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Abstract

Subtype specificity of influenza A virus (IAV) is determined by its two surface glycoproteins, hemagglutinin (HA) and
neuraminidase (NA). For HA, 16 distinct subtypes (H1–H16) exist, while nine exist for NA. The epidemic strains of H1N1 IAV
change frequently and cause annual seasonal epidemics as well as occasional pandemics, such as the notorious 1918
influenza pandemic. The recent introduction of pandemic A/H1N1 IAV (H1N1pdm virus) into humans re-emphasizes the
public health concern about H1N1 IAV. Several studies have identified conserved epitopes within specific HA subtypes that
can be used for diagnostics. However, immune specific epitopes in H1N1 IAV have not been completely assessed. In this
study, linear epitopes on the H1N1pdm viral HA protein were identified by peptide scanning using libraries of overlapping
peptides against convalescent sera from H1N1pdm patients. One epitope, P5 (aa 58–72) was found to be immunodominant
in patients and to evoke high titer antibodies in mice. Multiple sequence alignments and in silico coverage analysis showed
that this epitope is highly conserved in influenza H1 HA [with a coverage of 91.6% (9,860/10,767)] and almost completely
absent in other subtypes [with a coverage of 3.3% (792/23,895)]. This previously unidentified linear epitope is located
outside the five well-recognized antigenic sites in HA. A peptide ELISA method based on this epitope was developed and
showed high correlation (x2 = 51.81, P,0.01, Pearson correlation coefficient R = 0.741) with a hemagglutination inhibition
test. The highly conserved H1 subtype-specific immunodominant epitope may form the basis for developing novel assays
for sero-diagnosis and active surveillance against H1N1 IAVs.
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Introduction

Influenza A viruses (IAVs), members of the Orthomyxoviridae

family, are highly contagious to a variety of avian and mammalian

species. IAVs cause seasonal influenza epidemics annually and

recurring pandemics with severe consequences for public health and

global economy [1,2]. At least three IAV-pandemics emerged in the

last century (1918 A/H1N1, 1957 A/H2N2, and 1968 A/H3N2).

The 1918 Spanish flu was the most serious influenza pandemic that

killed over 50 million people worldwide [3]. The latter two

pandemics, although mild compared to the 1918 incidence, resulted

in significant mortality, with close to 2 million and 1 million deaths,

respectively [4]. The latest pandemic influenza, and newest global

health challenge, occurred in 2009 due to the emergence of an A/

H1N1 pandemic IAV (H1N1pdm virus). The H1N1pdm virus has

been detected in more than 214 countries and territories and has

caused 18,389 deaths as of July 30, 2010 [5].

The viral genome of IAV consists of eight single-stranded

negative sense RNA segments that encode at least 11 viral

proteins, including two surface glycoproteins, hemagglutinin (HA)

and neuraminidase (NA) [6]. Based on the antigenic properties of

HA and NA, IAVs have been classified into 16 HA subtypes and 9

NA subtypes [7]. All 16 HA subtypes have been identified in avian

species, while only 6 HA subtypes (H1, H2, H3, H5, H7 and H9)

are known to infect human beings [8,9,10]. H1, H2 and H3

subtypes have caused pandemics, while H1 and H3 also dominate

seasonal epidemics together with influenza B virus.

HA, encoded by segment 4 of the IAV genome, is a

glycoprotein of approximate 560 amino acid. The biologically

active HA is a homologous trimeric molecule that is attached to

the virion membrane through its carboxy terminus [11]. HA plays

a critical role in the pathogenesis of IAVs. HA mediates IAVs’

binding to the cellular receptor N-acetylneuraminic (sialic) acid as

well as the subsequent membrane fusion process [12]. HA also

stimulates host protective immunities, specifically the production

of neutralizing antibodies. The generation of anti-HA neutralizing

antibodies has been the major target for influenza vaccine

development [11,13]. Due to its specificity in immune response,
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HA is also an important target for IAV subtyping using

immunoassays [7,14].

Active serological surveillance for viral antibodies is of great

importance for influenza control and prevention. Several IAV

subtype-specific serological tests have been developed. At present,

subtyping of IAV mainly relies on a hemagglutination inhibition

(HI) test using HA and NA subtype-specific reference sera [15].

However, there are a number of drawbacks to HI testing. This

assay is 1) relatively laborious; 2) low in sensitivity; 3) requires

preparation of antigen from viable viruses which are potentially

hazardous and 4) contains low signal to noise ratio, e.g. the assay

exhibits inter-variability and subtype cross-reactivity [16,17].

Moreover, the HI test can be confounded by steric hindrance

from NA antibodies, leading to nonspecific inhibition and

misidentification [18].

