression (as described above in panel C). For both (E) and (F) panels, data is representative of at least
three independent experiments.
doi:10.1371/journal.pone.0023502.g003
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do not appear to significantly impact low level in vitro PrfA-

dependent gene expression. In contrast, the deep pocket K130Q

substitution mutant eliminated PrfA-dependent in vitro expression

of LLO.

In the absence of host cell induction of PrfA-dependent gene

expression, it has been observed that PrfA activity can be increased

by the inclusion of charcoal and glucose-6-phosphate in bacterial

growth media [33,37]. To assess the ability of the various L.

monocytogenes prfA mutant strains to induce gene expression under in

vitro inducing conditions, bacterial strains were grown in LB broth

plus 25 mM glucose-6-phosphate and 0.2% activated charcoal

and levels of actA expression were determined. actA expression was

observed to increase approximately 40-fold for strains containing

wild type prfA in comparison to strains grown in BHI (Fig. 3C).

actA expression was also increased for strains containing the prfA

K64Q, K122, and K64Q/K122Q mutants in comparison to

growth in BHI, however the induction of actA expression observed

was significantly less for prfA K64Q strains (4-fold induction vs 40-

fold induction for wild type prfA) (Fig. 3C). The in vitro induction of

actA expression was also reduced in prfA K122Q and K64Q/

K122Q strains, however the difference in the levels of actA

expression observed between inducing conditions and BHI was

less significant in comparison to wild type prfA strains (24-fold and

21-fold induction, respectively).

The use of in vitro conditions to activate PrfA-dependent gene

expression is necessary for the detection of secreted PlcB

phospholipase activity on egg yolk agar plates [37]. Growth of

bacteria on LB agar plates containing 5% egg yolk, 25 mM of

glucose-6-phosphate, and 0.2% activated charcoal resulted in the

production of a defined zone of secreted phospholipase activity

surrounding the wild type strain (Fig. S1). Consistent with the actA

expression data shown in Fig. 3C, strains containing the

mutationally activated prfA G145S allele exhibited larger zones

of activity, while the prfA lysine substitutions mutants produced

reduced levels of secreted phospholipase (prfA K64Q, K122Q,

K64Q/K122Q) or no detectable activity (prfA K130Q) in

comparison to wild type (Fig. S1). The reduced induction of actA

expression and PlcB-dependent phospholipase activity by the prfA

K64Q and K122Q strains in the presence of glucose-6-phosphate

and activated charcoal suggests that these prfA mutations impair

the ability of the protein to become fully activated under in vitro

inducing conditions. The lack of any detectable activity associated

with the K130Q mutation suggests that this substitution

functionally inactivates the protein.

Given the apparent defects in the ability of the prfA lysine

substitution mutants to increase PrfA-dependent gene expression

under in vitro inducing conditions, we investigated whether the

mutant proteins could become functionally activated via the

introduction of the prfA* G145S mutation. As mentioned

previously, the prfA G145S substitution leads to the repositioning

of the HTH DNA binding domain and enables PrfA activation in

the absence of cofactor binding [18,19]. The introduction of the

prfA* G145S mutation into the prfA K64Q or the prfA K64Q/

K122Q mutant resulted in the expression of stable protein as

detected by Western blot analysis, with amounts produced that

were comparable to the levels observed for strains containing the

prfA* G145S allele alone (Fig. 3D). prfA G145S, prfA G145S

K64Q, and prfA G145S K64Q/K122Q strains produced approx-

imately twice as much PrfA as did strains containing wild type prfA,

suggesting that the prfA* mutation was dominant over these

mutations and stimulated additional prfA expression from the

upstream PrfA-dependent plcA promoter [38,39]. Interestingly,

although a K130Q substitution did not dramatically affect PrfA

protein synthesis or stability, the addition of the prfA* G145S

mutation to K130Q reduced PrfA protein levels by more than 4-

fold (Fig. 3D). Based on the position of the K130 residue within the

interior of putative PrfA cofactor binding pocket combined with

the lack of detectable PrfA activity associated with the prfA K130Q

mutant strains, it would appear that the prfA K130Q G145S

double substitution elicits structural changes that reduce PrfA

protein stability.

The introduction of the prfA* G145S mutation in combination

with the prfA K64Q or K122Q mutations resulted in levels of actA

expression, secreted hemolytic activity, and phospholipase activity

that were essentially identical to strains containing prfA* G145S

alone, indicating that the activation mutation was fully dominant

(Fig. 3E, F, and Fig. S1). In contrast, combining the prfA* G145S

mutation with prfA K130Q did not result in any measurable

increase in PrfA-dependent gene expression, a result consistent

with the dramatic reduction in the stability of this protein in L.

monocytogenes (Fig. 3D). Therefore, in contrast to the prfA K130Q

G145S mutant, PrfA protein containing the K64Q and K122Q

substitutions retain the ability to become mutationally activated by

the G145S mutation, suggesting that these mutations influence the

putative cofactor binding pocket without preventing PrfA

conformational changes associated with activation.

