
Opposing Effects of the Angiopoietins on the Thrombin-
Induced Permeability of Human Pulmonary
Microvascular Endothelial Cells
Melanie van der Heijden1,2, Geerten P. van Nieuw Amerongen2*, Jan van Bezu2, Marinus A. Paul3, A. B.

Johan Groeneveld1, Victor W. M. van Hinsbergh2

1 Department of Intensive Care, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands, 2 Department of Physiology, Institute

for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands, 3 Department of Cardiothoracic Surgery, VU University Medical Centre,

Amsterdam, The Netherlands

Abstract

Background: Angiopoietin-2 (Ang-2) is associated with lung injury in ALI/ARDS. As endothelial activation by thrombin plays
a role in the permeability of acute lung injury and Ang-2 may modulate the kinetics of thrombin-induced permeability by
impairing the organization of vascular endothelial (VE-)cadherin, and affecting small Rho GTPases in human pulmonary
microvascular endothelial cells (HPMVECs), we hypothesized that Ang-2 acts as a sensitizer of thrombin-induced
hyperpermeability of HPMVECs, opposed by Ang-1.

Methodology/Principal Findings: Permeability was assessed by measuring macromolecule passage and transendothelial
electrical resistance (TEER). Angiopoietins did not affect basal permeability. Nevertheless, they had opposing effects on the
thrombin-induced permeability, in particular in the initial phase. Ang-2 enhanced the initial permeability increase (passage,
P = 0.010; TEER, P = 0.021) in parallel with impairment of VE-cadherin organization without affecting VE-cadherin Tyr685
phosphorylation or increasing RhoA activity. Ang-2 also increased intercellular gap formation. Ang-1 preincubation
increased Rac1 activity, enforced the VE-cadherin organization, reduced the initial thrombin-induced permeability (TEER,
P = 0.027), while Rac1 activity simultaneously normalized, and reduced RhoA activity at 15 min thrombin exposure
(P = 0.039), but not at earlier time points. The simultaneous presence of Ang-2 largely prevented the effect of Ang-1 on TEER
and macromolecule passage.

Conclusions/Significance: Ang-1 attenuated thrombin-induced permeability, which involved initial Rac1 activation-
enforced cell-cell junctions, and later RhoA inhibition. In addition to antagonizing Ang-1, Ang-2 had also a direct effect itself.
Ang-2 sensitized the initial thrombin-induced permeability accompanied by destabilization of VE-cadherin junctions and
increased gap formation, in the absence of increased RhoA activity.
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Introduction

Excessive and sustained activation of the pulmonary endothe-

lium is central in the pathogenesis of the pulmonary inflammation

and permeability of the life-threatening syndromes acute lung

injury (ALI) and acute respiratory distress syndrome (ARDS) [1].

In experimental models of ALI, the angiopoietin-Tie2 receptor

system modulates the responsiveness of the pulmonary endothe-

lium [2–5]. Indeed, angiopoietin-1 (Ang-1) reduced pulmonary

inflammation and permeability [2–8], whereas its antagonist

angiopoietin-2 (Ang-2) sensitized the pulmonary endothelium to

inflammatory stimuli [9,10]. Consistent with these experimental

data, circulating Ang-2 related to vascular permeability and

pulmonary dysfunction in critically ill patients [11–13].

Activation of coagulation is both a consequence and a

contributor to ALI/ARDS, since the pro-coagulant state results

in intra-alveolar fibrin deposition, which enhances inflammation

[14]. Furthermore, the pro-coagulant protein thrombin is

massively generated during ALI [15] and has direct effects on

vascular permeability via intercellular gap formation [16–18].

Interestingly, Ang-1 attenuated the thrombin-induced permeabil-

ity in human umbilical vein and bovine pulmonary endothelial

cells [19–21]. Nevertheless, the effect of Ang-2 on the thrombin-

response has not been studied. In addition, ALI/ARDS was not

appropriately modeled using those cell types, since endothelial cells

from different vascular beds display remarkable heterogeneity in

structure and function [22–24]. Therefore, it remains to be

investigated in an in vitro model of ALI using human pulmonary
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microvascular endothelial cells (HPMVECs), whether Ang-2

modulates the thrombin-induced permeability and which path-

ways are involved.

The effect of the Ang-2 on the kinetics of the thrombin response

is of specific interest, since different molecular mechanisms play a

role during the distinct phases of the response [16]. Indeed, during

the initial rapid increase in permeability after thrombin stimula-

tion, disruption of adherence junctions between cells, amongst

others due to reduced Rac1 activity [25] and subsequently RhoA-

mediated endothelial contraction [26], play a role [16,27]. When

the maximum increase in permeability is reached, both disruption

of adherence junctions and endothelial contraction play a role

[16,26].

For the current study it was hypothesized that Ang-2 increases

basal and thrombin-induced permeability of HPMVECs by

impairing vascular endothelial cadherin (VE-cadherin) junctional

organization in part via reduced Rac1 and increased RhoA

activity. Since Ang-1 has been extensively studied before, Ang-2

data were compared to Ang-1 data.