Microneutralizing test is an alternative method to type and

subtype influenza viruses. However, due to the needs of cell

culture process, this method is labor-intensive and requires

biological safety containments (particularly for high pathogenic

strains). As such, it is not suitable for large scale investigations

[19,20]. Recently, subtyping of IAV antibodies using different

categories of ELISA assays have also been reported [16,17,21].

However, present ELISA assays mainly rely on an HA antigen,

which can lead to nonspecific detection to some extent due to the

possible cross-reaction of different subtypes [22,23].

Virus-derived epitopes are useful tools to accurately evaluate

immune response and to differentiate which responses are specific

or due to cross-reactivity [24,25,26]. Several studies have reported

the existence of HA subtype-specific as well as inter subtype-

conserved epitopes [27,28,29]. ELISA assays based on epitopes

that are highly conserved and specific for one certain HA subtype

will be useful for rapid and simple subtyping of IAVs. Such

epitopes in IAVs have not been fully addressed although many

studies have been performed. In the present study, we report the

successful identification of a new epitope, which is highly

conserved among the majority of IAV strains of H1 subtype.

Moreover, we developed an ELISA assay for H1 antibody

subtyping based on this epitope. Results derived from this new

assay correlate with results obtained through the use of HI test.

Results

Identification of immunodominant epitopes in the HA
protein of H1N1pdm virus

To identify the immunodominant epitopes in the HA protein, a

peptide scanning assay was performed. A set of 50 peptides with

five residues overlapping with the adjacent peptides spanning the

ectodomain sequences of the HA protein of the H1N1pdm virus

strain A/California/04/2009 were synthesized. The binding

between these peptides and the convalescent serum samples from

11 H1N1pdm patients were examined by ELISA using these

peptides as coating antigens. Five of these peptides (P3, P5, P15,

P16 and P31) were found to react well with the sera tested. These

peptides corresponded to the sequences of amino acid (aa) residues

38–52, 58–72, 158–172, 168–182, and 318–332 in the HA

molecule, respectively (Fig. 1A and Table 1). Among them, the P3

peptide reacted with 54.5% (6/11) of the sera, the P15 and P16

peptides reacted with 81.8% (9/11) of the sera, while the P5 and

P31 peptides reacted with 100% (11/11) of the sera. These data

indicated that these peptides may contain H1N1pdm virus B cell

epitopes.

To visualize the location of the peptides on the HA protein, we

mapped the peptides on the crystal model of this protein (Fig. 1B).

The various colors in Figure 1B represent the different peptides.

Although P3 (residues 38–52, indicated by blue) and P31 (residues

318–332, indicated by red) are parts of HA1 in primary sequence,

they are located in the middle of helix A and B in the trimeric

structure and are partially surface exposed. P5 (residues 58–72,

indicated by magenta) seems to be a dispatch that links the stem

region and the globular region and is fully surface exposed

(Fig. 1B). P15 and P16 (residues 158–172 and 168–182, indicated

by orange) are located in the receptor binding domain [11].

Immunogenicity of immunodominant peptides
To confirm the immunogenicity of these peptides in vivo, we

analyzed sera derived from peptide-immunized mice. The five

positive peptides and two control peptides (P6 and P30) were

coupled with keyhole limpet hemocyanin (KLH) and were used to

immunize BALB/c mice (Table 1). The antisera were collected

five days after the third immunization and titrated by ELISA using

corresponding peptide as a coating antigen. Our results showed

that all of the peptide conjugates except P15 induced potent

antibody titers. The endpoint titers of antisera in ELISA from mice

immunized with P3, P5, P6, P16, P30, and P31 peptides were

1:6,400, 1:51,200, 1:51,200, 1:12,800, 1:51,200, and 1:25,600,

respectively (Fig. 2A). These data indicate that most of the positive

peptides elicite humoral immunity and are highly immunogenic in

mice.

To confirm that these antibodies can recognize the HA antigen,

the reactivity of the anti-peptide sera were evaluated by Western

blot and ELISA against the purified HA0 protein of H1N1pdm

virus. Our data demonstrate that sera against P3, P5, and P31 but

not those against P6 and P30 (controls) react to the HA0 protein

(Fig. 2B and 2C). The anti-P16 sera did not react to the HA0

protein, although it exhibited a high ELISA reactivity to the HA0

protein (Fig. 2B and 2C). Taken together, our results demonstrate

that P3, P5, and P31 peptides contain dominant epitopes of

H1N1pdm virus. We then characterized these three peptides in

the following studies.

To determine if the epitopes identified in this study can

stimulate neutralizing antibodies, a HA-pseudotype neutralization

test was performed against the anti-peptide sera using the

H1N1pdm pseudotyped lentivirus. None of the sera against P3,

P5, P16, and P31 could efficiently inhibit (90% inhibition [30]) the

entry of H1N1pdm HA pseudotypes (Figure 2D), indicating that

these epitopes do not contain neutralizing activity.