The substitution of PrfA lysine residues negatively
impacts PrfA binding of DNA

The putative PrfA cofactor binding pocket is located within the

N-terminal domain of PrfA, somewhat removed from the C-

terminal DNA binding region (Fig. 1A). Based on structural and

functional analogies with Crp, PrfA cofactor binding is anticipated

to trigger a conformational change in the protein that repositions

the DNA binding region and increases DNA binding affinity.

Alterations within the pocket, such as amino acid substitutions,

might therefore be anticipated to potentially influence PrfA DNA

binding via changes in C-terminal protein conformation distally

triggered by the N terminal domain. We examined the DNA

binding capacity of the purified mutant proteins using electro-

mobility shift assays (EMSAs) in conjunction with the PrfA-

dependent hly promoter. Previous work has indicated that PrfA*

mutants exhibit high affinity site-specific DNA binding in the

absence of any cofactor, while wild type protein exhibits only weak

but specific binding even with high concentrations of purified PrfA

protein [18,29,31,32]. As previously observed, purified wild-type

PrfA bound DNA with a low affinity, resulting in a partial shift of

the labeled DNA probe, whereas PrfA G145S bound DNA with

high affinity, resulting in a substantially larger proportion of PrfA

bound DNA even in the presence of lower concentrations of

protein (Fig. 4). All of the PrfA lysine substitution mutant proteins

tested were unable to form detectable PrfA-DNA complexes in

comparison to wild type PrfA (Fig. 4), even in the presence of

increased amounts of purified protein (data not shown). Structural

changes within the cofactor binding pocket can therefore

negatively impact PrfA DNA binding.

Conformational changes induced by PrfA lysine
substitutions can be detected by limited proteolytic
digestion

Given that prfA lysine K64Q, K122Q, K130Q, and K64Q/

K122Q mutations result in observable alterations in PrfA stability

and/or in vitro activity, we assessed and compared wild type and

mutant PrfA protein conformation using limited proteolytic

digestion of purified protein. This simple, valid, and established

approach has been used to examine structural changes in Crp

and can be used to visualize conformational changes in PrfA,

Mutational Analysis of PrfA Activation
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including those that occur as a result of PrfA activation

[31,40,41]. Purified PrfA wild type and mutant proteins

containing each of the lysine substitutions as well as the double

PrfA K64Q G145S substitution were subjected to limited

digestion with the protease subtilisin. The PrfA K130Q G145S

protein was found to be unstable and was therefore not included

in the analysis. Polypeptide fragments resulting from limited

protease digestion were separated by SDS-polyacrylamide gel

electrophoresis and visualized by Coomassie staining (Fig. 5).

Heat denatured PrfA samples were additionally subjected to

subtilisin digestion to confirm that all protein samples were

equally susceptible to proteolytic cleavage when denatured. As

anticipated, all protein samples were completely digested

following heat denaturation with only a band representing

subtilisin remaining (Fig. 5, top right panel). As previously

reported, conformational changes in PrfA protein structure

resulting from the prfA* G145S mutation could be distinguished

in the mutant versus the wild type protein based on the mutant’s

increased susceptibility to proteolysis and altered protease

digestion pattern (Fig. 5, lower panels). The PrfA K64Q G145S

mutant exhibited a digestion pattern that was similar to that of

PrfA G145S, consistent with the apparent functional dominance

of the prfA* mutation over that of K64Q. Interestingly, both the

PrfA K64Q and the K122Q substitution mutant proteins

exhibited slightly different subtilisin digestion patterns from those

observed for the wild type protein or the K64Q/K122Q mutant

(which somewhat more closely resembled wild type PrfA) (Fig. 5).

Surprisingly, while still slightly distinct, the digestion pattern of

the PrfA K130Q mutant resembled that of the wild type protein

despite the lack of activity associated with prfA K130Q mutation

in in vitro assays (Fig. 5); this result suggests that the impact of

K130Q on PrfA function is not associated with gross alterations

in PrfA conformation [a result also consistent with PrfA K130Q

dimer formation (Fig. 2)].

