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Abstract

Modifications of histone tails are involved in the regulation of a wide range of biological processes including cell cycle, cell
survival, cell division, and cell differentiation. Among the modifications, histone methylation plays a critical role in cardiac
and skeletal muscle differentiation. In our earlier studies, we found that SMYD3 has methyltransferase activity to histone H3
lysine 4, and that its up-regulation is involved in the tumorigenesis of human colon, liver, and breast. To clarify the role of
Smyd3 in development, we have studied its expression patterns in zebrafish embryos and the effect of its suppression on
development using Smyd3-specific antisense morpholino-oligonucleotides. We here show that transcripts of smyd3 were
expressed in zebrafish embryos at all developmental stages examined and that knockdown of smyd3 in embryos resulted in
pericardial edema and defects in the trunk structure. In addition, these phenotypes were associated with abnormal
expression of three heart-chamber markers including cmlc2, amhc and vmhc, and abnormal expression of myogenic
regulatory factors including myod and myog. These data suggest that Smyd3 plays an important role in the development of
heart and skeletal muscle.
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Introduction

The regulation of gene expression is achieved, in part, through

epigenetic mechanisms that govern the association of transcription

factors to DNA, and the nature of DNA packaging into chromatin

[1]. The structure of chromatin containing nucleosome proteins

and DNA is controlled dynamically through the modifications in

histone tails, which include methylation, acetylation, phosphory-

lation and ubiquitination [2]. Among the modifications, methyl-

ation of H3K4, H3K36, and H3K79 is associated with

transcriptional activation, while that of H3K9, H3K27, and

H4K20 is associated with transcriptional repression. These

methylations are catalyzed by histone methyltransferases contain-

ing a SET domain, and reversed by demetylases containing a

jumonji domain. More than 60 SET domain-containing proteins

have been identified so far, and among them, SET- and MYND-

containing proteins termed SMYD proteins are evolutionally

conserved from yeast to vertebrates. In human, there are five

members of SMYD proteins; SMYD1, SMYD2, SMYD3,

SMYD4, and SMYD5. Investigation on their catalytic activities

disclosed that SMYD1, SMYD2 and SMYD3 have methyltrans-

ferase activities to histone H3 lysine4 [3–5], and that SMYD2

additionally exerts methylation on histone H3 lysine36 and p53

[6,7].

We showed in our earlier reports that SMYD3 is up-regulated

in colorectal, hepatocellular and breast cancer cells, and that its

up-regulation plays a key role in the proliferation and survival of

cancer cells. SMYD3 has a histone H3 lysine4 methyltransferase

activity that is enhanced by HSP90a. Among adult tissues that we

examined, SMYD3 is abundantly expressed in the testis and

skeletal muscle [5]. Another report showed that it was ubiquitously

expressed in zebrafish [8]. However, the physiological role of

SMYD3 in development remains unknown.

Here, we investigated the expression of two forms of zebrafish

smyd3 transcripts during embryonic development and showed that

Smyd3 plays a crucial role in the development of cardiac and

skeletal muscle. These data may be useful for the understanding of

diseases associated with cardiac abnormality or skeletal muscle

defects.

Results

Identification of zebrafish smyd3
Using the BLAST program, we searched the zebrafish smyd3

cDNA in the UCSC zebrafish database and obtained two sequences,

ENSDART00000080847 and ENSDART00000105236, which

shared 38% and 47% identity with human SMYD3 cDNA,

respectively. Except for a 144-nucleotide region being deleted from

the middle of the sequence, the sequence for EN-

SDART00000080847 was identical to ENSDART00000105236,

and both sequences were located on zebrafish chromosome 17. We

termed the shorter ENSDART00000080847 transcript as smyd3_tv1

and the longer ENSDART00000105236 transcript as smyd3_tv2.