Specificity of the identified epitopes
Western blot analysis was used to determine the specificity of

the epitopes present in the peptides P3, P5, and P31. The H1–H16

recombinant HA proteins were obtained by transient expressions

of corresponding genes by the pCAGGS vector in 293T cells. The

lysates of these cells were used to examine the specificity of

antibodies elicited by peptide-conjugates. As shown in Fig. 3A, the

anti-P3 serum reacted with H1 (including 07H1 and 09H1

viruses), H2, H5, and H6 HA proteins, while anti-P5 and anti-P31

sera only reacted with the H1 HA proteins. These findings

indicated that P5 and P31 may contain H1-subtype specific

epitopes.

To evaluate the subtype-specificity of epitopes in P5 and P31

further, additional HA proteins of three epidemic human strains

from different years (1918, 1934 and 1977) as well as a swine strain

were expressed by pCAGGS vector in 293T cells. The reactivity of

anti-P5 and P31 sera with the cell lysates was determined by

Western blot analysis. Our results showed that the anti-P5 serum

strongly reacted with all of the six H1 HA proteins in a manner

similar to an antibody against the HA1 of H1N1pdm virus

(Fig. 3B). We found that the anti-P31 sera reactivity was weak

Subtype Specific Epitope in Influenza HA Protein
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against HA proteins from the 1918 and 1977 virus strains (Fig. 3B).

These data indicated that the epitopes in P5 and P31 peptides are

relatively conserved among H1-subtype IAVs though these viruses

have circulated in the world for almost a century.

To test if anti-P5 sera cross-react with influenza type B virus, the

reactivity of anti-P5 sera with two representative influenza type B

virus strains (B/hubeiwujiagang/158/2009,Yamagata lineage and

B/heilongjianghulan/116/2010, Victoria lineage) and an influen-

za type A virus strain (A/H1N1/PR8/34) was examined by

Western blot analysis. The results showed that anti-P5 serum

reacted well with A/H1N1/PR8/34 virus but not with influenza

type B virus strains (Fig. 3C), further confirming the specificity of

the epitope in P5.

Conservation analysis
To determine the conservation of the identified epitopes among

IAVs, the aa sequences of P3, P5, and P31 were aligned with the

corresponding aa sequences of all the 16 subtype HAs available in the

Figure 1. Identification of immunodominant epitopes in the HA protein of H1N1pdm influenza virus by peptide scanning analysis.
(A) A set of 50 peptides that cover the ectodomain of the HA protein of A/California/04/2009 strain were used to coat 96-well microplate. Sera (1:200
dilution) from 11 H1N1pdm patients and 10 healthy donors were screened for the presence of antibodies to the 50 peptides using ELISA. The positive
rate of H1N1pdm sera for each peptide was calculated and plotted. (B) The identified peptides displayed in stereo view. The HA trimer surface view of
H1N1pdm influenza virus (PDB ID:3LZG) is shown on the left and colored to illustrate the five immunodominant peptides. From most membrane
distal to proximal: P15 and P16 (orange, residues 158–182), P5 (magenta, residues 58–73), P31 (red, residues 318–332), P3 (blue, residues 38–52). The
HA monomer cartoon view is shown on the right and the same coloring scheme applies to the structure on the left.
doi:10.1371/journal.pone.0023374.g001
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GenBank. Fig. 4 is a representative of the alignment analysis, showing

that P5 is identical to HA of H1 subtype strains. P3 is identical to HA

of the H1 subtype, as well as highly identical to HA of the H2, H5,

and H6 subtypes. These data are consistent with the specificity

analysis by Western blot (Fig. 3A). Although anti-P31 antibody only

recognizes the H1-subtype HA, it is similar to multiple subtypes.

To assess the identity levels of P5 and P31 sequences among the

known IAV strains, in silico coverage analysis was performed. This

analysis showed that the P5 peptide sequence could be identified in

91.6% (9860/10767) of the H1-subtype HA sequences available in

the Influenza Research Database (http://www.fludb.org) (Table 2).

Notably, this sequence scarcely presented (3.3% 792/23895)

among the HAs of H2–H16 subtype IAVs. However, despite a

high identity in the H1 HA proteins (93.1%), the peptide sequence

of P31 also presented among the HAs of H2–H16 viruses (78.8%).

Taken together, these findings indicate that the P5 peptide is

H1-subtype specific and is conserved among H1 virus strains.