L. monocytogenes strains containing the prfA K64Q and
K122Q mutations are modestly impaired for intracellular
growth and cell-to-cell spread

The data obtained thus far suggested that the PrfA lysine

substitution mutations functionally impact PrfA activity and

reduce the ability of PrfA to become activated outside of host

cells. PrfA appears to become fully activated as L. monocytogenes

gains access to the host cell cytosol, resulting in the full

induction of PrfA-dependent gene products that contribute to

intracellular bacterial growth and cell-to-cell spread [35]. To

assess the influence of the PrfA cofactor binding site mutations

on L. monocytogenes bacterial invasion, intracellular growth, and

cell-to-cell spread within host cell monolayers, strains containing

the prfA lysine substitutions were analyzed for the ability to form

zones of clearing or plaques in monolayers of mouse fibroblast

cells [42]. Strains containing prfA K130Q failed to form

detectable plaques in fibroblast monolayers, a result consistent

with this mutant’s lack of detectable LLO activity and failure to

mediate phagosome lysis (Fig. 6A). Strains containing the prfA

K64Q, prfA K122Q, or the prfA K64Q/K122Q mutation

formed plaques with approximately the same frequency as the

wild-type strain, indicating that these mutations do not reduce

host cell invasion for fibroblast cells (Fig. 6B). However, the sizes

of the plaques formed by the prfA K64Q mutant were

significantly smaller than those formed by wild-type L.

monocytogenes (60–70% of the wild type size), and modest

reductions in plaque size were also observed for cells infected

Figure 4. Substitution of the prfA lysine residues affects formation of DNA-protein complexes. The binding ability of the various PrfA
lysine mutant proteins to a biotin-labeled hly-promoter DNA fragment was assessed by electrophorectic mobility shift assays (EMSAs). The prfA K64Q,
K122Q, K130Q, and K64Q/K122Q mutants all exhibited defects in their ability to form DNA-protein complexes. PrfA lysine mutant complexes were not
detectable even with the addition of increased protein or by exposing the film for a longer duration of time (data not shown). The ability to form
complexes was restored in the presence of the PrfA* G145S mutation (shown for K64Q) to the levels observed with PrfA* G145S. PrfA - DNA-protein
complexes are indicated. FP = free probe, no protein added. Data shown is representative of at least three independent experiments.
doi:10.1371/journal.pone.0023502.g004
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with the prfA K122Q mutant (80–90% of the wild-type size).

Similar reductions in plaque size have been previously

associated with bacterial defects in cell-to-cell spread [43,44].

Interestingly, strains containing the prfA K64Q/K122Q muta-

tion produced plaques of varying sizes, ranging from 60%–

100% of the size of wild type plaques, with most (.75%) similar

in size to those produced by strains containing wild type prfA or

the prfA K122Q mutant (Fig. 6B). When individual bacterial

colonies of prfA K64Q K122Q bacteria were isolated from

either small or large plaques and re-tested for plaque formation,

all isolates continued to form plaques of mixed sizes (data not

shown). This result is suggestive of a stochastic event, in which

some bacteria within a population exhibit reduced efficiency of

cell-to-cell spread perhaps as a result of delayed induction of

actA expression, whereas others replicate and move with wild

type kinetics.

Bacterial uptake and replication were further assessed for

growth in PtK2 epithelial cell lines. The prfA K64Q, K122Q, and

K64Q/K122Q mutants were capable of intracellular replication

although bacterial invasion appeared somewhat reduced (indicat-

ed by the reduction in the numbers of bacteria protected from

gentamicin at one hour post-infection) (Fig. 6C, left panel).

Microscopic examination of cells infected with the prfA K64/

K122Q mutant revealed a pleiotropic pattern of intracellular

growth, with evidence of efficient intracellular replication and cell-

to-cell spread in some populations of infected cells, and reduced

spread in others (data not shown), consistent with the mixed

plaque phenotype observed for this mutant. The prfA K130Q

mutant was completely defective for intracellular replication

(Fig. 6B), and failed to associate with host actin (data not shown),

consistent with a failure of this mutant to mediate LLO-dependent

escape from the phagosome.

The prfA* G145S mutation exhibited a dominant phenotype

when combined with either the single prfA K64Q or double prfA

K64/K122Q substitutions; mutant bacteria containing prfA

G145S were hyper-invasive and formed increased numbers of

plaques that were similar in size to those formed by wild type L.

monocytogenes (Fig. 6C right panel and data not shown).

Strains containing prfA K64Q and K122Q mutations
exhibit reduced induction of actA expression within the
cytosol of infected host cells

The expression of the actA gene product (required for bacterial

actin-based motility) is completely dependent upon PrfA and,

following the activation of PrfA within the cytosol of infected host

cells, actA expression increases several hundred fold in comparison

to expression levels observed in broth culture [26,35,45,46]. Given

that the PrfA cofactor binding site mutants appeared defective for

cell-to-cell spread based on their reduced plaque size in tissue

culture cell monolayers, we examined intracellular actA induction

in PtK2 epithelial cells. Strains containing the prfA K64Q and

K122Q mutations exhibited an approximate 3-fold reduction in

the levels of intracellular actA expression in comparison to the wild-

type strains (Fig. 6D). Although somewhat modest, this reduction

in actA expression could account for the reduced efficiency of cell-

to-cell spread exhibited by the prfA K64Q and K122Q mutant

strains as it has been demonstrated that a threshold level of ActA

must accumulate before actin-based motility begins [44]. A 3-fold

reduction in actA transcription would therefore be anticipated to

lengthen the amount of time spent by L. monocytogenes synthesizing

ActA within the cytosol before bacterial movement could be

initiated. prfA G145S, and the K64Q or K64Q/K122Q mutants

in the presence of the prfA G145S allele all exhibited similar levels

of intracellular actA induction as the wild type strain (Fig. 6D), a

result which indicates that these mutants are activated to maximal

levels within the cytosol.