Comparison of these sequences with the zebrafish genome revealed

that smyd3 contains 12 exons, and that the two forms are generated by

alternative splicing. The 144 nucleotides lacking in smyd3_tv1

corresponds to a part of exon8 and the entire sequence of exon9.

Smyd3_tv1 encodes a deduced 380-amino acid protein, and Smyd3_tv2
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a deduced 428-amino acid protein containing an extra 48-amino acid

insertion at position 252–299. The Smyd3_tv1 and Smyd3_tv2

proteins contain two conserved domains, a MYND domain (codons

49–87) and a SET domain (codons 156–239), and share 42% and

46% identity with human SMYD3 protein, respectively. However, a

post-SET domain (codons 253–266) is included in Smyd3_tv2, but

not in Smyd3_tv1 (Figure S1).

Expression of smyd3 in zebrafish development
To determine the expression of zebrafish smyd3 in embryogen-

esis, we carried out RT-PCR using RNA extracted from embryos

at different developmental stages and variant-specific primer sets.

The analysis revealed that both forms of transcripts were expressed

at all developmental stages from as early as 0.75 hpf to 96 hpf

(Figure 1A). In adult zebrafish, RT-PCR detected smyd3_tv1

transcripts in eye, brain, kidney, spleen, heart, ovary and testis,

and smyd3_tv2 in skin, gill, eye, gut, brain, liver, kidney, spleen,

heart, muscle of the trunk, ovary and testis, but not in fin

(Figure 1B), These data indicate that smyd3_tv2 is specifically

expressed in skin, gill, gut, liver, and muscle in the trunk.

Knockdown of smyd3 in developing embryos
To determine the role of Smyd3 in the development of zebrafish

embryos, we injected morpholino-oligonucleotides (MOs) designed

to suppress Smyd3 (Smyd3-MO) or mutant MOs containing a

five-nucleotide-mismatched sequence against Smyd3-MO se-

quence (Smyd3-mis-MO) into fertilized zebrafish eggs. We tested

the effect of Smyd3-MO by co-injection with mRNA of smyd3

fused with EGFP in zebrafish eggs. Expectedly, we observed

significant decrease of EGFP signals by Smyd3-MO but not by

Smyd3-mis-MO at 10 hpf (Figure 2A, B, and C). To confirm the

knock-down effect of Smyd3, we additionally prepared MOs that

block normal splicing (Smyd3-SB-MO) and performed RT-PCR

using a smyd3-specific primer set that amplifies both normal and

abnormal transcripts with exon-skipping. A band corresponding to

normal splicing (465 bp) was detected in embryos injected with

and without Smyd3-SB-MO, but a band corresponding to

aberrant splicing (401 bp) was in embryos injected with Smyd3-

SB-MO (Figure 2D). The abnormal transcripts of smyd3_tv1 and

smyd3_tv2 were deduced to result in the production of mutant

proteins without its conserved region. These results suggested that

Smyd3-MO and Smyd3-SB-MO effectively knocked down

Smyd3. Interestingly, embryos injected with Smyd3-MO (termed

Smyd3 morphants) exhibited pericardial edema and curved trunk

(Figure 2E), which was not observed in embryos injected with

Smyd3-mis-MO (Figure 2F). Of note, we could observe the

normal morphology of the heart chambers (one atrium and one

ventricle) and heartbeat in the morphants (Movie S1, Movie S2,

and Movie S3).

