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Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is intrinsically cross-resistant to virtually all b-lactam antibiotics. The
central determinant for the MRSA phenotype is the mecA gene, whose transcriptional control may be mediated by a
repressor (mecI) and a sensor/inducer (mecR1). The mecI-mecR1-mediated induction of mecA takes several hours rendering
the strains phenotypically susceptible in spite of the presence of the resistance gene. Therefore, it has been proposed that
the full resistance to b-lactams observed in many contemporary clinical MRSA strains requires a non-functional mecI-mecR1
regulatory system. The mecA gene is embedded in a large chromosomal cassette (the SCCmec element) for which several
structural types have been described. Some epidemic MRSA clones, typically expressing full b-lactam resistance, carry
SCCmec elements that contain an intact mecI-mecR1 locus (e.g. SCCmec types II and III). We have addressed this apparent
contradiction by first sequencing the mecI coding region and mecA promoter sequences in a collection of prototype MRSA
strains characterized by different SCCmec types. A conserved non-sense mutation within mecI was detected in all SCCmec
type III strains tested, presumably responsible for a non-functional truncated MecI protein and, therefore, explaining the full
resistance phenotype. In SCCmec type II strains no conserved mutations were found. We next transformed a collection of
prototype MRSA epidemic strains with a recombinant plasmid overexpressing a wild-type copy of mecI. Surprisingly, for the
great majority of the strains no significant alterations in the phenotypic expression of b-lactam resistance could be detected.
These findings were confirmed and further explored, challenging the currently accepted mechanism of mecA transcriptional
control. Our observations suggest the existence of yet unidentified additional determinants involved in the transcriptional
control of mecA gene and point to a revision of the mecA regulatory mechanism in contemporary MRSA strains.
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Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is a leading

cause of nosocomial infections worldwide and has also emerged as

a community-associated pathogen [1]. MRSA are inherently

cross-resistant to virtually all b-lactam antibiotics, the most

effective and widely used class of antimicrobials. Moreover,

MRSA clinical strains are quite often multi-drug resistant,

reducing significantly the therapeutic options for the treatment

of staphylococcal infections.

The MRSA characteristic phenotype is due to the presence of

mecA, which encodes a penicillin-binding protein (PBP), PBP2a,

with reduced affinity for b-lactams [2,3]. mecA is embedded in a

large heterologous chromosomal cassette, the SCCmec element [4].

Some MRSA strains carry upstream to the mecA gene the

regulatory genes mecI-mecR1 encoding for a repressor and a

sensor/inducer of the mecA expression, respectively [5]. This

genetic organization is similar to the b-lactamase locus that

encodes for penicillin-resistance only, and contains the structural

gene (blaZ), a repressor (blaI) and a sensor/inducer (blaR1). Apart

from the identical structural organization between mec and bla

systems, there is also good homology between the inducers (61%

identity at the amino acid level) and the b-lactam binding domain

of the repressors (44% identity at the amino acid level). In fact,

there is a cross-talk between both regulatory systems, as each one

alone is able to control the transcription of mecA and blaZ [6,7].

However, the two regulatory systems differ remarkably in the

induction efficiency: the blaI-blaR1 system induces mecA in a few

minutes, whereas the mecI-mecR1 system takes several hours

[6,7,8]. Actually, the mecI-mecR1 mediated induction of mecA

expression is so slow that, in clinical terms, fully functional mecI

and mecR1 genes render the cell phenotypically susceptible in spite

of the presence of mecA – the so-called ‘‘pre-MRSA’’ phenotype

[5,9]. In agreement with this observation, the in vitro deletion of the
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mecI gene has been shown to increase the resistance levels to b-

lactams in staphylococci [5,9,10].