prfA lysine mutants are attenuated for virulence in
murine infection models

Based on data presented thus far, the prfA K64Q and K122Q

mutations appeared to interfere with the ability of PrfA to become

fully activated in host cells, whereas the K130Q mutation

completely abolished PrfA activity. To further investigate the

contributions of the PrfA K64 and K122 residues to PrfA activity

in vivo, mice were intravenously infected with the single and double

mutant strains and bacterial burdens were determined for liver

Figure 5. Comparison of protein conformation by limited proteolytic digestion. 2 mg of wild type, PrfA* G145S and the various PrfA lysine
mutant proteins were digested with 500 ng of subtilisin for 10 and 30 minutes at room-temperature. 1 mM of PMSF was added and protein fragments
were separated by SDS-PAGE and visualized by Coomassie staining. Untreated protein samples (uppermost left panel) and also heat-denatured
samples treated with subtilisin (uppermost right panel) were included as controls to demonstrate that denatured samples were equally susceptible to
enzymatic digestion. Arrow indicates the position of subtilisin and asterisks (*) denote fragments that were not observed for the wild type protein.
Gels are representative of three independent experiments.
doi:10.1371/journal.pone.0023502.g005
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Figure 6. The prfA K64Q and K122Q lysine substitution mutants are impaired for intracellular PrfA activation, while the K130Q
mutant is defective for vacuole escape. (A) The ability of the specified prfA lysine mutants to grow intracellularly and spread from cell-to-cell
was determined by assessing plaque formation in murine L2 fibroblasts. Monolayer of L2 cells were infected with the bacterial strains at an MOI of
10:1. Gentamicin was added after 1 hour, and plaques were visualized three days post-infection. Data shown is representative of three independent
experiments done in duplicate. (B) Measurement of plaque formation of the K64Q/K122Q mutant. Solid arrow head indicates a small plaque and the
line arrow indicates an intermediate plaque size. (C) Intracellular growth of prfA mutants strains in PtK2 epithelial cells. Bacterial intracellular growth
was measured by infecting monolayers of PtK2 cells grown on glass coverslips (cs) with the indicated strains at an MOI of 100:1. Gentamicin was
added 1 hour post-infection (p.i.), cells were washed, and cs were removed at the indicated time points. Host cells were lysed and the amount of
intracellular bacteria per cs was enumerated. Left panel: prfA lysine mutants. Right panel: prfA lysine mutations combined with the prfA* G145S allele.
Data shown represents the mean +SEM of three independent experiments done in triplicate. (D) Intracellular actA expression. Intracellular actA
expression was determined by measuring GUS activity from lysed PtK2 cells infected with the indicated prfA lysine mutants at an MOI of 100:1 at
5 hours post-infection. The number of CFU per dish was determined following the lysis of PtK2 cells grown on coverslips in duplicate dishes and GUS
activity per dish was calculated as described by Moors et al [57]. Each assay was done in duplicate and data shown represents the mean 6SEM and is
representative of three independent experiments. Statistical analysis for panels A and D were done using an unpaired two-tailed student t-test
(GraphPad Prism V.5.0A) where ***p#0.0005, **p#0.005, and *p#0.05.
doi:10.1371/journal.pone.0023502.g006
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and spleen at two days post-infection. All of the strains containing

prfA K64Q or K1221Q mutations were significantly attenuated for

virulence in mice (Fig. 7). The prfA K64Q mutant was the most

severely attenuated, with bacterial numbers recovered from the

liver and spleen that were approximately 250-fold lower and 10-

fold lower, respectively, in comparison to mice infected with wild

type bacteria (Fig. 7). The bacterial burdens recovered from the

livers and spleens of mice infected with the prfA K122Q mutant

were 10-fold and 5-fold lower, respectively, in comparison to wild

type infected mice. Interestingly, while the prfA K64Q/K122Q

mutant was attenuated for virulence based on the numbers of

bacteria recovered from the liver, no significant difference was

observed between the mutant and wild type bacteria with respect

to bacterial numbers recovered from the spleen (Fig. 7). Thus,

instead of the prfA K64Q/K122Q mutant exhibiting levels of

attenuation comparable or more severe than those exhibited by

the prfA K64Q single mutation strain, the double substitution

mutant was instead similar to or slightly more virulent than the

prfA K122Q mutant. The introduction of the prfA* G145S

mutation fully restored virulence to the severely attenuated prfA

K64Q strain, demonstrating once again that mutational activation

of PrfA compensated for the binding site mutation defect.