We classified the severity of heart defect into three grades at 48

hpf when cardiac looping was completed [9]; Grade1: a mild

looping defect alone (Figure 2H); Grade2: a moderate looping

defect with mild pericardial edema (Figure 2I); Grade3: a severe

looping defect with pericardial edema (Figure 2J). Approximately

12% of without injection embryos died spontaneously, indicating

the infertility of embryos in our culture condition. Injection with

3 ng of Smyd3-MO led to Grade2 and Grade3 defect in

approximately 34% and 26% of embryos, respectively, while

injection with 1.5 ng led to Grade2 and Grade3 defect in

approximately 14% and 5% of embryos, respectively, suggesting

a significant increase of cardiac defect (p,0.001) in a dose-

dependent fashion (Figure 3A). On the other hand, Grade2 and

Grade3 defects were found in 0% and 2% respectively, of embryos

injected with Smyd3-mis-MO, indicating that Grade2 and Grade3

heart defects are significantly increased (p,0.001) in the Smyd3

morphants. Regarding trunk defect, injection with 1.5 ng and 3 ng

of Smyd3-MO induced the curved trunk in approximately 40%

and 65% of embryos, respectively, but only 3% of embryos

Figure 1. Expression of smyd3_tv1 and smyd3_tv2 in the developing zebrafish embryos and adult tissues (A) RT-PCR analysis was
performed using smyd3_tv1 and smyd3_tv2-specific primer sets, with RNA extracted from zebrafish embryos at 0.75, 3, 6, 12, 24, 48,
72, and 96 hpf. NC: negative control (RNase free water). Expression of ef1a served as an internal control. (B) Expression of smyd3_tv1 and
smyd3_tv2 in various adult tissues.
doi:10.1371/journal.pone.0023491.g001

Functional Analysis of Smyd3 in Zebrafish
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developed the abnormality with 3 ng of Smyd3-mis-MO, which

also showed a significant increase of curved trunk (p,0.001) in the

morphants (Figure 3B). To confirm these phenotypes, we injected

zebrafish eggs with Smyd3-SB-MO that suppressed normal

splicing. As a result, the embryos injected with Smyd3-SB-MO

consistently showed cardiac and muscle defects as observed in

those injected with Smyd3-MO, although their severities and

frequencies were less than Smyd3-MO (Figure 3A and B). These

data suggested that Smyd3 plays a crucial role in the development

of the heart and trunk.

To clarify the importance of Smyd3_tv1 and/or Smyd3_tv2 in

cardiac and trunk defects of Smyd3 morphants, we performed a

rescue experiment using smyd3_tv1 and _tv2 mRNA. Consequent-

ly, the cardiac defect and curved trunk in the Smyd3 morphants

were significantly rescued by the injection with smyd3_tv2 mRNA

(p,0.001), but not by smyd3_tv1 mRNA (Figure 3A and B). These

data suggested that smyd3_tv2 might play a major role in the

development of the heart and trunk.

Expression of cardiac markers in Smyd3 morphants
To further disclose the mechanism(s) of heart defect in Smyd3