Based on those observations, it has been postulated that full

resistance to b-lactams, characteristic of many contemporary

MRSA clinical strains, implies a non-functional mecI-mecR1

regulatory system [5,9]. As a matter of fact, the absence of mecI

or the accumulation of point mutations in the mecI coding

sequence, mecI ribosomal binding site or mecA gene promoter, have

been found in several MRSA strains [11,12,13,14,15]. Neverthe-

less, in spite of the negative effect of the presence of MecI on the

phenotypic expression of resistance, there is no clear direct

correlation between the cellular amounts of mecA transcript or

PBP2a protein and the phenotypic level of resistance (i.e. the

minimum inhibitory concentration, MIC, for the strain) [16,17].

Finally, the existence of other unknown determinants involved in

mecA regulation, for instance mediating the signal transduction

between the activated MecR1 and the promoter bound MecI, has

been postulated based on contradictory experimental observations

[13,15,18] and critical structural data analysis [19,20]. Early

studies on the b-lactamase regulon in S. aureus by Cohen and

Sweeney have also suggested the existence of the blaR2 locus,

unlinked to blaI-blaR1 and able to mediate the constitutive

expression of blaZ [21].

Currently, MRSA clones are defined not only based on the type

of genetic lineage but also on the type of SCCmec element they

carry, as the same lineage may be associated with several SCCmec

types [22,23]. Several structural types of the SCCmec element have

been described differing in size and genetic content [24]. The

genetic organization of the mecA vicinity (mec gene complex) is one

of the key characteristics used to define SCCmec types. In S. aureus

three major mec classes have been described based mainly on the

presence of insertion sequences and intact or disrupted mecI-mecR1

sequences: class A has intact sequences for mecI-mecR1, whereas

classes B and C have no mecI and partially deleted mecR1 due to the

integration of insertion sequences in the regulatory region of the

mecA. Considering the eight major SCCmec types described so far

in S. aureus, the mec gene complex class A characterizes SCCmec

types II, III and VIII; class B, SCCmec types I, IV and VI; and

class C, SCCmec types V and VII. According to the current model

of mecA transcriptional control [5,9], it is tempting to interpret the

disruption of the mecI-mecR1 regulatory system in SCCmec types I

and IV–VII, as a strategy to overcome the tight mecA repression

mediated by mecI-mecR1 system in MRSA strains. However, it

seems that there is no clear correlation between resistance levels

and mecI-mecR1 functionality, as some strains lacking mecI-mecR1

have a very low resistance level, whereas some strains with

complete mecI-mecR1 locus are highly resistant [14,15,25]. In

addition, the epidemicity of MRSA strains does not correlate with

the mecI-mecR1 functionality as well. For example, two major

pandemic nosocomial MRSA clones – the New York/Japan (or

ST5-II) and the Brazilian (or ST239-III) clones – are characterized

by SCCmec types II and III, respectively, and have a complete

mecI-mecR1 locus [22,23].

In this study, we have addressed the puzzling lack of correlation

between SCCmec type (i.e. mec gene class) and resistance phenotype

in order to clarify how the mecA transcription is controlled in

pandemic MRSA strains. We first characterized by DNA

sequencing the mecA regulatory locus in prototype strains of

SCCmec types II and III (i.e. with a complete mecI-mecR1 locus). We

found a conserved point mutation within the mecI coding-sequence

among SCCmec type III strains, which introduces a premature stop

codon resulting in truncated MecI repressor. Among the SCCmec

type II strains we could not find any conserved sequence alteration

either in the mecI coding sequence or in the mecA promoter that

could suggest a non-functional mecI-mecR1 system and, as such,

justify the high-resistance levels to b-lactams. We thus decided to

challenge the current model of mecA regulation by over-expressing

in trans the wild-type MecI in a collection of prototype MRSA

clinical strains. To our surprise, in most strains we could not detect

any significant alterations in the phenotypic expression of oxacillin

resistance. These observations suggest that other yet uncharacter-

ized factors are involved in the control of the expression of b-

lactam resistance in MRSA, namely by interfering with the mecI-

mediated repression of mecA, and point to a revision of the current

model for the transcriptional control of the resistance determinant

in contemporary strains.