Discussion

As the primary regulator of bacterial virulence gene expression,

PrfA plays a pivotal role in enabling L. monocytogenes to transition

between the lifestyle of an environmental organism and that of an

intracellular pathogen replicating within the cytosol [1,10,47]. The

appropriate modulation of PrfA activity is critical for L.

monocytogenes fitness. Constitutive PrfA activation reduces bacterial

fitness outside of host cells, however an inability to fully activate

PrfA in the cytosol reduces bacterial fitness within the host [20].

While significant progress has been made towards defining the

physiological consequences of PrfA activation with respect to

virulence factor secretion and bacterial survival, the signal that

triggers PrfA activation remains unknown. PrfA activation is

believed to occur via the binding of a small cofactor molecule

within a structural pocket located in the N terminus of the protein

[19]. In this study, we have identified a high density of positive

charge associated with the putative PrfA cofactor binding pocket

and explored the functional consequences of altering pocket

charge via amino acid substitutions. Our results indicate that the

positive charge of the cofactor binding pocket contributes to the

process of PrfA activation, presumably by enhancing or stabilizing

cofactor binding.

The PrfA K64 residue located within the N-terminal b5 sheet

and the K122 residue located within the extended aC helix are in

close proximity to one another and are located at the opening of

the binding pocket (Fig. 1). The accessibility of these two lysines

suggests that they could contribute to the initial binding or

recruitment of the PrfA activating ligand. The substitution of

either the K64 or the K122 residue with glutamine resulted in

similar but distinguishable phenotypes as both were compromised

for full PrfA activation. The K64Q substitution mutant exhibited

the most significant defect in intracellular spread (Fig. 6) and was

most severely attenuated for virulence in murine infection models

(Fig. 7). The prfA K122Q mutant exhibited more modest defects in

the induction of intracellular actA expression and cell-to-cell spread

(Fig. 6), suggesting that its contributions to PrfA activation may be

less important than those of the K64 residue. Interestingly and

somewhat surprisingly, the combined prfA K64Q/K122Q double

substitution mutant did not appear to severely impact PrfA activity

even though the substitution of both lysine residues is predicted to

have a dramatic effect on neutralization of the charge of the pocket

(Fig. 1). The double substitution mutant did not exacerbate the

effects observed for the single substitution mutants, but rather

appeared to restore a portion of activity in comparison to prfA

K64Q single substitution strains. It is possible that the charge

neutralization of both lysine residues may potentially mimic

charge neutralization that occurs as a result of cofactor binding.

The charge neutralization of both residues restored a limited

degree of PrfA function and activity in vitro, but may also have

inhibited full PrfA activation by reducing the affinity of cofactor

binding. Full PrfA activation was restored to both the prfA K64Q

Figure 7. PrfA lysine residues contribute to virulence of L. monocytogenes. Swiss Webster mice were intravenously infected with 26104 CFU
through the tail vein. At 48 hours post-infection, the livers (A) and spleens (B) were harvested, homogenized, and plated for bacterial CFUs. Each
datum point represents one mouse, and the solid lines denote the median for each data group. Data was obtained from two independent
experiments. Asterisks indicate statistical significance of *p#0.05, **p#0.005, and ***p#0.0005 using an unpaired two-tailed student t-test (GraphPad
Prism V.5.0A).
doi:10.1371/journal.pone.0023502.g007
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or K64Q/K122Q mutants by the introduction of the prfA* G145S

mutation, suggesting that prfA* G145S-induced conformational

changes were dominant over any potential alterations in cofactor

binding.

The PrfA K130 residue is also located within aC helix but,

unlike residues K64 and K122, is buried deep within the cavity of

the pocket (Fig. 1B). The substitution of this residue with a

glutamine virtually eliminated all detectable PrfA-dependent

activity without grossly altering the PrfA protein confirmation as

detected by limited protease digestion (Fig. 5), or affecting its

ability to form homodimers (Fig. 2). The change in conformation

imposed by the K130Q mutation was, however, of sufficient

magnitude so as to prevent PrfA activation via the prfA* G145S

mutation. Structural analysis of the PrfA* G145S mutant has

indicated that a new hydrogen bond is formed between K130 and

Q146 as a result of the G145S mutation [19]. K130 and Q146

may similarly interact as result of the conformational changes

induced by cofactor binding, and the substitution of the lysine 130

to glutamine would be anticipated to eliminate this interaction and

may thus impact PrfA activation. It is unusual to have a positively

charged amino acid such as lysine buried so deeply within the

protein interior; the location of K130 combined with the

phenotype of the substitution mutant indicates a critical contribu-

tion of this residue to PrfA structure and function.All of the PrfA

lysine substitution mutant proteins exhibited defects in DNA

binding as indicated by gel mobility shift assays. This result

suggests that alterations within the N terminal pocket can

influence DNA binding by the C terminal domain of the protein.