morphants, we studied the expression of seven markers; four

anterior lateral plate mesoderm (ALPM) markers including

GATA-binding protein 5 (gata5), stem cell leukemia protein (scl),

NK2 transcription factor related 5 (nkx2.5), and heart and neural

crest derivatives expressed transcript2 (hand2), and three cardiac

chamber markers including ventricular myosin heavy chain (vmhc),

atrial myosin heavy chain (amhc) and cardiac myosin light chain2

(cmlc2). The gata5, scl, nkx2.5 and hand2 are markers specific to

ALPM, rostral ALPM, caudal ALPM and medial ALPM,

respectively [10]. The three markers, vmhc, amhc and cmlc2 are

specific to ventricle, atrium, and both chambers, respectively, and

Figure 2. Effect of Smyd3 knockdown in zebrafish embryos by Smyd3-MO or Smyd3-SB-MO. (A, B, C, and D) Suppression of smyd3 was
examined at 10 hpf in embryos injected with smyd3-EGFP mRNA alone (A), smyd3-EGFP mRNA and Smyd3-mis-MO (B), and smyd3-EGFP mRNA and
Smyd3-MO (C). Signals of EGFP were examined in the fluorescent macroscope (lower panel). The frequencies of EGFP-positive embryos were (A)
78.7%62.3, (B) 83.7%61.5, and (C) 17.7%63.4. Data are shown as means6SEM. (D) Effect of Smyd3-SB-MO on smyd3 transcripts. The wild-type
transcripts were detected as a band at 465 bp and the aberrant transcripts at 401 bp. The lower panel shows the expression of ef1a as a control. (E
and F) Phenotype of embryos injected with Smyd3-MO (E) or Smyd3-mis-MO (F) at 72 hpf. The pericardial edema (arrow head) and curved trunk
(arrow) were observed in Smyd3 morphants (E). (G, H, I, and J) Morphological classification of heart defect. The degree of cardiac defect in the
morphants was classified into three grades at 48 hpf. Grade1: Heart shows abnormality with mild looping defect and pericardial edema (H); Grade2:
Heart shows abnormality with moderate looping and defect and pericardial edema (I); Grade3: Heart shows abnormality with string-like heart with
severe pericardial edema (J). Normal: Normal heart (G). Embryos are shown in lateral view.
doi:10.1371/journal.pone.0023491.g002

Functional Analysis of Smyd3 in Zebrafish
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they are expressed in the heart tube of zebrafish embryos at 24 hpf

[9]. In situ hybridization demonstrated that at 12 hpf, the

expression of gata5, scl, nkx2.5 and hand2 in Smyd3 morphants was

similar to that in the control embryos injected with Smyd3-mis-

MO or without injection (Figure 4A, B, C, and D), suggesting that

Smyd3 is not involved in the early myocardial specification. At 24

hpf, the expression of amhc and cmlc2 was slightly shifted to the left

side in the control embryos (Figure 4F and G), illustrating the

normal elongation of the heart tube toward the left ventral side of

the embryos [9]. On the other hand, their expression was localized

at the midline of the Smyd3 morphants (Figure 4F and G). At 48

hpf, vmhc was slightly expressed in the atrium of the morphants in

addition to its abundant expression in the ventricle, but it was

confined to the ventricle in the control embryos (Figure 4H). This

abnormal expression of vmhc was observed in 9 of 13 morphants,

but not in any of 11 controls. Furthermore, expression of amhc and

cmlc2 was enhanced in the atrium of morphants compared with the

controls (Figure 4I and J). These findings indicate that cardiac

defect in Smyd3 morphants may result from impaired maturation

and/or delayed development of cardiomyocytes.

Expression of myogenic markers in Smyd3 morphants
To clarify the mechanism(s) underlying curved trunk, we

investigated the expression of six markers; three terminal

differentiation makers for skeletal muscle including skeletal muscle

myosin light polypeptide 2 (mylz2), slow myosin heavy chain 1

(smyhc1), and muscle creatine kinase (mck), and three myogenic

regulatory factors including myogenic differentiation (myod),

myogenic factor 5 (myf5) and myogenin (myog). mylz2, smyhc1, and

mck are differentiation markers for first muscle, slow muscle, and

both slow and first muscle, respectively [11]. myod and myf5 are

expressed in the two lines of adaxial cells flanking the notocord of

somites, while myog is expressed in the two lines of cells and

paraxial mesoderm at 12 hpf. In situ hybridization clarified that

the expression patterns of mylz2, smyhc1, and mck in Smyd3

morphants were indistinguishable from control embryos injected

with Smyd3-mis-MO or without injection at 24 hpf when skeletal

muscle differentiation is completed (Figure 5A, B and C).

Expression of myod, myog, and myf5 was not different between the

morphants and controls at 12 hpf (Figure 5D, E, and F). The

morphants and the controls maintained high levels of myod and

myog expression in the trunks at 24 hpf (Figure 5G and H).

Although the control embryos showed rapid decrease in myod and

myog expression at 48 hpf, the morphants sustained significantly

high myod and myog expression levels (Figure 5I and J). This

sustained myod and myog expression was observed in all morphants

depicting curved trunk. These data suggest that the abnormal

trunk morphogenesis in Smyd3 morphants is not caused by the

perturbation of muscle differentiation, but possibly by the

deregulated expression of myogenic regulatory factors such as

myod and myog.