Materials and Methods

Bacterial strains and culture conditions
MRSA strains used in this study and their relevant character-

istics are listed in Tables 1 and 2. All strains have been selected

from large international collections and have been previously

characterized in detail for genetic background by pulsed-field gel

electrophoresis (PFGE), multi-locus sequence typing (MLST), and

spa typing and also for SCCmec type. In Table 1, we have included

prototype strains for three major pandemic MRSA lineages

characterized by SCCmec types I–III [22]: the Iberian or ST247-I

clone, the New York/Japan or ST5-II clone, and the Brazilian or

ST239-III clone. In addition, in Table 1 we have also included two

reference strains extensively used in studies addressing the b-

lactam resistance mechanisms in S. aureus: strains COL [26] and

N315 [9]. Strain COL is highly and homogenously resistant to

oxacillin, has a non-functional mecI-mecR1 system, it naturally lacks

b-lactamase, and constitutively expresses mecA [26,27]. Strain

N315, has a very heterogeneous oxacillin-resistance phenotypic

profile, has wild-type mecI-mecR1 sequences, is b-lactamase positive

and has an inducible expression of mecA [5,9]. In Table 2, we list

further MRSA strains that were selected to extended our initial

collection in order to confirm the experimental observations. For

this purpose, we have included more representative SCCmec type

II strains and also strains characterized by SCCmec types IV–VI

[28,29,30]. S. aureus strains were routinely grown overnight at

37uC under aerobic conditions on tryptic soy agar or tryptic soy

broth (Difco, BD). Escherichia coli strains were grown in Luria-

Bertani broth (Difco, BD) with aeration at 37uC. Chloramphenicol

(20 mg/ml) and ampicillin (100 mg/ml) (Sigma-Aldrich) were used

for selection and maintenance of S. aureus and E. coli transformants,

respectively.

DNA manipulations
DNA manipulations were performed by standard methods

[31,32]. Restriction enzymes were used as recommended by the

manufacturer (New England Biolabs). Routine PCR amplification

was performed with AmpliTaq DNA polymerase (Applied

Biosystems) according to the manufacturer’s recommendations.

Wizard Plus Minipreps and Midipreps (Promega) purification

systems were used for plasmid extraction. PCR and digestion

products were purified with Wizard PCR Preps and Wizard DNA

Clean-up systems (Promega). Ligation reactions were performed

with the Rapid DNA Ligation Kit (Roche). DNA sequencing was

performed by the Rockefeller University Protein/DNA Technol-

ogy Center or by Macrogen (www.macrogen.com).

b-lactamase detection
Detection of functional b-lactamase locus was performed either

with BBLTM DrySlideTM Nitrocefin (BD) (strains listed in Table 1)

or with nitrocefin disks (Sigma-Aldrich) (strains listed in Table 2)

Overexpression of mecA Repressor in MRSA
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Table 1. Characteristics of the prototype MRSA strains used in this study.

Relevant characteristics Oxacillin MIC (mg/ml)e)

Strain Origin
Isolation
date

Clonala)

type mecIb) mecR1c) PmecA blad)
Parental
strain

Recombinant
strainf)

COL UK 1965 ST250 – I neg. IS::DmecR1 WT neg. .256 1.5

PER34 Spain 1989 ST247 – I neg. IS::DmecR1 WT pos. .256 .256

HPV107 Portugal 1992 ST247 – I neg. IS::DmecR1 WT pos. .256 .256

N315 Japan 1982 ST5 – II WT WT WT pos. 32 24

BK2464 USA 1996 ST5 – II WT WT WT pos. .256 .256

HU25 Brazil 1993 ST239 – III mecI* WT WT pos. .256 .256

BK2421 USA 1996 ST239 – III mecI* DmecR1 WT pos. .256 .256

Abbreviations: neg., negative; pos., positive; WT, wild-type.
Notes:
a)Clonal types as defined by MLST sequence type (ST) and SCCmec type.
b)neg. – negative (due to IS1272 insertion); WT – wild-type sequence (N315);
*- mutated non-functional mecI at Gln68 (CAARTAA);
c)IS::DmecR1 – mecR1 with no C-terminal sensor domain (due to IS1272 insertion); DmecR1 – 160 bp deletion in the C-terminal inducer domain.
d)The production of b-lactamase was assayed in induced and no induced cultures (see text for details). All strains positive for b-lactamase were inducible.
e)MIC as determined by E-test strips.
f)Parental strains transformed with a high copy number plasmid containing the wild-type mecI coding region (pGC2-mecIWT).
doi:10.1371/journal.pone.0023287.t001

Table 2. Characteristics of the extended collection of representative MRSA strains.