This is perhaps not unexpected, as cofactor binding within the

pocket presumably increases PrfA DNA binding affinity via

induced conformational changes that extend into the C terminal

domain. It should be noted however that PrfA DNA-binding

affinity does not always directly correlate with the levels of PrfA-

dependent gene expression observed following PrfA activation

[31,48]. The prfA* Y63C mutation results in a highly activated

form of PrfA with target gene expression levels similar to those

observed for prfA constitutive activation mutations, such as prfA*

G145S and L140F [31,48]. However, the PrfA Y63C mutant

protein binds to target promoter DNA with a similar affinity

than that of wild-type PrfA [31]. The PrfA Y63 residue is also

located near the putative PrfA cofactor binding site, and this

mutation could potentially enhance or stabilize cofactor

binding, or may augment the structural changes leading to

PrfA activation that are imposed by cofactor binding. Our data,

together with the prfA Y63C mutation, supports a model in

which the individual structural domains of PrfA communicate

with one another and regulate the ability of PrfA to transition

into fully activated form.

In summary, our evidence indicates that the positive charge of

the putative PrfA cofactor binding pocket contributes to the

process of PrfA activation, and substitutions within this pocket that

neutralize the positive charge reduce intracellular PrfA activity.

While the identity of the cofactor remains unknown, the positive

charge of the binding pocket would suggest that the cofactor is a

negatively charged molecule. Modeling studies that incorporate

the size and charge of the putative PrfA cofactor binding site may

be useful for the identification of candidate cofactor molecules that

might serve to trigger PrfA activation within host cells.

Materials and Methods

Ethics Statement
All animal procedures were IACUC approved by the UIC

Animal Care Committee (Protocol Approval ID #09-153) and

performed in the Biological Resources Laboratory at the

University of Illinois at Chicago.

Bacterial strains, plasmids and growth conditions
L. monocytogenes and E. coli strains used in this study are listed in

Table S1. E. coli XL1-Blue (Agilent Technologies, Santa Clara,

CA), One Shot TOP10 (Invitrogen Corp., Carlsbad, CA), NEB

5aF’Iq (New England Biolabs, Ipswich, MA) and SM10 were used

as host strains for maintenance and propagation of recombinant

plasmids. L. monocytogenes and E. coli strains were grown at 37uC in

brain heart infusion (BHI) media (Difco Laboratories, Detroit, MI)

and Luria broth (LB) (Invitrogen Corp., Carlsbad, CA). Mainte-

nance of the integration plasmid pPL2 [49] was selected for using

25 mg/ml of chloramphenicol in E. coli and 7.5 mg/ml in L.

monocytogenes. Bacteria containing the 6X Histidine tagged

expression vector pQE30 (Qiagen Inc., Valencia, CA) were

maintained in E. coli with 100 mg/ml ampicillin. Streptomycin

200 mg/ml was used in selection of L. monocytogenes following

bacterial conjugation and isolation from tissue organs of infected

mice.

Electrostatic Modeling
Modeling of PrfA was done using chain A of the PDB file

2BGC. The lysine to glutamine mutations were made with Coot

[50]. The coordinate files were prepared for electrostatics

calculations with the PDB2PQR server [51]. The electrostatic

calculations were done with APBS [52] using default settings

except for 0.15 mM concentrations of monovalent cations and

anions. The electrostatic potentials and solvent-accessible surfaces

were visualized with PyMOL [53].

Plasmid and mutant constructions
The prfA lysine substitution mutations were introduced into

plasmid pNF1019, a pPL2 site-specific phage integration plasmid

containing a wild-type copy of prfA with all promoters required for

expression [30], using the Change-IT Site Directed Mutagenesis

Kit (USB) as per manufacture’s protocol. Primers used for

constructing the prfA lysine substitutions are listed in Table S2.