Fine mapping of the epitope contained in P5
To define the epitope contained in P5 precisely, a peptide-

inhibition ELISA was performed. This experiment is reliable and

is a standard methodology to determine the fine specificity of

antigen-antibody reactions [31,32]. A panel of short peptides

derived from P5 (N6–N14, with C-terminus truncation; and C6–

C14, with N-terminus truncation) were used to block the binding

of anti-P5 antibody to coated P5. As shown in Fig. 5, antibody

induced by the P5-KLH conjugate was inhibited by peptide N10–

N14 and the parental peptide P5 to similar extents, whereas

peptides N6–N9 only showed inefficient inhibition even at high

molar concentrations. A similar pattern of inhibition was observed

with the C-terminal conservative derivatives. Peptides C12, C13,

Table 1. Sequences of the peptides conjugated with KLH
carrier for animal immunization.

Designation Positions# Sequences

P3-KLH 38–52 EKNVTVTHSVNLLED-KLH

P5-KKC-KLH 58–72 LCKLRGVAPLHLGKC-[Acp]-KKC-KLH*

P6-KLH 68–82 HLGKCNIAGWILGNP-KLH

P15-KKC-KLH 158–172 AKSFYKNLIWLVKKG-[Acp]-KKC-KLH

P16-KKC-KLH 168–182 LVKKGNSYPKLSKSY-[Acp]-KKC-KLH

P30-KLH 308–322 PFQNIHPITIGKCPK-KLH

P31-KKC-KLH 318–332 GKCPKYVKSTKLRLA-[Acp]-KKC-KLH

#Indicated as the position corresponding to the HA protein of pandemic A/
H1N1 2009 influenza virus strain A/California/04/2009.

*Acp: coupled with 6-aminocaproic acid.
doi:10.1371/journal.pone.0023374.t001

Figure 2. Immunogenicity of immunodominant peptides. (A) Titration of IgG antibody against peptides derived from the H1N1pdm virus. The
titers of murine sera were determined as a series of two-fold dilutions by ELISA. (B and C) The reactivities of anti-peptide sera (1:400 dilution) with the
purified HA0 protein of the H1N1pdm virus were analyzed by Western blot (B) and ELISA (C). For the ELISA assay, the OD450 nm values are expressed
as mean 6 SD. (D) Neutralization activity of anti-peptide sera. HA-pseudotype neutralization tests were performed to determine the neutralizing
activity of the anti-sera derived from immunization with the peptides P3, P5, P6, P16, P30, and P31 in mice. The percentage of infectivity compared to
that of negative serum (Ctrl) was calculated. Serum that induced a 90% reduction of infectivity was considered positive. Data were from at least
duplicate testing of serum samples.
doi:10.1371/journal.pone.0023374.g002
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C14, and the parent peptide P5 demonstrated comparable and

efficient inhibition, whereas only slight inhibition was observed in

peptides C6–C11 (Fig. 5B). Since the amino acid sequence

LRGVAPL overlapped both peptides N10 and C12 (Fig. 5), we

speculate that this sequence met the minimum requirements of

binding to the anti-P5 antibody. However, the synthetic peptide

LRGVAPL did not block the binding between P5 peptide and its

antibody, nor did it directly bind to the P5 antibody (Fig. 6). As P5

Figure 3. Specificity of antibodies induced by peptide conjugates. (A) Reactivities between antibodies against P3, P5 and P31 and H1–H16
HA proteins. Western blot analysis was performed using lysates from 293T cells transfected with the recombinant pCAGGS plasmids expressing H1–
H16 HA proteins. For H1 subtype HA, HA proteins from a seasonal epidemic H1N1 strain A/Brisbane/59/2007 and an H1N1pdm strain (A/California/
04/2009) were both tested. (B) Reactivities between antibodies against P3, P5 and P31 and HA proteins of H1 subtype strains. Western blot analysis
was performed on 293T cell lysates expressing recombinant HA proteins from five human H1N1 strains isolated in different years (1918, 1934, 1977,
2007, 2009) and a swine H1N1 strain. 293T cells transfected with an empty vector was used as a control (Ctrl). b-actin was used as a loading control.
For the backgrounds of various subtype IAV strains, see Fig. 4. (C) Reactivities between anti-P5 antibody and HA proteins of influenza B virus strains.
Western blot analysis was performed using different hemagglutinating units (HAU) of influenza B virus strains B/hubeiwujiagang/158/2009 (BY) and
B/heilongjianghulan/116/2010 (BV). An influenza A virus strain A/PR8/34 (H1N1) (PR8) was used as positive control. MDCK cells were used as a
negative control (Ctrl).
doi:10.1371/journal.pone.0023374.g003
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exhibited the highest reactivities in the ELISA compared with the

derived shorter peptides, we used P5 for further experimentations.