Strain Origin
Isolation
date

Clonala)

type Relevant characteristics Oxacillin MIC (mg/ml)e)

mecIb) mecR1c) PmecA b-lact.d) Parental strain
Recombinant
strainf)

USA100 USA 1995–2003 ST5-II pos. pos. ND pos. 64 64

USA200 USA 1995–2003 ST36-II pos. pos. ND pos. .256 .256

HAR24 Finland 2002 ST36-II pos. pos. ND pos. .256 .256

USA600 USA 1995–2003 ST45-II pos. pos. ND pos. .256 .256

MW2 USA 1998 ST1-IV neg. IS::DmecR1 ND pos. 32 32

HAR22 Finland 2002 ST22-IV neg. IS::DmecR1 ND pos. .256 .256

USA400 USA 1995–2003 ST1-IV neg. IS::DmecR1 ND pos. 96 96

USA800 USA 1995–2003 ST5-IV neg. IS::DmecR1 ND pos. 48 32

VNG17 Portugal 1992–1993 ST5-IV neg. IS::DmecR1 WT neg. 16 0.25

RJP17 Portugal 1992–1993 ST5-IV neg. IS::DmecR1 WT neg. 32 24

HSA49 Portugal 1993 ST5-IV neg. IS::DmecR1 ND pos. 24 24

USA300 USA 1995–2003 ST8-IV neg. IS::DmecR1 ND pos. 24 16

USA500 USA 1995–2003 ST8-IV neg. IS::DmecR1 ND pos. .256 .256

HAR38 Belgium 1995 ST45-IV neg. IS::DmecR1 ND pos. 128 128

USA700 USA 1995–2003 ST72-IV neg. IS::DmecR1 ND pos. 48 48

DEN2949 Denmark 2001 ST80-IV neg. IS::DmecR1 ND pos. 64 64

WIS Australia 1995 ST45-V neg. IS::DmecR1 ND pos. 4 4

HDE288 Portugal 1996 ST5-VI neg. IS::DmecR1 ND pos. 6 6

Abbreviations: neg., negative; pos., positive; WT, wild-type; ND, not determined.
Notes:
a)Clonal types as defined by MLST sequence type (ST) and SCCmec type.
b)neg. – negative (due to IS1272 or IS431 insertions); WT – wild-type sequence (N315); * - mutated non-functional mecI.
c)IS::DmecR1 – mecR1 with no C-terminal sensor domain (due to IS1272 or IS431 insertions).
d)The production of b-lactamase was tested for induced and no induced cultures (see text for details). All strains positive for b-lactamase were inducible. Strains negative

for the nitrocefin assay were tested for the presence of blaZ, blaI, and blaR1 by PCR.
e)MIC as determined by E-test strips.
f)Parental strains transformed with a high copy number plasmid containing the wild-type mecI coding region (pGC2-mecIWT).
doi:10.1371/journal.pone.0023287.t002
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according to the manufacturer’s recommendations for cultures

grown overnight in TSB with and without induction with oxacillin

at 0.5 mg/ml. Results were recorded after 30 min. incubation at

room temperature. In the case of strains negative for the Nitrocefin

assay, the absence of b-lactamase genes was confirmed by PCR

with three pairs of primers targeting internal fragments of ca.