Materials and Methods

Isolation and culture of HPMVECs
HPMVECs were isolated as previously described (supporting

information Text S1) [24]. Five days after isolation, HPMVECs

formed small islands in culture. Nine days after isolation,

HPMVEC islands were confluent. After a second magnetic

separation of HPMVECs and non-endothelial cells, the culture

showed a purity of .99% as confirmed by the presence of

endothelial cell markers VE-cadherin, CD31, von Willebrand

factor (VWF), Tie2 and endothelial nitric oxide synthase (eNOS)

and the absence of smooth muscle cell (SMC) marker a-actin and

epithelial cell marker pancytokeratin (supporting information

Figure S1). HPMVECs had a relatively low basal permeability,

compared to human umbilical vein endothelial cells (HUVECs,

basal transendothelial electrical resistance (TEER) 41.363.0

V?cm2 vs. 27.663.8 V?cm2, P = 0.014).

Determination of the angiopoietin release of HPMVECs
Microvascular endothelial cell medium-2 (EGM-2-MV, Lonza,

Basel, Switzerland) was put on a confluent HPMVEC monolayer

for 0, 24, 48 or 72 hours. At each time point, medium was

collected and Ang-2 and Ang-1 concentrations were measured in

duplicate using the human Ang-2 and Ang-1 DuoSet ELISA

Development kits (R&D systems, Minneapolis, Minneapolis, USA)

according to the manufacturers protocol. Experiments were also

performed in cells stimulated with 0.1 U/ml thrombin to measure

endogenous Ang-2 release.

Determination of the endothelial permeability
In vitro, endothelial permeability can be evaluated by culturing

cells on porous filters and subsequent assessment of the horse

radish peroxidase (HRP, 40 kDa) passage or the transendothelial

ion-flux via cell-cell and cell-matrix contacts as indicated by the

TEER [28,29]. Since the relationship between the macromolecule

flux and the TEER is non-linear and the passage is size-dependent

[28–30] both were assessed.

The transfer of HRP over the HPMVEC monolayer was

measured as previously described [26–28]. In brief, confluent

monolayers of HPMVECs (passage 3–7) were harvested with

trypsin/ethyleendiaminetetraacetic acid (EDTA) and seeded in

high density on fibronectin-coated polycarbonate filters of the

Transwell system (0.33 cm2, pore size 3.0 mm, Corning Incorpo-

rated Life Sciences, Lowell, Massachusetts, USA). EGM-2-MV

medium with 5% fetal bovine serum was renewed every other day.

Monolayers were used 5 days after seeding. One hour before the

start of the experiment, monolayers were serum starved in 1%

human serum albumin (HSA, Sanquin, Amsterdam, The Nether-

lands) in endothelial cell basal medium-2 (EBM-2, Lonza). At the

start of the experiment (time = -30 min), HRP (5 mg/ml) with or

without Ang-2 (400 ng/ml), Ang-1 (400 ng/ml) or the combina-

tion in 1% HSA was added to the upper compartment of the

Transwell system. At time = 0 min, the first sample from the lower

compartment was taken and an equal volume of 1% HSA was

added to the lower compartment. Immediately after the first

sample was taken, thrombin (0.2 U/ml, Sigma, St. Louis,

Missouri, USA) was added to the upper compartment. The other

samples from the lower compartment were taken at time = 15, 30,

90 and 210 min. At the end of the experiment, a sample was taken

from the upper compartment. Filters were kept at 37uC under 5%

CO2/95% air atmosphere during the experiment. The concen-

tration of HRP was derived from the HRP activity in each sample

with peroxide and tetramethylbenzidine as substrate. The basal

HRP passage at t = 0 min (% of HRP input/hour) and the initial

and the prolonged HRP passage rate from 0–15 and from 30–

90 min after thrombin addition, respectively, were calculated.

The TEER was measured as previously described [28].

HPMVECs were seeded on the Transwell system as described

above. After serum starvation, Ang-2 (400 ng/ml), Ang-1

(400 ng/ml) or the combination was added to the upper

compartment of the filter and the filter was placed in the TEER

apparatus (t = 230 min). The filter was left in the apparatus for

10 min to acclimatize before recording started. An alternating

current (50 mA, 2 pulses per min) was passed across the monolayer

by two source electrodes. The potential difference across the

monolayer was measured by two detecting electrodes. Thrombin

(0.2 U/ml) was added to the upper compartment of the filter at

t = 0 min. The recording continued until t = 40 min. Filters were

kept at 37uC under 100% air atmosphere during the experiment.

The electrical resistance was calculated by Ohm’s law and

expressed in VNcm2. Electrical resistance of the filter without an

endothelial monolayer (8 VNcm2) was subtracted from all measured

values. The absolute basal TEER at t = 0 min, the thrombin-

induced decrease in TEER per min from 0–10 min after

thrombin-stimulation and the prolonged maximum thrombin-

induced decrease in TEER were calculated.