The resulting plasmids were conjugated into strain NF-L1123,

which contains an actA-gus-neo reporter gene fusion as well as an in-

frame deletion of the chromosomal copy of prfA. For generation of

purified PrfA proteins, the coding sequence of prfA was PCR

amplified from genomic DNA of L. monocytogenes strains 10403S

(wild-type), prfA* G145S (NF-L1226), and the pPL2 plasmids

containing the various prfA lysine mutations using primer pairs

listed in Table S2. The PCR product was then cloned into a

pQE30 Expression vector (Qiagen Inc., Valencia, CA), which

contains an N-terminal 6x-histidine tag and an isoproyl-b-D-

thiogalactopyranoside (IPTG) inducible promoter. The resulting

construct was initially propagated in E. coli TOP10 cells, followed

by transformation into NEB 5aF’Iq (New England Biolabs) for

protein expression and purification. For protein expression,

overnight cultures containing the expression constructs were

diluted 1:50 in fresh LB broth and incubated at 37uC (with

shaking) until an optimal density of 0.5 was reached. To induce

expression of the various PrfA proteins, 1 mM IPTG (Inalco,

Milano, Italy) was added to the culture and induction was allowed

to proceed for 3 to 4 hours. The bacterial cells were recovered by

centrifugation followed by sonication with 4 repeated 10 second

bursts and 1 minute cooling on ice. The soluble fraction

containing the N-His-PrfA protein was collected and purified

using the His-Pur Purification Kit (Thermo Scientific, Rockford,

IL). Protein concentration was determined using a BCA Protein

Assay Kit (Thermo Scientific, Rockford, IL).
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Western blot analysis of PrfA protein
PrfA was detected within cytoplasmic fractions isolated from

bacterial whole cell extracts. 25 ml culture of each L. monocytogenes

strain was grown to mid-log phase in BHI at 37uC with shaking.

Cells were normalized to OD600 of 0.8, pelleted and resuspended

in 1 ml of PBS. 100U of mutanolysin (Sigma-Aldrich, St. Louis,

MO) was added and the suspension was incubated at 37uC for

2 hour. 10 ml of 100X Protease Inhibitor Cocktail (Calbiochem,

Gibbstown, NJ) was added to the mutanolysin treated cells,

followed by sonication with 3X 40 s pulses with 2 minute cooling

on ice in between each pulse. Cellular debris was centrifuged at

12,000 rpm for 20 minutes at 4uC and the supernatant containing

the cytoplasmic components was collected and stored at 220uC
until further use. For detection of PrfA protein, 10 ml of the

isolated cytoplasmic fraction was mixed with 10 ml of a 2X

Laemmli Sample Buffer (BioRad Laboratories, Hercules, CA),

boiled for 5 minutes, then separated by SDS-polyacrylamide gel

electrophoresis. Protein samples were transferred onto PVDF

membranes. PrfA was detected using a 1:500 dilution of a

monoclonal antibody directed against PrfA in 1X PBST

(Phosphate buffered saline solution plus 0.05% Tween-20)

followed by incubation with a 1:2,500 dilution of a polyclonal

Goat-anti Mouse secondary antibody conjugated to alkaline-

phosphatase (SouthernBiotech, Birmingham, AL). Bands were

visualized colorimetrically with the addition of 10 ml of a BCIP/

NBT Plus solution (SouthernBiotech, Birmingham, AL). Densi-

tometry was determined using ImageJ software (http://rsbweb.

nih.gov/ij/download.html).

Protein chemical crosslinking
Chemical crosslinking was done as previously described by Miner

et. al with minor modifications [31]. In brief, after separation of

purified protein samples by SDS-PAGE, proteins were transferred

to PVDF membranes, and PrfA was detected as described above.

Measurement of b-glucuronidase activity
Overnight cultures of L. monocytogenes were diluted 1:20 in fresh

BHI or LB containing 25 mM glucose-6-phosphate (Sigma-

Aldrich, St. Louis, MO) and 0.2% activated charcoal and grown

with shaking at 37uC. At various time points, the OD600 was

determined for each culture and 1 ml of each sample was

centrifuged. Bacterial pellets were resuspended in 1 ml of ABT

buffer (1 M potassium phosphate [pH 7.0], 0.1 M NaCl, 1%

Triton) and ß-Glucuronidase (GUS) activity was measured as

described by Youngman [54] with the substitution of 4-

methylumbelliferyl-ß-D-glucuronided (Sigma-Aldrich, St. Louis,

MO) in place of 4-methylumbelliferyl-ß-D-galactoside.

Measurement of LLO- associated hemolytic activity
Stationary-phase bacterial cultures were diluted 1:10 into LB

medium and grown at 37uC for 5 hours with shaking. Optical

density OD600 was determined, and 1 ml of each culture was

normalized and centrifuged at 13,0006 g for 5 min. The

supernatant was collected and was assayed for LLO-associated

hemolytic activity using phosphate-buffered saline (PBS)-washed

sheep erythrocytes (Cocalico Biologicals Inc., Reamstown, PA) as

previously described [34]. Hemolytic activity was determined as

the reciprocal of the supernatant dilution at which 50% lysis of

erythrocytes was observed.

Assessment of PlcB-associated phospholipase activity
plcB-dependent phospholipase production was assayed on egg

yolk agar plates [48,55]. Antibiotic-free chicken egg yolk was

added in a 1:1 (vol/vol) ratio to PBS and vortexed to form a

suspension. 5 ml of egg yolk suspension was added to 100 ml of

molten LB medium plus 0.2% activated charcoal (Sigma-Aldrich,

St. Louis, MO) and 25 mM glucose-6-phosphate (Sigma-Aldrich,

St. Louis, MO), [33,37] and 10 ml of this mixture was poured into

Petri dishes. Bacterial strains were gently streaked onto the surface

of the plate and incubated at 37uC for 24 hours. Phospholipase

activity was visualized as a zone of opacity surrounding bacterial

streaks.