Performance of a peptide-ELISA for H1 antibody
detection

Inspired by the high specificity of P5 among the H1-subtype

viruses, we developed an indirect ELISA assay using the P5

peptide to evaluate its performance as a diagnostic tool for H1

antibodies. The HI test was used as a reference method. As shown

in Table 3, the overall agreement of these two methods was 87%,

showing that the two methods have good correlation (Pearson

correlation coefficient R = 0.741). The sensitivity and specificity of

peptide-ELISA versus HI test was 96.5% and 74.4%, respectively,

indicating the potential of the peptide-ELISA method in detecting

antibody against H1-subtype IAVs.

Discussion

In the present study, we identified immunodominant linear B

cell epitopes on the H1N1pdm virus HA protein by a peptide

scanning approach using H1N1pdm patients sera. We confirmed

that an unidentified epitope was highly conserved among H1

subtypes viruses and showed a good correlation with results

obtained using the HI test. These findings demonstrate the

potential of epitope-based antibody detection in IAV diagnosis and

surveillance.

IAV escapes the human immune system by continuous

antigenic drifts and occasional antigenic shifts [33]. Attempts to

develop universal vaccines and reliable diagnostic tools based on

conserved epitopes of IAV are big challenges. Several epitopes that

can elicit broad spectrum neutralizing antibodies have been

identified recently. For example, Sui et al. identified a universal

neutralizing epitope for group 1 HA [34]. Yoshida et al. reported a

universal epitope in antigenic site B shared by H1, H2, H3, H5,

H9, and H13 subtypes [35]. All these epitopes are conformation-

dependent. In this study, we identified two epitopes (P5 and P31)

which have not been identified previously (Fig. S1). The P5 (aa58–

72) seems to be a dispatch that links the stem region and the

globular region and is fully exposed on the surface, while P31 (aa

318–332d) is located in the middle of helix A and B on HA2. In

contrast to previous studies, we found P5 to be a linear B cell

epitope. Our data demonstrate that this epitope is highly

conserved among H1 viruses (9860/10767, 91.6%). Because viral

mutants that are resistant to conformational epitopes are more

easily generated, the conserved linear epitope is more suitable for

differentiating subtypes than conformational epitopes [33]. Hence,

the epitope in P5 provides a new target for reliable diagnostics of

H1-subtype IAVs.

Antigenic sites in IAV HA proteins of H1, H2, and H3 subtypes

had previously been characterized by sequence analysis on

antigenic variants and amino acid substitutions. These previously

identified antigenic sites were mainly located in the globular head

in the three-dimensional structure of the HA1 subunit of the HA

molecule [36,37,38,39]. For instance, five antigenic sites have been

identified in HA of influenza virus A/PR/8/34, a well-known

reference strain of H1N1 IAV [39]. Recently, several epitopes

were identified in the HA2 unit [34,40,41]. Together with these

reports, our results indicate that there are more epitopes than what

we have imaged and the epitopes of IAV need to be further

characterized.

The difference between our findings and previously identified

epitopes can be explained by the difference of screening method

used between our study and those of others. In previous studies,

monoclonal antibodies from murine hybridoma cells were used to

Figure 4. Alignment between the amino acid sequences of the peptides P3, P5, and P31 and the corresponding representative HA
sequences of H1–H16 subtypes. Sequences of aa 38 to 52, 58 to 72, and 318 to 332 of the HA protein of A/California/04/2009 (GenBank number
FJ966082.1) are aligned with the corresponding region of multiple HA proteins of H1–H16 subtypes and H1-subtype strains isolated in different years
by BioEdit software.
doi:10.1371/journal.pone.0023374.g004

Table 2. Frequency of P5 and P31 epitope among H1
subtype HA.

Subtype
Query
peptide

Number of hits/Total
number of sequences

Coverage
rate (%)*

H1 P5 9860/10767 91.6

H2–H16 790/23895 3.3

H1 P31 10027/10767 93.1

H2–H16 18830/23895 78.8

*Data by January 28, 2011.
doi:10.1371/journal.pone.0023374.t002
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identify antigenic sites, while in this study we used a peptide

scanning approach, which involves overlapping peptide library

and human convalescent antisera—a strategy that is widely used

for viral epitope identification [27,42]. Given the fact that viral

antigen can be recycled and presented as short peptides with

different conformation during humoral immune response and

these short peptides can be selected by B cell clones [43], and that

convalescent sera from patients were much more complex than

monoclonal antibodies from mice and can reflect the real immune

responses during viral infection [44], our approach adds to the

available techniques currently being used to identify linear

epitopes in serologic tests.

Because HA pseudotyped lentivirus has been widely applied in the

study on neutralizing antibodies against IAVs [30], we used this

method to evaluate if the epitopes identified in this study could

stimulate neutralizing antibodies. Our data showed that these epitopes

could not elicit neutralizing antibodies in pseudovirion neutralizing

assays due to their linear nature. Previous studies have shown that

most neutralizing epitopes are conformation dependent [34,35].