500 bp of blaZ, blaI, and blaR1. Primers were designed based on

the available sequence at GenBank for Tn552 of S. aureus

(accession number: X52734); primer sequences were as follows

(59R39): blaZ F, GAT AAG AGA TTT GCC TAT GC; blaZ R,

GCA TAT GTT ATT GCT TGA CC; blaI F, GCA AGT TGA

AAT ATC TAT GG; blaI R, GAA AGG ATC CAT TTT CTG

TAC ACT CTC ATC; blaR1 F, CAT GAC AAT GAA GTA

GAA GC; and blaR1 R, CTT ATG ATT CCA TGA CAT ACG.

Phenotypic analysis
Initial susceptibility screening to oxacillin was determined for

all parental and recombinant strains with 1 mg oxacillin diffusion

disks prepared in-house [33]. For the MIC determination

oxacillin E-test strips (AB Biodisk) were used for all strains.

Overnight TSB cultures were adjusted to an optical density at

620 nm (OD620) of 0.08 (equivalent to 0.5 McFarland), plated

onto Muller Hinton agar (Difco) plates supplemented with 2%

NaCl, and incubated at 37uC for 24 h. Strains listed in Table 1

were also tested by population analysis profiles (PAPs), as

previously described [34,35]. In short, 10 ml drops of 100, 1021,

1022, 1023, 1024, 1025, and 1026 dilutions of an overnight

culture were plated on TSA plates containing 0, 0.75, 1.5, 3, 6,

12.5, 25, 50, 100, 200, 400, 800 mg/ml of oxacillin (Sigma). For

each oxacillin concentration, colonies were counted for the first

dilution with non-confluent growh after 24 h and 48 h of

incubation at 37uC.

DNA sequencing of mecI and the mecA promoter
Based on the sequence of the mecA regulatory region for the

reference strain N315 (accession number D86934) two primer sets

were designed for the amplification and sequencing of the mecI

coding region and the promoter region of the mecA gene (PmecA).

Primer sequences were as follows (59R39): mecI F, TTA CGC

TTA CCG CTT TTTCG; mecI R, ATC AAG ACT TGC ATT

CAG GC; PmecA F, GTA ACA GAT GAT TGT TGA CC;

PmecA R, AAG ATG AAG TGG TAA TAG CG. DNA

sequencing raw data analysis and multi-sequence alignments were

performed using the DNA Star software package (Lasergene). All

sequences have been deposited in GenBank with accession

numbers JF946491–JF946513.

Recombinant strains
A DNA fragment containing the wild-type mecI coding region

and the putative ribosomal binding site from the prototype strain

N315 was amplified by PCR with the high-fidelity Pfu Turbo DNA

polymerase (Stratagene, La Jolla, CA) with primers 59-ATG GGA

ATT CAG CAC AAC AAA TTT CTG AGC-39 (forward) and

59-AGA GGG GAT CCT CAA CGA CTT GAT TGT TTC C-

39 (reverse) containing the underlined recognition sequences for

endonucleases EcoRI and BamHI, respectively. Using the same

strategy a PCR fragment containing a non-functional mecI coding

sequence (mecI*) was obtained from strain ANS46, a prototype

strain for SCCmec type III strain with a non-sense mutation at

Gln68 in the mecI coding sequence [22,36]. (CAARTAA) . A DNA

fragment containing the wild-type mecI-mecR1 coding regions and

the putative ribosomal binding sites from the prototype strain

N315 was also amplified by PCR with Pfu Turbo DNA

polymerase with forward primer 59-GTT CGA ATT CTT CTA

CTT CAC CAT TAT CGC-39 (containing the underlined

recognition sequences for endonuclease EcoRI) and the same

reverse primer described above. After double digestion and

purification, the inserts were directionally cloned into the multiple

cloning site of pGC2. pGC2 is a high-copy number E. coli-S. aureus

shuttle plasmid with resistance determinants to ampicillin (E. coli)

and chloramphenicol (S. aureus), obtained from P. Matthews, in

which the multiple cloning site is flanked by the strong SP6 and T7

bacteriophage promoters. After ligation the recombinant plasmids

were transformed and propagated in E. coli strain DH5a. The

integrity of the mecIWT, mecI*, and mecImecR1 insert sequences was

verified by DNA restriction analysis and sequencing. The

recombinant plasmids were then introduced into the restriction-

deficient S. aureus strain RN4220 (R. Novick) by electroporation

with a Gene Pulser apparatus (Bio-Rad, Hercules, Calif.)

essentially as previously described [37] and then transduced into

the MRSA clinical strains by using phage 80a, as previously

described [38].