Discussion

Recent studies have unveiled that SMYD proteins are involved

in the development of cardiac and skeletal muscle. For example,

inactivation of Smyd1, also known as Bop, showed hypoplasia of the

Figure 3. Frequencies of cardiac and trunk defects in Smyd3 morphants treated with different concentration of morpholinos, and
with or without pre-injection with smyd3_tv1 or smyd3_tv2 mRNA. (A) Frequencies of heart defects in embryos injected with 1.5 or 3.0 ng of
Smyd3-MO, 3.0 ng of Smyd3-mis-MO, 3.0 ng of Smyd3-SB-MO, 3.0 ng of Smyd3-MO in combination with smyd3_tv1 or smyd3_tv2 mRNA at 48 hpf. The
histogram shows percentages of embryos with Normal (open box), Grade1 (light gray box), Grade2 (dark gray box), Grade3 (hatched box) or dead
embryos (closed box). (B) Frequencies of curved trunk in embryos injected with 1.5 or 3.0 ng of Smyd3-MO, 3.0 ng of Smyd3-mis-MO, 3.0 ng of Smyd3-
SB-MO, 3.0 ng of Smyd3-MO in combination with smyd3_tv1 or smyd3_tv2 mRNA at 48 hpf. The histogram shows percentages of embryos with Normal
(open box), curved trunk (gray box), or dead embryos (closed box). Error bars represent the SEM. N is the total number of injected animals.
doi:10.1371/journal.pone.0023491.g003

Functional Analysis of Smyd3 in Zebrafish
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right ventricle in mice through disrupted maturation of ventricular

cardiomyocytes [12,13], and defect of muscle contraction in

zebrafish through impaired myofibril organization [3]. SMYD1

expression is controlled by MYOD, Myogenin, and MEF2,

transcription factors related to myogenesis, and is essential for

Hand2 expression that encodes a basic helix-loop-helix transcrip-

tion factor expressed in cardiac muscle [12]. Smyd2 was

abundantly expressed in skeletal muscle and the face region

during embryogenesis in Xenopus laevis [14]. Both SMYD1 and

SMYD2 expression was gradually increased during porcine fetal

muscle development [15]. In addition, muscle specific-depletion of

Drosophila Smyd4 led to the failure of eclosion resulting in late pupal

death [16]. Besides SMYD proteins, other methyltransferases have

been revealed to play a crucial role in muscle development. EZH2,

a polycomb protein containing a SET domain, controls skeletal

muscle differentiation through transcriptional repression of SRF

and MYOD [17]. PEDM1 or Blimp-1/u-boot induces slow-twitch

fiber-specific muscle differentiation by suppression of fast muscle-

specific gene expression [18,19]. The WDR5/ASH2L/MLL2

histone methyltransferase (HMT) complex activates MYOD, while

SUV39H1 represses it [20,21]. In addition to these reports, we

have shown here that Smyd3 plays an important role in the

development of cardiac and skeletal muscle.

We have additionally revealed that two forms of smyd3 are

expressed during zebrafish embryogenesis and in adult zebrafish.

The two forms of transcripts encode proteins sharing most regions

including the MYND and SET domains, but the short form

(smyd3_tv1) lacks the post-SET domain. Since a post-SET was

reported to enhance the methyltransferase activity coupled with

another cystein in SET domain [22], the enzymatic activity of the

long form (smyd3_tv2) may be higher than the short form.