The length of B cell epitopes can vary from 5 to 20 amino acids

[45,46]. To map the epitope contained in P5, we performed a

peptide-inhibition ELISA using a series of N-terminal and C-

terminal truncated peptides. However, we found that the full-

length P5 (15 aa in length) rather than truncated peptides showed

strongest binding to the corresponding antibody (Fig. 5 and Fig. 6).

As peptides N10 and C12 are the shortest truncated P5 that can

bind to anti-P5 antibody and share a core sequence of LRGVAPL,

we tested whether this sequence could be the epitope. However,

the synthetic peptide LRGVAPL did not block P5-antibody

interactions nor bind P5 antibody (Fig. 6). Thus, we speculate that

adjacent amino acids to this sequence are also involved in the

binding of antibody elicited by P5-KLH conjugates.

Figure 5. Inhibition of the binding of anti-P5 serum to parental peptide P5 by peptide homologs. Antiserum induced by the P5-KLH
conjugate was tested by ELISA for its ability to bind to the P5 peptide in the presence of dilutions of peptides N6–N14 (panel A) or peptides C6–C14
(panel B).
doi:10.1371/journal.pone.0023374.g005

Figure 6. Peptide LRGVAPL fail to bind anti-P5 serum and inhibit P5-antibody interactions. (A) anti-P5 serum was tested by ELISA for its
ability to bind to P5 peptide in the presence of dilutions of peptide P5–7 (LRGVAPL). P5 (LCKLRGVAPLHLGKC) and P6 (HLGKCNIAGWILGNP) were used
as positive and negative controls, respectively. (B) The reactivities of anti-P5 sera (1:400 dilution) with the peptides P6, P5–7, and P5 were analyzed by
ELISA. The OD450nm values are expressed as mean 6 SD.
doi:10.1371/journal.pone.0023374.g006

Subtype Specific Epitope in Influenza HA Protein
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The concept of using linear epitopes in influenza virus

diagnostics and control has not been extensively investigated. In

a recent study, an epitope-blocking ELISA, which can universally

detect antibodies to human H5N1 virus, has been developed [17].

Our results show that a peptide-ELISA based on the highly

conserved H1 subtype-specific epitope can also be used for the

detection of H1 antibodies, displaying good correlativity with the

HI test. Our results indicate the potential of the P5 epitope in H1-

subtype IAV diagnosis. However, the performance of this assay

needs to be further evaluated in studies with large scale samples.

In conclusion, our data provide evidence that the H1 subtype

HA harbors more epitopes than what has been found previously.

The conservation of an epitope (P5, aa 58–72) in the H1-subtype

HA of IAV and its near complete absence in other subtypes

indicate that this epitope meets the critical requirements for

diagnosis of H1 subtype influenza virus infections. The peptide-

ELISA developed in our study may be applicable for sero-

diagnosis and may serve as a universal diagnostic tool for H1-

subtype IAV surveillance.

Materials and Methods

Synthetic peptides and their conjugates
To screen the H1-subtype specific epitopes, a set of 50 peptides

spanning the amino acid sequences of the HA protein ectodomain

of pandemic A/H1N1 2009 (H1N1pdm) influenza virus strain A/

California/04/2009 were synthesized. Each peptide is 15 amino

acids in length with five residues overlapping with the adjacent

peptides [46] (Fig. 1). The peptides selected for immunization

experiments are shown in Table 1. These peptides were

conjugated with a carrier protein, the keyhole limpet hemocyanin

(KLH; Sigma, St. Louis, MO), to improve their immunogenicity

[47]. As the water solubility of peptides P5, P15, P16 and P31 were

too low to conjugate with KLH directly, these peptides were first

linked to 6-aminocaproic acid and then to the tripeptide KKC

prior to being conjugated with KLH [48]. In addition, a family of

short peptide homologs to the P5 peptide was also synthesized to

fine map the epitope contained in the P5 peptide (Fig. 5). All of the

peptides and their conjugates used in this study were synthesized

by Sangon (Shanghai) Biotechnol Co., Ltd. (Shanghai, China).

Each peptide was purified to homogeneity (.95% purity) by high-

performance liquid chromatography and verified by mass

spectrometry.

Reference influenza virus strains
The reference influenza virus strains A/PR8/34 (H1N1)

(abbreviated PR8), B/hubeiwujiagang/158/2009 (Yamagata lin-

eage, abbreviated BY) and B/heilongjianghulan/116/2010 (Vic-

toria lineage, abbreviated BV) were kindly provided by the Beijing

Center for Disease Control and Prevention. The viruses were

grown in MDCK cells as described elsewhere [5]. The titers of

virus strains were determined by hemagglutination tests and

expressed as hemagglutinating units (HAU). For Western blot

analysis, the inactivated viruses were lyzed in a lysis buffer (50 mM

Tris-HCl, 150 mM NaCl, 5 mM EDTA, 1% Triton-X, pH 7.4)

supplemented with a protease inhibitor cocktail (Roche, India-

napolis, IN).