For the electrophoretic mobility shift assay, the wild-type coding

sequences of MecI and BlaI were fused to a histidine tag at the N-

terminal. Inserts were obtained by PCR with the Pfu Turbo DNA

polymerase using DNA from the prototype strain N315 as

template and the following primers (59R39): mecI Q1, TCA

GGG ATC CGA TAA TAA AAC GTA TGA AAT ATC ATC

TGC (forward); mecI Q2, GAG GAA GCT TTC AAC GAC

TTG ATT GTT TCC (reverse); blaI Q1, GTC TGG ATC CGC

CAA TAA GCA AGT TGA ATA TCT ATG G-3 (forward); and

blaI Q2, GAC AAA GCT TAT TTT CTG TAC ACT CTC

ATC (reverse), containing the underlined recognition sequences

for endonucleases BamHI (forward) and HindIII (reverse). After

double digestion and purification, the inserts were directionally

cloned into the multiple cloning site of pQE-30 (Qiagen), an E. coli

expression vector containing the coding sequence for a tag of

histidines upstream the BamH1 restriction site. After ligation the

recombinant plasmids were transformed and propagated in E. coli

strain M15 (Qiagen). The integrity of insert sequences was verified

by DNA restriction analysis and sequencing.

Total RNA isolation and Northern blot analysis
Overnight cultures were grown in TSB, supplemented with

chloramphenicol (10 mg/ml) when appropriate, and then diluted

1:50 in fresh TSB. After cells were grown to the mid-log phase

(OD620,0.7), they were pelleted and processed with the

FastRNA Blue isolation kit (Bio101, QBiogen) in combination

with FastPrep FP120 (Bio101-Savant, QBiogen), according to

the manufacturer’s recommendations. For the analysis of the

mecA induction profile, after cultures were grown to OD620,0.7,

oxacillin at 0.5 mg/ml was added and cultures were incubated

for an additional 60 minutes. Samples were taken at 0, 5, 15, 30,

and 60 minutes, pelleted and kept on ice until being simulta-

neously processed with the FastRNA Blue isolation kit. Total

RNA (5 mg) was resolved through a 1.2% agarose-0.66 M

formaldehyde gel in MOPS (morpholine propanesulfonic acid)

running buffer (Sigma). Blotting of RNA onto Hybond N+
membranes (Amersham) was performed with Turboblotter

alkaline transfer systems (Schleicher & Schuell). For detection

of mecA specific transcripts, a DNA probe was constructed by

PCR amplification with primers (59R39): mecA P1, AAA TCG

ATG TAA AGG TTG GC and mecA P2, GTT CTG CAG TAC

CGG ATT TG. After purification the probe was labeled with a

Ready To Go labeling kit (Amersham) by using [a-32P]dCTP

(Amersham) and was hybridized under high-stringency condi-

tions. The blots were subsequently washed and autoradio-

graphed.

Overexpression of mecA Repressor in MRSA
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Electrophoretic mobility shift assay
Expression and purification of MecI and BlaI N-terminal

histidine tag fusions (His-MecI and His-BlaI, respectively) was

performed in native conditions for 200 ml induced cultures using a

Ni-NTA matrix (Qiagen), as recommended by the manufacturer.

The purification procedure and recombinant protein purity was

evaluated by SDS-PAGE analysis. The concentrations of purified

His-MecI and His-BlaI proteins were estimated using the BCA

Protein Assay Kit (Pierce), as recommended by the manufacturer.

For the electrophoretic mobility shift assay we used the

chemiluminescent-based DIG Gel Shift Kit (Roche), following

the manufacturer’s recommendations. As DNA target we used a

c.a. 200 bp fragment encompassing the mecA promoter and

operator sequences from prototype strain COL obtained by

PCR amplification with primers (59R39): mecA PF1, ATA TCG

TGA GCA ATG AAC TG (forward) and mecA PR1, TAT ATA

CCA AAC CCG ACA AC (reverse).