Consistent with this view, our rescue experiment showed that

the long form (smyd3_tv2) seems to be more important than

smyd3_tv1 for cardiogenesis and trunk formation. We also found

that their expression was different in several adult tissues; the

expression of smyd3_tv1 was almost diminished in the gill, skin, gut,

Figure 4. In situ hybridization analysis of ALPM and cardiac
chamber markers. (A, B, C, and D) Expression gata5, scl, nkx2.5 and
hand2 in Smyd3 morphants, control embryos injected with Smyd3-mis-
MO and without injection at 12 hpf. (E, F, G, H, I, and J) Expression of
vmhc, amhc, and cmlc2 in the morphants, control embryos and without
injection embryos at 24 hpf (E, F, and G) and 48 hpf (H, I, and J).
Arrowhead indicates abnormal vmhc expression in the atrium (H).
Embryos are shown in dorsal view, anterior toward the left (A, B, C, D, E,
F, and G). Embryos are shown in frontal view, dorsal toward the left (H, I,
and J).
doi:10.1371/journal.pone.0023491.g004

Figure 5. In situ hybridization analysis of terminal differenti-
ation markers of skeletal muscle and myogenic regulatory
factors. (A, B, and C) Expression of mylz2, smyhc1 and mck in Smyd3
morphants, control embryos injected with Smyd3-mis-MO and without
injection at 24 hpf. (D, E, F, G, H, I, and J) Expression of myod, myog, and
myf5 in Smyd3 morphants, control embryos injected with Smyd3-mis-
MO and without injection at 12 hpf (D, E, and F), 24 hpf (G and H) and
48 hpf (I and J). Embryos are shown in lateral view, anterior toward the
left (A, B, C, G, H, I, and J). Embryos are shown in dorsal view, anterior
toward the top (D, E, and F).
doi:10.1371/journal.pone.0023491.g005

Functional Analysis of Smyd3 in Zebrafish
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liver and trunk muscle although smyd3_tv2 was expressed

ubiquitously in adult tissues. Therefore, the two forms of Smyd3

protein may have different roles in embryogenesis and adult

tissues. Although the human ortholog SMYD3 protein contained a

post-SET domain, a variant form termed SMYD3-NY lacking the

N-terminal region was expressed in placenta, testis, ovary, kidney,

spleen, and skeletal muscle [23].

In this study, we found that knockdown of zebrafish Smyd3

resulted in abnormal looping of heart tube accompanied by

pericardial edema, which is similar to the Smyd1 morphants [3].

Heart development is governed by a complex gene regulatory

network consisting of transcription factors, their co-factors, and

downstream genes modulating cell fate specification, cell differen-

tiation, cell proliferation, and cell migration. Among the network,

transcription factors including Nkx2, GATA, Mef2, and Hand1/2

play a crucial role in early myocardial differentiation and

morphogenesis [24,25]. In situ hybridization demonstrated that

Smyd3 morphants did not show abnormal expression of gata5, scl,

nkx2.5, and hand2, at early stages but showed deregulated

expression of amhc, vmhc, and cmlc2. These data may imply that

Smyd3 is not involved in early specification of cardiomyocytes. It is

of note that SMYD3 up-regulates the expression of NKX2.5 in an

embryonic kidney cell line HEK293 [5]. Unexpectedly, however,

we found here that the expression of nkx2.5 was unchanged in the

Smyd3 morphants compared to control embryos. Since Smyd3 is

a histone H3K4 methyltransferase, other H3K4 methyltransfer-

ase(s) such as Smyd1 may compensate the modification during

heart development. Alternatively, nkx2.5 may be regulated by

different histone modification enzymes and/or transcription

factors between kidney and cardiac muscle.

In addition to the heart defects, we have shown that Smyd3

morphants developed curved trunk, which was associated with

sustained expression of myod and myog at a late developmental stage

(48 hpf). Trunk skeletal muscle in vertebrates originates from a

primary myotomal component of somites. Activation of myogenesis

is regulated by a complex network comprising of the basic helix-

loop-helix domain-containing myogenic regulatory factors (MRFs).