Analysis of Tie2 and vascular endothelial cadherin (VE-
cadherin) phosphorylation

After serum starvation, Ang-2 (400 ng/ml), Ang-1 (200 ng/ml)

or the combination were added to the well chamber. Cells were

lysed with lysis buffer (20 mM Tris/HCl pH 8.0, 150 mM NaCl,

90 mM KCl, 2 mM EDTA/NaOH pH 8.0, igepal (1:200), triton

X-100 (1:200), 1 M Na3VO4, 10 mM NaF, protease inhibitors

(1:100), phosphatase inhibitors (1:100)) as previously described

[31] 15, 30 or 60 min after angiopoietin treatment for Tie2

phosphorylation or 1, 5 or 15 min after thrombin stimulation for

VE-cadherin phosphorylation. Tie2 phosphorylation was deter-

mined both in whole cell lysates and on immunoprecipitated Tie2

protein. VE-cadherin phosphorylation was determined in whole

cell lysates. Tie2 antibody (goat, R&D systems) was used for

immunoprecipitation as previously described [32]. In brief, cell

lysates of equal amounts of protein in 1 ml of lysisbuffer as

described above were incubated overnight at 4uC with the anti-

human Tie2 (4 mg/sample) antibody (R&D systems). The protein-

immunoglobulin G (IgG) complexes were pulled down using

protein A/G agarose beads (Santa Cruz Biotechnology, Santa

Cruz, USA) and after 3 washing steps laemmli buffer (Bio-Rad

Angiopoietins, Thrombin & Endothelial Permeability
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Laboratories, Hercules, California, USA) was added to the

immunoprecipitated Tie2 protein. Total cell lysates containing

equal amounts of protein or immunoprecipitated Tie2 protein

from each sample were separated by SDS-PAGE and electropho-

retically transferred to a nitrocellulose membrane (Bio-Rad

Laboratories). Membranes were incubated with polyclonal

antibodies against phosphorylated Tie2 (pTie2, Y1100, rabbit,

1:333, R&D systems), phosphorylated tyrosine (pTyr, mouse,

1:333, Cell signaling technology, Inc., Danvers, Massachusetts,

USA), total Tie2 (tTie2, goat, 1:500, R&D systems), phosphory-

lated VE-cadherin (tyrosine 685, rabbit, 1:200, ECM Biosciences,

Versailles, Kentucky, USA) or total VE-cadherin (rabbit, 1:1000,

Sigma). Total Tie2 and VE-cadherin were used as loading control.

Goat anti-rabbit, goat anti-mouse and rabbit anti-goat immuno-

globulins HRP (DakoCytomation, Glostrup, Denmark) were used

for the detection of the primary antibodies at 1:1000. Detection of

the HRP reaction was performed with ECL plus Western Blotting

Detection System (Amersham Biosciences, Little Chalfont Buck-

inghamshire, United Kingdom). Imaging and analysis were

performed with LAS-3000 (Fuji Photo Film Co., Ltd., Tokyo,

Japan) and AIDA Image Analyzer (Raytest GmbH, Strauben-

hardt, Germany). Data were expressed as phospho/total as

fraction of control.

Immunofluorescence
The cells were grown on gelatin-coated glass cover slips, treated

for 30 min with angiopoietins (400 ng/ml) followed by thrombin

stimulation (0.2 U/ml) for 2 and 15 min, fixed in 4% formalde-

hyde and permeabilized with 0.2% triton X-100. Cells were

incubated with antibodies against VE-cadherin (1:200, rabbit,

overnight, 4uC, Sigma). Alexa fluor 488 goat anti-rabbit (1:100,

Invitrogen, Carlsbad, California, USA) was used for the detection

of the primary VE-cadherin antibody. Actin filaments (F-actin)

were stained with rhodamin-phalloidin (1:100, Molecular Probes,

Inc., Eugene, Oregon, USA). The nucleus was stained with 49,6-

diamidino-2-phenylindole (DAPI) in VectashieldH Mounting

medium (Vector Laboratories, Inc., Burlingame, California,

USA). Cells were visualized with help of fluorescence microscopy

using a MarianasTM digital imaging microscope with 40X air lens

(Carl Zeiss B.V., Sliedrecht, The Netherlands) and Slidebook 4.2

software (Intelligent Imaging Innovations, Inc., Denver, Colorado,

USA).

To quantify the total gap area from VE-cadherin staining, so-

called maskes were created as described previously [33], a mask

being a binary overlay on an optical section. All VE-cadherin

derived fluorescent signal below a threshold was included in a

mask. The value for this threshold intensity was set manually

below the baseline fluorescence intensity so as to select the total

area negative for VE-cadherin, corresponding to the sites of inter-

endothelial gaps. To exclude negative pixels that belonged to

cellular regions, the individual fragments in the mask were gated to

a minimal area of 50 pixels. Finally, the total area of all individual

mask-fragments together was computed and expressed as a

percentage of the total area of the field of view.