Serum samples
Serum samples were collected from 11 convalescent patients

during the early 2009 H1N1 pandemic in Beijing. The diagnostic

criteria for H1N1 influenza virus infection of these patients fully

followed the WHO’s descriptions. Sera from 10 healthy blood

donors were used as negative controls. In addition, serum samples

collected from 100 blood donors were recruited to evaluate the

peptide-ELISA assay developed in this study. All these samples

were kindly provided by the Beijing Municipal Center for Disease

Control and Prevention (Beijing, China) and written informed

consent was obtained from all participants. All samples were coded

prior to analysis to ensure anonymity and the procedures were

approved by the Institutional Medical Ethic Review Board of the

Institute of Pathogen Biology, Chinese Academy of Medical

Sciences (Beijing, China).

Expression of HA proteins
The full-length cDNA fragments corresponding to H2–H16 HA

subtypes of IAV were inserted into the pCAGGS vector

(purchased from Addgene) to express entire HA proteins

(unpublished data). For H1 proteins, HA gene representing

human IAV strains from different years (1918, 1934, 1977, 2007

and 2009) and a swine influenza virus strain were expressed by

inserting the corresponding cDNA fragments into the pCAGGS

vector in a similar manner. For the details of these influenza virus

strains, please refer to Fig. 4. Recombinant plasmids were

transfected into 293T cells (ATCC Number CRL-11268) using

Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according to the

manufacturer’s instructions. The cells were harvested and lyzed

72 hours after transfection. The expression of HA proteins was

verified by Western blot analysis using murine antibodies against

corresponding HA1 proteins (unpublished data).

ELISA
The reactivities of the synthetic HA peptides or purified HA0

protein (eENZYME LLC, Montgomery Village, MD) with the

convalescent-phase sera from H1N1pdm patients and the serum

samples from mice immunized with peptide conjugates were

determined by ELISA. Briefly, each peptide (1 mg/well) or protein

(0.1 mg/well) was used to coat 96-well microtiter plates (Corning

Costar, Acton, MA) in 0.1 M carbonate buffer (pH 9.6) at 4uC
overnight. After blocking with 1% bovine serum albumen (BSA),

the plates were incubated with indicated diluted serum samples

(human or mouse) at 37uC for 2 hr, then washed four times with

PBS containing 0.1% Tween 20 (PBS-T). Bound IgG antibodies

were detected with horseradish peroxidase (HRP)-conjugated goat

anti-human IgG or anti-mouse IgG (Sigma) at 37uC for 1 hr. After

four washes with PBS-T, the reaction was visualized by addition of

the substrate 3,39,5,59-tetramethylbenzidine (TMB, sigma). Color

development was stopped by the addition of 50 ml/well of 2 M

sulphuric acid after 15 min. The optical density at 450 nm

(OD450 nm) was measured by an ELISA plate reader (Molecular

Devices, Sunnyvale, California).

Table 3. Comparison of peptide ELISA and HI test.

Peptide ELISA HI test Sum

Positive Negative

Positive 55 11 66

Negative 2 32 34

Sum 57 43 100

x2 = 51.81, P,0.01, Pearson correlation coefficient R = 0.741. The sensitivity and
specificity of peptide-ELISA versus HI test was 96.5% and 74.4%, respectively.
Calculation formula: sensitivity = TP/(TP+FN), specificity = TN/(FP+TN), where TP
is the number of true positives, FN is the number of false negatives, FP is the
number of false positives and TN is the number of true negatives [52].
doi:10.1371/journal.pone.0023374.t003
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To evaluate the reactivity of the P5-derived short peptides with

the anti-P5 antibody, peptide-inhibition ELISA assays were

performed by adding dilutions of the peptides to a constant

amount of the antibody elicited by the P5-KLH conjugates (1:5000

dilution). Maximum binding to antigen-coated wells was observed

in the absence of a peptide inhibitor. The antibody bound was

expressed as a percentage of the maximum level of binding.

Animal immunizations
Female BALB/c mice of 6–8 weeks old were immunized

subcutaneously with various peptide-KLH conjugates mixed with

Freund’s Complete Adjuvant (Sigma) at 100 mg per injection.

Boost injections were given at 2-week intervals with 50 mg antigen

in Freund’s Incomplete Adjuvant (Sigma) [49]. The antibodies

were collected five days after the third boost. All the animal

experiments were carried out in the facilities of the Institute of

Laboratory Animal Sciences (ILAS), Chinese Academy of Medical

Sciences (CAMS). All the experimental procedures were approved

(permit number SLXKJ2009-0007) and supervised by the Animal

Protection and Usage Committee of ILAS, CAMS.