Among the MRFs, Myod, the myogenic master transcription factor,

is activated in adaxial cells adjacent to the notochord as early as 7–

7.5 hours in zebrafish embryogenesis [26]. The myod-expressing

cells expand in an anterior-to-posterior wave by 14.5 hpf, and

markedly drop the myod expression by 24 hpf. The sustained

expression of myod in Smyd3 morphants might result from

deregulation of its upstream regulator such as Pax3 [27], or an

undetermined mechanism of Myod regulation. Notably, Smyd1/Bop

is transcriptionally regulated by MEF2C in the developing heart

[13], and serum response factor and myogenin in myogenesis. From

these data, it is tempting to speculate that Smyd3 is also regulated by

MRFs and that inhibition of Smyd3 may activate Myod through a

negative feedback loop. Since myod is known to enhance the

expression of myog, the sustained expression of myog is likely due to

the elevated expression of myod. Although additional studies are

needed to clarify the mechanism(s) by which Smyd3 is implicated in

muscle development, our findings should be a starting point for

elucidating the roles of Smyd3 in myogenesis. Although Smyd3

morphants depicted cardiac defect and curved trunk, cardiac and

skeletal myogenesis seem to be normally accomplished in early

stages. Therefore, Smyd3 may not be involved in cell specification

or differentiation, but involved in maturation or proliferation of

differentiated myogenic cells.

In the present study, we have shown that smyd3 plays a crucial

role for cardiac and skeletal muscle development. These findings

will be helpful for the understanding of molecular mechanisms

underlying the development of heart and skeletal muscle.

Materials and Methods

Maintenance of zebrafish
Zebrafish (Danio rerio) were purchased from a local pet shop, and

maintained under a 14-h day/10-h night cycle at 28.5uC.

Fertilized eggs were obtained by mating adult fish from our

outbred colonies soon after the light was turned on. Embryos were

staged according to hours post-fertilization (hpf) and morpholog-

ical criteria [28]. In our university, approval from the institutional

committee for animal experiments is not necessary when using

fish.

Reverse transcription-polymerase chain reaction (RT-PCR)
analysis

Total RNA was extracted from embryos or adult tissues using

TRIzol solution (Life Technologies, Carlsbad, CA). cDNA was

generated using 0.5 mg of total RNA with Surperscript II reverse

transcriptase (Life Technologies) and oligo (dT)15 primers (Life

Technologies). PCR reaction was performed using the cDNA as

template. Primers used for the amplification were as follows: 59-

CGTGGCCCGATCATAAGAGG-39 and 59-ACAGCTCATCC-

CAGTGCTGG-39 for smyd3_tv1, 59-GGAGCAATACCACTTC-

CGGTGT-39, and 59-GCACTCGCTCAGTCTCCTCT-39 for

smyd3_tv2, 59-TCACCCTGGGAGTGAAACAGC-39 and 59-

ACTTGCAGGCGATGTGAGCAG-39 for ef1a, 59-CCGGAA-

TTCTGAAATGATGGAGGCTGTG-39 and 59-CGTCGTGC-

AGAGATGCTTCA-39 for the assessment of Smyd3-SB-MO.

Microinjection of morpholino-oligonucleotides (MOs)
All antisense morpholino-oligonucleotides (MOs) were desig-

nated and supplied by Gene Tools LCC (Philomath, OR). The

sequence of wild type MO (Smyd3-MO) was 59-CCTCTCCA-

TAATCACAGCCTCCATC-39, and that of mismatch MO

(Smyd3-mis-MO) containing five nucleotide-mismatches (indicat-

ed by lowercases) was 59-CgTgTCCATAATgACAcCCTgCATC-

39. The sequence complementary to the initiation codon is

underlined. Smyd3-SB-MO was 59-ACTTTCACCCCTGTTAA-

GAATAAAT-39, which was designed to block appropriate splicing

of smyd3 mRNA by binding at the splice junction between intron1

and exon2. MOs were diluted to 0.5 ng/nl or 1.0 ng/nl with 16
Danieau buffer and the same volume (approximately 3 nl) was

injected into the yolk of 1- to 2-cell stage fertilized zebrafish eggs

using microinjector (IM-300; Narishige, Tokyo, Japan) as

described elsewhere [29]. The embryos were anesthetized on ice

and observed under a macro zoom microscope (MVX10;