G-LISATM Rac1 or RhoA activation assay
The Rac1 and RhoA protein activity were measured with help

of the G-LISATM Rac1 or RhoA activation assay (Cytoskeleton,

Inc., Denver, Colorado, USA) according to the manufacturers

protocol. After one hour serum starvation with 1% HSA in EBM-

2, cells were pre-incubated with Ang-2 (400 ng/ml), Ang-1

(400 ng/ml) or the combination for 30 min. After pre-incubation,

thrombin (0.2 U/ml) was added and Rac1 or RhoA activity were

measured 0, 1 or 15 min after addition of thrombin.

Statistical analysis
Basal HRP passage, the HRP passage/hour and the decrease in

TEER/min were not normally distributed (Kolmogorov-Smirnov

test, P,0.05). To obtain normal distribution, data were logarith-

mically transformed prior to statistical analysis. A one-way analysis

of variance (ANOVA) was conducted to explore the effects of the

angiopoietins. The Student’s t-test was used to further analyze the

differences between the groups when ANOVA indicated statistical

significance. Differences were considered significant at the P,0.05

level. Exact P-values are reported when P,0.05. Data are

presented as mean6standard error of the mean (SEM).

Results

Endogenous Ang-2 production
Under basal conditions, HPMVECs released Ang-2, but not

Ang-1 in their medium at a constant rate of 139614 pg/cm2/

hour (P,0.0001) for at least 72 hours, so that after 48 hours

,67 ng/ml Ang-2 was measured. To evaluate the effect of Ang-2,

cells were serum-starved in fresh EBM-2 medium with 1% HSA

one hour before the experiments, so that they were exposed to

maximum ,1.4 ng/ml endogenous Ang-2 before recombinant

Ang-2 was administered. An Ang-2 concentration of 400 ng/ml

was chosen for the experiments. Thrombin stimulation resulted in

an release of as little as 0, 2.6 and 2.9 ng/ml endogenous Ang-2 at

1, 5 and 10 min after stimulation, respectively, suggesting a

negligible effect of endogenous Ang-2 in the thrombin-induced

permeability response. The detectable amount of Ang-2 in the

conditioned medium decreased to 0.73 ng at 15 min after

thrombin stimulation, suggesting degradation or binding of

endogenous Ang-2.

Basal effects of angiopoietins
Unexpectedly, neither Ang-2, nor Ang-1 affected the basal

endothelial barrier function as determined by HRP passage

(Figure 1a) or TEER (Figure 1b). This was found with Ang-1 and -

2 concentrations ranging from 5 to 400 ng/ml. To exclude that

this was due to the short stimulation period (30 min), HPMVECs

were stimulated with Ang-2 for 5 hours. Even after 5 hours, Ang-2

(5–400 ng/ml) did not affect the basal permeability as measured

by the TEER (data not shown).

To confirm that the angiopoietins were able to activate the Tie2

receptor, Tie2 receptor phosphorylation was analyzed. Ang-1

induced a transient increase in Tie2 phosphorylation at the Y1100

tyrosine residue with a maximum increase at 15 and 30 min

(Figure 1c and 1d). A similar pattern was observed for the total

tyrosine phosphorylation of immunoprecipitated Tie2 (Figure 1c).

Y1100 Tie2 phosphorylation returned to basal levels at 60 min

(96627% of control). Co-treatment with Ang-2 blocked the Ang-

1-induced Y1100 Tie2 phosphorylation at 15 and 30 min

(Figure 1d). Ang-2 alone did not affect Y1100 Tie2 phosphory-

lation under our experimental conditions (Figure 1d).

Since RhoA and Rac1 are effectors of pTie2 [6,13], their

activity in HPMVECs under basal conditions 30 min after

angiopoietin addition was measured. Ang-1 did not affect basal

RhoA (93610% of control, n = 8) and enhanced basal Rac1

activity (12367% of control, P = 0.011, n = 6). Ang-2 did not

affect basal RhoA (110612% of control, n = 8), but the trend was

opposite to that of Ang-1. Ang-2 hardly affected Rac1 activity

(10863% of control, P = 0.034, n = 6). Thrombin was used as a

positive control. After 1 min exposure to thrombin RhoA activity

was enhanced 3.760.3-fold (P,0.0001, n = 7), while Rac1 activity

was reduced to 76610% of control (P = 0.0256, n = 5).

Angiopoietins, Thrombin & Endothelial Permeability
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Angiopoietin-induced modulation of the early thrombin-
response

Subsequently, the effects of Ang-2 and Ang-1 on the thrombin-

induced endothelial permeability were investigated. Differences in

the effects of angiopoietin pre-treatment on the initial and the

prolonged thrombin-induced endothelial permeability were ob-

served (Figure 2a,e).