Electrophorectic mobility shift assays (EMSAs)
Primer pairs used for amplification of the hly promoter DNA

fragment (,100 bp) are listed in Table S2. The 39 end primer was

purchased with a biotin label (Sigma-Aldrich, St. Louis, MO).

EMSAs were done as previously described with slight modifica-

tions [31]. DNA-protein binding reactions and electrophoresis

were done as described [31], protein/DNA samples were then

transferred onto nylon membranes for 1 hour at a constant 0.9

amps at 4uC followed by detection of the biotinylated probe using

the Pierce Chemiluminescent Nucleic Acid Detection Module

(Thermo Scientific, Rockford, IL).

Protein structural comparisons by limited proteolysis
Limited proteolytic digestion of His-purified proteins with

subtilisin (Sigma-Aldrich, St. Louis, MO) was done as previously

described by Miner et al with slight modifications [31]. In brief,

2 mg of purified protein was incubated in the presence or absence

of 500 ng subtilisin for 10 and 30 minutes at room temperature

followed by the addition of 1 mM phenylmethanesulfonylfluoride

(PMSF) to terminate the reaction. Samples were boiled for 5

minutes and fragments were separated by Electrophoresis on a

NuPAGE 4–12% Bis-Tris gel (Invitrogen Corp., Carlsbad, CA).

Protein fragments were visualized by staining with Bio-Safe

Coomassie G-250 (BioRad Laboratories, Hercules, CA).

Bacterial intracellular growth assays
Bacterial intracellular growth assays in Potoroo tridactylis

kidney epithelial cells (PtK2) were performed as previously

described [30,48,55,56]. In brief, monolayers of cells were grown

on glass coverslips to confluency and infected with bacterial strains

with an MOI of 100:1. One hour post-infection, monolayers were

washed 3X in PBS and 5 mg/ml of gentamicin was added to kill

extracellular bacteria. At indicated time points, coverslips were

removed and lysed in 5 mls of sterile H2O to release intracellular

bacteria for enumeration of intracellular growth or were processed

for microscopy.

Measurement of bacterial cell-to-cell spread
Plaque assays were conducted as previously described [42].

Briefly, murine L2 fibroblasts were grown to confluency in 6-well

microtiter plates and infected with 20 ml of a normalized 1:20

dilution of overnight culture grown at 37uC in BHI with shaking

(MOI 10:1). One hour post-infection, L2 infected monolayers

were washed and 5 mg/ml of gentamicin was added to kill

extracellular bacteria. Three days post-infection, Neutral Red

(Sigma-Aldrich, St. Louis, MO) was added and plaques were

visualized and measured using a micrometer (Finescale, Orange

County, CA).

Intracellular b-glucuronidase activity
Measurement of intracellular GUS activity in PtK2 epithelial

cells was done as previously described [26,57] with minor

modifications in that an MOI of 100:1 was used and coverslips
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were removed at 3, 5 and 7 hours post-infection for enumeration

of bacterial colony forming units.

Mouse infections
All animal procedures were IACUC approved and performed

in the Biological Resources Laboratory at the University of Illinois

at Chicago. Overnight bacterial overnight cultures were diluted

1:20 into fresh media and grown to an OD600 ,0.6. 1 ml of

culture (corresponding to 66108 CFU/ml) was washed, diluted

and resuspended in PBS to a final concentration of 16105 CFU/

ml. 8–10 week old female Swiss Webster mice (Charles River

Laboratories, Chicago, IL) were injected with 200 ul PBS

containing 26104 CFU L. monocytogenes via the tail vein. 48 hrs

post-infection, mice were sacrificed and livers and spleens were

harvested. Organs were homogenized with a Tissue Master 125

homogenizer (Omni International, Kennesaw, GA) and dilutions

were plated onto BHI streptomycin (200 ug/ml) plates. Non-

paired student t-test was used for statistical analysis.

Supporting Information

Figure S1 PlcB-associated phospholipase activity was
assessed on egg yolk agar plates containing 0.2%
activated charcoal and 25 mM glucose-6-phosphate

following incubation at 376C for 24 hours. Data is

representative of at least three independent experiments.

(TIF)

Table S1 Bacterial strains and plasmids used in this
study.
(DOC)

Table S2 Oligonucleotides used in this study. aLetters in

italicized bold indicate mutagenesis of lysine (AAA) to glutamine

(CAG) or of glycine (GGT) to serine (AGT). Letters in bold

indicate the second and stop codons of the prfA coding sequence.

Italicized letters indicate the KpnI and PstI restriction endonuclease

sites on the forward and reverse primers used for cloning the PCR

fragment into pQE30 expression vector.

(DOC)
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