Olympus, Tokyo, Japan). To confirm the knockdown of Smyd3,

we utilized mRNA encoding Smyd3-EGFP fusion protein. A part

of smyd3 cDNA corresponding to the first 100 amino acids was

amplified by RT-PCR using a set of primers, 59-

CCGCTCGAGTGAAATGATGGAGGCTGTG-39 and 59-

CCGGAATTCGGTGGGGATCCTCGGCTGGA-39, and the

PCR products were cloned in an appropriate cloning site of

pEGFP-N2 plasmid (Clontech, Heidelberg, Germany) to create

the Smyd3-EGFP fragment. The fragment was subcloned into

pCS2+ vector (pCS2-Smyd3-EGFP) to generate capped smyd3-

EGFP mRNA. One ng of capped smyd3-EGFP mRNA was injected

in zebrafish eggs with 1.5 ng of Smyd3-MO or Smyd3–mis-MO.

Plasmids expressing smyd3_tv2 were additionally prepared by RT-

PCR using a set of primers, 59-CCGCTCGAGTGAAATGATG-

GAGGCTGTG-39 and 59-CCGCTCGAGGACAGTGTTTT-

TATTTGAAATTGGG-39, and subsequent cloning of the

product into an appropriate site of pcDNA3.1 plasmids (pc-

Smyd3_tv2). Plasmids containing smyd3_tv1 (pc-Smyd3_tv1) were

generated from pc-Smyd3_tv2 by the deletion of 144 nucleotides
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using the Quick Change Site-Directed Mutagenesis kit II (Agilent

Technologies, Santa Clara, CA). The primers used for the

amplification were, 59-ACAGACGTTCCCAGCACTGGGAT-

GAGCTGTTGAAG-39 and 59-ACAGCTCATCCCAGTGC-

TGGGAACGTCTGTCTTTA-39. Rescue experiments were

performed by a pre-injection with 300 pg of capped smyd3_tv1

or _tv2 mRNA and a subsequent injection with MOs as described

earlier [30,31]. The capped mRNA was synthesized using a

m7G(59)PPP(59) G (Roche, Mannheim, Germany) and T7 or SP6

RNA polymerase (Roche) with pc-Smyd3_tv1, pc-Smyd3_tv2 or

pCS2-Smyd3-EGFP. Fisher’s exact test was employed for the

analysis, and p,0.05 was considered statistically significant.

Whole mount in situ hybridization
For in situ hybridization, the following genes were used as

cRNA probes: gata5, scl, hand2 [25], cmlc2, vmhc [32], amhc [33],

mck, mylz2, smyhc1 [16], myod, myf5 and myog [26]. cDNAs were

amplified by RT-PCR and the products were cloned into

pcDNA3.1 plasmids (Life Technologies). Digoxigenin (DIG)-

labeled RNA probes were transcribed using RNA DIG labeling

mix (Roche) and T7 RNA polymerase (Roche). Whole mount in

situ hybridization was carried out essentially as described

elsewhere [29].

Supporting Information

Figure S1 (A) Multiple alignment of human SMYD3, zebrafish

smyd3_tv1 and tv2 protein sequences using CLUSTAL W. MYND,

SET, and post-SET domain are indicated as a solid line above the

sequence. Identical residues are indicated by asterisks, conserved

substitutions by colons, and semi-conserved substitutions by

periods.

(TIF)

Movie S1 Heartbeats of a control embryo without
injection at 48 hpf.

(WMV)

Movie S2 Heartbeats of a control embryo injected with
Smyd3-mis-MO at 48 hpf.

(WMV)

Movie S3 Heartbeats of a Smyd3 morphant at 48 hpf.

(WMV)
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