Ang-2 enhanced the initial thrombin-induced HRP passage rate

from 0–15 min after thrombin addition, while Ang-1 or the

combination of Ang-1 and Ang-2 did not affect it (Figure 2c). In

contrast, neither Ang-2, nor Ang-1 affected the prolonged

thrombin-induced HRP passage rate from 30–90min (Figure 2d).

Since the TEER may be more sensitive to subtle thrombin-

induced changes [28,34], the effects of the angiopoietins on the

thrombin-induced TEER decrease in both phases were also

investigated (Figure 2f,g,h). The initial rate of the TEER decrease

from 0–10 min after thrombin addition was enhanced by Ang-2

and the combination of Ang-1 and Ang-2 and reduced by Ang-1, a

similar pattern as observed in the HRP passage experiments

(Figure 2g). The prolonged maximum decrease in TEER was not

affected by Ang-2 or the combination, while it was reduced by

Ang-1 (Figure 2h).

Angiopoietins modulate VE-cadherin redistribution by
thrombin

The observation that the angiopoietins modulate in particular

the initial response of endothelial cells to thrombin suggests that

angiopoietins may affect the molecular organization of the

adherence junctions [35]. To study the molecular organization

of the adherence junctions, VE-cadherin was visualized by

immunofluorescence microscopy as shown at 2 and 15 min after

thrombin stimulation in Figures 3a and b, respectively. VE-

cadherin was encountered in control cells as a continuous and

narrow lining at cell-cell borders reflecting stable junctions.

Exposure to thrombin induced a redistribution of VE-cadherin

into a zigzag wide pattern typical for unstable and activated

junctions and the generation of intercellular gaps. Ang-1

preincubation attenuated the effect of thrombin on VE-cadherin

redistribution and gap formation. However, still some intercellular

gaps were visible in accordance with the thrombin-induced

permeability in Ang-1 treated cells (Figure 3c). In contrast, the

effect of thrombin was enhanced in Ang-2 treated cells, which

resulted in even wider VE-cadherin staining and a stronger zigzag

pattern together with more intercellular gaps (Figure 3c). Ang-1

prevented the enhancement of gap formation in Ang-2 treated

Figure 1. Effect of angiopoietins (Ang) on basal permeability, Tie2 phosphorylation and RhoA activity of human pulmonary
microvascular endothelial cells (HPMVECs). Data are presented as mean6standard error of the mean. NS: not significant. a. Neither Ang-2, nor
Ang-1 affected the basal horse radish peroxidase (HRP) passage as measured 30 min after their addition (n = 7–9). b. Neither Ang-2, nor Ang-1
affected the basal transendothelial electrical resistance (TEER) as measured 30 min after their addition (n = 9–17). c. Representative western blots of
pTie2, tTie and immunoprecipitated (IP) tyrosine phosphorylated (pTyr) and total Tie2 are shown. d. Ang-1 induced a transient increase in the
phosphorylated Tie2 (pTie2)/total Tie2 (tTie2) ratio, with a maximum at 15 and 30 min after its addition (*P = 0.0046, **P = 0.0003). Ang-2 blocked the
Ang-1-induced increase in Tie2 phosphorylation at 15 and 30 min (#P = 0.0073, ##P = 0.0134, n = 5–9). Ang-2 alone did not affect Y1100 Tie2
phosphorylation.
doi:10.1371/journal.pone.0023448.g001

Angiopoietins, Thrombin & Endothelial Permeability
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cells (Figure 3c). The response at 2 and 15 min was similar,

although the thrombin-induced gaps were more pronounced at

15 min.

The changes in VE-cadherin were accompanied by alterations

in the F-actin cytoskeleton. While in control cells most F-actin

bundles were seen in the periphery of the cell, thrombin induced

the formation of F-actin bundles throughout the cell. However,

although there was a counteracting tendency by the presence of

Ang-1, the effects of Ang-1 and Ang-2 on thrombin-stimulated

stress fiber formation were very limited (Figure 3a and b).

We subsequently evaluated tyrosine phosphorylation of VE-

cadherin [18,35], with specific emphasis on that of the tyrosine

685 residue, since this residue is phosporylated by Src [35], which

is linked to angiopoietin signaling in the context of vascular

endothelial growth factor (VEGF)-induced endothelial permeabil-

ity [36]. VE-cadherin phosphorylation at tyrosine 685 was not

affected by thrombin stimulation, independent of angiopoietin

treatment (supporting information Figure S2).