Western blot
At 72 hr post-transfection, the cells transfected with HA-

expressing plasmids were harvested, pelleted, and lyzed in a lysis

buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM EDTA, 1%

Triton-X, pH 7.4) supplemented with a protease inhibitor cocktail

(Roche, Indianapolis, IN). Aliquots of cell lysates (50 mg) or virus

lysates were blotted after 10% SDS-PAGE onto nitrocellulose

membranes (Pall, Port Washington, NY). The membranes were

blocked with 5% non-fat milk and then incubated with the

primary antibodies indicated in the figures at 4uC overnight. This

was followed by incubation with the goat anti-mouse IRDyeH
Fluor 800-labeled IgG secondary antibody (1:10, 000) (Li-Cor,

Lincoln, NE). After washing, the membranes were scanned by the

OdysseyH Infrared Imaging System (Li-Cor) and analyzed with

Odyssey software. The molecular sizes of the developed proteins

were determined by comparison with the pre-stained protein

markers (Fermentas, Maryland, CA).

Hemagglutination inhibition test (HI)
HI test was carried out as described elsewhere [5]. RDE treated

serum samples were inactivated at 56uC for 30 min and two-fold

serially diluted at an initial dilution of 1:10. Twenty five ml of the

diluted serum were incubated with 25 ml of the four hemagglutination

units from reference influenza strains for 30 min at room

temperature. The reference H1N1 IAV strains for HI test were A/

Tianjinjinnan/15/2009(H1N1) and A/California/04/2009 (H1N1),

respectively. 50 ml of 1% chicken erythrocyte suspension was added

to each well and incubated for 30 min at 4uC. Positive reactions were

recorded when the HI antibody titer was equal to or greater than 40.

Production of pseudovirions and pseudotype
neutralization test

H1N1pdm virus pseudotyped lentiviruses were produced in

293T cells co-transfected with pNL4.3-R2E2, HA and NA

constructs using a polyethylenimine (PEI)-based transfection

protocol [50]. Cell culture supernatants were collected 48 hr post-

transfection, filtered through a 0.45 mm-pore size filter (Millipore,

Billerica, MA ) and used in pseudotype neutralization test. Serum

samples, heat inactivated at 56uC for 30 min, were diluted 40-fold

in culture medium and mixed with an equal volume of diluted

H1N1pdm influenza pseudovirions. After incubation at 37uC for

1 hr, 100 ml of pseudovirions (containing 50 ng/mL of HIV p24

gag protein) and serum mixtures were added into 96-well plates that

contained 293T cells grown for 24 hr at initial 16104 cells.

Infectivity was evaluated at 72 hr post-infection by luciferase assay.

The percentage of infectivity of pseudovirions treated by tested

serum to that of negative serum (as control) was calculated. 90%

reduction in infectivity by serum addition is considered to be

neutralizing activity [30]. Tests were run at least as duplicates.

In silico coverage analysis
To assess the identity of the HA epitopes in IAVs, in silico

analysis was performed by utilizing bioinformatics tools at the

Influenza Research Database (http://www.fludb.org) [51]. The

two programs used in this study were Search for Protein

Sequences and Identify Short Peptides in flu proteins. The former

program was used to define the number of total sequences in HA

proteins according to the Subtype parameter (H1 or H2–H16).

The latter program defined the number of hits (P5 or P31) in the

H1 or H2–H16 total sequences. Because there are no standards

for evaluating short peptide sequence homology, we chose the

fuzzy match analysis to represent the identical level of a peptide

sequence to HA proteins. The analysis type was chosen as fuzzy

match, which meant .50% of characters were identical to the

searched aa string. For example, entering GILGFVFTL may also

find AILGFVFTI but not ALIGFVFSI.

Statistical analysis
The Pearson correlation coefficient was calculated by Pearson

chi square test for crosstab tables using SPSS software. The

sensitivity and specificity of the peptide-ELISA versus HI test was

determined by ROC curve analysis using SPSS software.

Supporting Information

Figure S1 Localization comparison between the identi-
fied peptides and the classical five antigenic sites in
stereo view. The HA monomer surface view of influenza virus

A/PR/8/34 (PDB ID:1RU7) is shown and colored to illustrate the

five antigenic sites (Sa, Sb, Ca1, Ca2, and Cb) and the identified

peptides. From most membrane distal to proximal: P3 (blue), P31

(red), P5 (black), Cb (green), Ca1 (magenta), Ca2 (rainbow), Sa

(yellow), and Sb (cyan).

(TIF)
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