Angiopoietins and RhoA and Rac1 activity in thrombin
stimulated cells

Disruption of the adherence junctions between cells may be

amongst others due to reduced Rac1 activity [25], and indirectly

influenced by RhoA-mediated actin-myosin interaction [26]. Since

both small GTPAses are described as effectors downstream of Tie2

phosphorylation [5,12], Rac1 and RhoA activities were deter-

mined at various time points ranging from 1 to 15 min after

thrombin addition. Rac1 activity was decreased at 1 min after

thrombin stimulation (Figure 4a) and normalized after 15 min

(Figure 4b), independently of the presence of angiopoietins. In

contrast, thrombin induced a 3- to 4-fold increase in RhoA activity

after 1 min compared to control (Figure 5a), which gradually

decreased to 3-fold after 15 min (Figure 5b). While the increase of

RhoA after 1 min was not altered by the presence of angiopoietins

(Figure 5a), RhoA activity at 15 min decreased more rapidly when

Ang-1 or the combination were present. This effect was absent in

cells treated with Ang-2 (Figure 5b).

Discussion

The main finding of the present study is that the angiopoietins

Ang-2 and Ang-1 had opposing effects on the very initial, but not

on the prolonged late phase of the thrombin-induced hyperperme-

ability response of cultured human pulmonary microvascular

endothelial cells. Specifically, Ang-2 enhanced the initial hyper-

permeability, while Ang-1 reduced the initial hyperpermeability by

attenuation of thrombin-induced reorganization of the adherence

junctions. The limited effect of angiopoietins on basal permeability

as compared to thrombin-stimulated permeability suggests that in

the adult endothelium the angiopoietin-Tie2 system is a sensitizer

of the activated endothelium in the presence of other inflamma-

tory or coagulation mediators, rather than an independent actor of

the permeability response. This is in line with previous findings

Figure 2. Effect of angiopoietins (Ang) on initial and prolonged permeability of human pulmonary microvascular endothelial cells
(HPMVECs) during thrombin stimulation. Data are presented as mean6standard error of the mean. NS: not significant. a. An averaged curve of
horse radish peroxidase (HRP) passage of control cells stimulated with thrombin (IIa) at time = 0 min, showing the typical s-shape (n = 9). Cells were
stimulated with angiopoietins (A) at time = 230 min. The initial HRP passage rate from time = 0–15 min and the prolonged HRP passage rate from
time = 30–90 min were calculated as indicated by the vertical dashed lines. b. Representative experiment (in triplo) showing averaged curves of HRP
passage of control and angiopoietin-stimulated cells. Cells were stimulated with angiopoietins at time = 230 min and with thrombin at time = 0 min.
c. Ang-2 increased the initial HRP passage rate (*P = 0.010), while Ang-1 or the combination did not affect it (n = 7–9). d. Neither Ang-2, nor Ang-1
affected the prolonged HRP passage rate (n = 8–9). e. An averaged curve of the transendothelial electrical resistance (TEER) of control cells stimulated
with thrombin at time = 0 min (n = 17). Cells were stimulated with angiopoietins at time = 230 min. The initial rate of TEER decrease from time = 0–10
min and the prolonged maximum TEER decrease were calculated as indicated by the vertical dashed lines. f. Representative experiment (in triplo)
showing averaged curves of the TEER of control and angiopoietin-stimulated cells. Cells were stimulated with angiopoietins at time = 230 min and
with thrombin at time = 0 min. g. Ang-2 and the combination enhanced the initial rate of the TEER decrease (**P = 0.021, #P = 0.036), while Ang-1
reduced it (*P = 0.027, n = 12–16). h. Ang-2 or the combination did not affect the prolonged maximum TEER decrease, while Ang-1 reduced it
(*P,0.0001, n = 12–16).
doi:10.1371/journal.pone.0023448.g002

Angiopoietins, Thrombin & Endothelial Permeability
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that Ang-2 alone did not affect the adhesion of leukocytes to

quiescent endothelium, while it promoted adhesion of leukocytes

to endothelial cells activated by tumor necrosis factor-a [10].

The permeability enhancing effect of thrombin in endothelial

monolayers in culture can be separated in two phases. During the

initial phase (0–15 min) the TEER decreases rapidly, while the

passage of HRP starts increasing. During this phase the

endothelial junctions become instable and locally small gaps

between the cells are formed. After 15 min stress fibers have

become formed reflecting a major change in the F-actin-

cytoskeleton. In the subsequent phase (15–90 min) the rate of

HRP passage becomes maximal. This phase includes continued

actin-myosin interaction within the cells and cell contraction

[16,37]. However, the TEER starts to recover during this period

suggesting that junctional complexes and focal adhesion sites are

locally recovering, although still relatively large gaps between cells

remain. After 90 min a full recovery of the monolayer is observed

both with regard to TEER and HRP passage.

In the context of this dual effect of thrombin, the effect of

angiopoietins only on the initial thrombin response is of interest

and points to an effect at the junctional level in particular. Indeed,

we observed changes in VE-cadherin localization that reflected

unstable junctions and intracellular gap formation. While similar

alterations in adherence junctions and VE-cadherin relocalization

are induced by VEGF via Src phosphorylation at Tyr685 and

subsequent activities [35], thrombin did not affect this phosphor-

ylation. This is accordance with Kinney et al. [38], who showed

that thrombin has no effect on Src and Yes, but only on the Src-

like protein Fyn, which has less permeability enhancing properties

[39]. Apparently another mechanism induces the dissociation of

VE-cadherins in adherence junctions.

Notwithstanding, our data support previous findings that Ang-1

inhibits the thrombin response by enforcement of junctions via

enforcement of the VE-cadherin-catenin complex [19], similar as

observed in VEGF- and bradykinin-induced hyperpermeability

[36,40–42]. After exposure of human endothelial cell monolayers

Figure 3. a, b and c. Effect of angiopoietins on the molecular organization of vascular endothelial cadherin (VE-cadherin) in human
pulmonary microvascular endothelial cells (HPMVECs). Immunofluorescence morphological analysis and quantification of the distribution of
VE-cadherin in control cells and cells treated with angiopoietins (Ang) and thrombin (IIa) for 2 (a) and 15 (b) min. Cells were stained with antibodies
specific for VE-cadherin (green), with rhodamin-phalloidin for actin filaments (F-actin, red) and with 496-diamidino-2-phenylindole (DAPI) for the
nuclei (blue). A 63x magnification is shown. The arrows indicate intercellular gaps. The left panel shows the VE-cadherin staining at the cell-cell
borders. The middle panel shows the F-actin cytoskeleton. The right panel shows the merge of VE-cadherin, F-actin and the nuclei. a. The thrombin
response after 2 min. b. The thrombin response after 15 min. c. Ang-2 enhances (*P,0.0001) and Ang-1 reduces (**P = 0.0257) the formation of
thrombin-induced interendothelial gaps (*P,0.0001 thrombin stimulation vs. control). Total gap area was determined as described in the methods
section. Data are the mean6standard error of the mean from at least 6 pictures per condition.
doi:10.1371/journal.pone.0023448.g003
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to Ang-1, Tie-2 receptors are mobilized from the endothelial cell

surface to the cell junctions, where oligo- or multimers of Ang-1

[43] bridge Tie-2 receptors of both adjacent cells [41,44]. This

complex also recruits vascular endothelial protein tyrosine

phosphatase (VE-PTP) [45]. At these junctions the multimeric

complex of Ang-1 and Tie-2 bridges two cells [41,44] and induces

specific Tie-2-mediated signaling that causes activation of small

GTPase Rap1 and subsequently Rac1, which enforce the

maintenance of the junctions between both cells [46-48]. Such

mechanism underlies the protective effect of Ang-1 on VEGF-

induced hyperpermeability [36,40,45] and on the initial thrombin

induced hyperpermeability as presently and previously observed

[19–21].

Several additional signaling mechanisms have been reported,

namely Ang-1 inhibited the thrombin response by reduction of the

cytoplasmic calcium concentration [49] or PKC-f activity [21,50].

In addition, Mammoto et al. [5] pointed towards an increased

activity of the inhibitory GTPase activating protein p190 RhoGAP

as a contributor to the inhibitory effect of Ang-1 on endotoxin-

mediated vascular leakage. As thrombin induces RhoA activity, a

similar mechanism may contribute to the effects observed in the

present HPMVECs. Activation of p190RhoGAP by Ang-1 limits

the activation of Rho kinase and mDia, which can affect

subsequent pathways that enhance permeability [5,36]. Indeed,

Ang-1 caused a reduction in RhoA activation when assayed

15 min after thrombin stimulation, conform Mammoto et al. [5],

but not at earlier time points (see also [20]). Therefore, modulation

of RhoA activity becomes in particular important when the

junctions were already destabilized by the initial response.

To our knowledge, we are the first to demonstrate that Ang-2

enhanced thrombin-induced endothelial permeability in

HPMVECs, similar to the effect of Ang-2 on VEGF-induced

Figure 4. Effect of angiopoietins (Ang) on Rac1 activity of thrombin (IIa)-stimulated human pulmonary microvascular endothelial
cells (HPMVECs). Data are presented as mean6standard error of the mean. a. Thrombin stimulation reduced Rac1 activity 1 min after stimulation
(*P = 0.0256), independent of angiopoietin treatment (n = 5–6). b. Rac1 activity was normalized 15 min after thrombin stimulation, independent of
angiopoietin treatment (n = 5–6).
doi:10.1371/journal.pone.0023448.g004

Figure 5. Effect of angiopoietins (Ang) on RhoA activity of thrombin (IIa)-stimulated human pulmonary microvascular endothelial
cells (HPMVECs). Data are presented as mean6standard error of the mean. NS: not significant. a. RhoA activity was increased 1 min after thrombin
addition (*P,0.0001), independent of angiopoietin treatment (n = 7–8). b. RhoA activity was still increased 15 min after thrombin addition
(*P,0.0001), but the increase became less in cells treated with Ang-1 (**P = 0.039, n = 6) or the combination (***P = 0.034, n = 6–8).
doi:10.1371/journal.pone.0023448.g005
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retinal endothelial cell permeability [51]. Interestingly, Ang-2

enhanced the initial permeability in particular, suggesting that

Ang-2 modulates the stability of the junctions before or during the

initial rapid increase in thrombin-induced permeability [16,18],

but has less effect during the later phase of the cell contraction

after formation of stress fibers, i.e. when the junctional multimeric

Ang-1/Tie-2 complexes had disappeared. Indeed, Ang-2 induced

a change in the molecular organization of the junctions as

demonstrated by an enhancement of the zigzag pattern, while it

did not enhance the number or organization of stress fibers during

thrombin stimulation. Ang-2 did not enhance VE-cadherin

phosphorylation at tyrosine 685, as seen in other conditions

[35]. However, the availability of Tyr685 depends on Csk binding

[52], while other VE-cadherin tyrosine residues may be phos-

phorylated by Ang-2 [35]. Alternatively, Ang-2 may act by

preventing protective actions on adherence junction proteins. In

line with this suggestion, Seegar et al. [53] reported that Ang-2

enhances Tie-1-Tie-2 interaction, which inhibits the endothelial

protective effect of Tie-2 activation. This in contrast to Ang-1,

which directs protective Tie-2 activity by homomultimerization

[53]. This latter action of Ang-1 probably also explains why the

combination of equal concentrations of Ang-1 and Ang-2, which

in most studies have equal affinities for the Tie2 receptor [54–56],

still enhanced the initial rate of the thrombin-induced permeabil-

ity, albeit slightly less than Ang-2 alone.

Whether the withdrawal of Tie-2 from junctional multimeriza-

tion also causes the increase in thrombin-induced hyperperme-

ability when only Ang-2 is added, is uncertain, because endothelial

cells produce little Ang-1 themselves [57]. Signaling by direct

interaction of Ang-2 with Tie-1 into the endothelial cell has also

been reported [58] and may affect junction stability in thrombin-

stimulated cells. Finally, Ang-2 can activate endothelial cells via

other phosphorylation sites on the Tie2 receptor [32], while the

interaction between the F-actin cytoskeleton and junctional

proteins may also be affected. RhoA is an important mediator of

thrombin-induced actin-myosin interaction, which also causes

stress fiber formation and cell contraction. Parikh et al. [12]

reported that Ang-2 increased basal permeability via increased

RhoA activity, but did not study the effect of Ang-2 on thrombin-

induced RhoA activity. In our experiments Ang-2 did not affect

the degree of RhoA activation at 15 min after thrombin-

stimulation or under basal conditions. However, it should be

noted that Parikh et al. [12] observed an unusual prolonged

increased RhoA activity up to 6 hours, which suggests that an

additional activation of the HPMVECs has occurred that affected

their responsiveness to Ang-2 [10].

The responses to Ang-1 and Ang-2 were relatively small. We

cannot not exclude that the HPMVECs had reduced sensitivity for

Ang-2, due to the endogenous production of Ang-2 by endothelial

cells themselves. Nevertheless, cells were stimulated with approx-

imately 6 times higher concentrations of Ang-2 than they

encountered normally during culture. Furthermore, it should be

noted that thrombin-induced macromolecule passage largely takes

place via the paracellular pathway through intercellular gaps and

depends on the molecular size of the macromolecule [28-30]. The

present data cannot completely exclude additional effects of the

angiopoietins on transcellular exchange.

In conclusion, the present study describes the effects of

angiopoietins related to the kinetics of the thrombin-response in

HPMVECs. The effects of angiopoietins are only found in the

initial junction-related thrombin-induced permeability and not in

the prolonged stress fiber contraction-related phase of thrombin-

induced permeability. As the latter phase is accompanied by

abundant stress fiber formation to an extent that is normally not

seen in vivo, it is likely that the initial phase provides a better

reflection of pathophysiological alterations of the endothelial

barrier. This fits with the current knowledge of the effect of Ang-1,

and our data add new information regarding a potential role of

Ang-2.

Supporting Information

Figure S1 Characterization of cultured human pulmo-
nary microvascular endothelial cells (HPMVECs). Phase-

contrast pictures of HPMVECs 5 and 9 days after isolation are

shown. Subsequent panels show representative fluorescent images

of vascular endothelial (VE)-cadherin, CD31, von Willebrand

factor (VWF), smooth muscle cell (SMC) a-actin and pancytoker-

atin and representative western blots of Tie2 and endothelial nitric

oxide synthase (eNOS).

(TIF)

Figure S2 Angiopoietins do not affect vascular endothe-
lial cadherin (VE-cadherin) phosphorylation of human
pulmonary microvascular endothelial cells (HPMVECs).
Representative western blots of VE-cadherin phosphorylated (p) at

tyrosine residue 685 and total VE-cadherin in control (C), Ang-1

(A1) and Ang-2 (A2) treated cells as measured 1, 5 and 15 min

after thrombin (IIa) addition.

(TIF)
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