Results

Characterization of the prototype MRSA strains
The resistance-level to oxacillin of the prototype MRSA strains

listed in Table 1 was checked with the oxacillin E-test. All strains

were classified as fully resistant to oxacillin: MIC$32 mg/ml. The

presence of inducible and functional expression of b-lactamase was

also checked through the hydrolysis of the chromogenic substrate

nitrocefin for overnight cultures grown in the presence or absence

of an inducer (oxacillin at sub-MIC concentration of 0.5 mg/ml).

All strains in Table 1, except the reference strain COL, were

positive for b-lactamase and its expression was found to be

inducible in the presence of oxacillin, suggesting a complete and

functional bla locus (blaI-blaR1-blaZ).

The mecI sequence was determined for a total of 11 previously

characterized strains positive for the mecI-mecR1 locus [22]: three

classified as ST5, SCCmec type II (including strains N315 and

BK2464 listed in Table 1) and eight classified as ST239, SCCmec

type III (including strains HU25 and BK2421 listed in Table 1). A

conserved point mutation was found in all SCCmec type III strains.

The mutation introduced a premature stop codon at Gln68

(CAARTAA) originating a truncated repressor protein (mecI*).

Among the SCCmec type II strains, a point mutation (GGAGRG-

GAA) in the mecI ribosomal binding site (RBS) was detected in one

strain (BK2464). No mutations were found within the mecI coding

region for the two other SCCmec type II strains. A total of 10

previously characterized strains [22], including all strains listed in

Table 1, were also sequenced for the mecA promoter region. Except

for one mutation in the position 25 detected in a ST5, SCCmec

type II strain, no point mutations were found in the promoter

sequence of the mecA gene, when compared to the published

sequence for the prototype strain N315 [5].

The induction profile of mecA transcription was checked by

northern blotting analysis upon exposure to oxacillin for three

prototype strains - PER34, HU25 and N315 - representing

different SCCmec types and, therefore, with functional and non-

functional mecI-mecR1 regulatory locus (Table 1 and Figure 1).

The three strains tested were shown to have an inducible mecA

expression independently of being positive or negative for a

functional copy of the mecI-mecR1 locus although there was a

remarkable difference in the induction efficiencies: strains PER34

and HU25 (mecI negative and truncated mecI, respectively) showed

a complete induction of mecA after 15 minutes, whereas for strain

N315 (wild-type sequence for mecI-mecR1) the induction was not

complete even after 60 minutes of induction. Since the three

strains were positive for the b-lactamase locus, these observations

confirm that mecA transcription can in fact be under the control of

the blaI-blaR1 regulatory locus in clinical MRSA strains and are

also in agreement with the previous reported differences of

induction efficiency of mecA between the mecI-mecR1 and the blaI-

blaR1 systems.

Overexpression of the mecA repressor in prototype MRSA
strains

From the above characterization of the prototype MRSA strains

listed in Table 1, we were able to justify the high-level oxacillin

resistance for strains carrying SCCmec types I and III. These were

found to have no functional mecI-mecR1 regulatory loci either due

to the characteristic presence of an insertion sequence (SCCmec

type I) or due to the conserved non-sense mutation within the

coding region of mecI (SCCmec type III) identified in this study.

However, for SCCmec type II strains we could not explain the

high-resistance phenotype since, except for the point mutation in

the mecI RBS of strain BK2464, no consistent alteration within the

mecI coding region or mecA promoter sequence was detected.

To explore these puzzling observations, we have overexpressed

in trans the mecA repressor in the prototype MRSA strains and

compared the phenotypic expression of b-lactam resistance

between the parental and transformed strains. For this purpose,

all strains listed in Table 1 were transformed with a high-copy

plasmid containing a wild-type copy of mecI of strain N315 (pGC2-

mecI). Strain COL transformed with pGC2-mecI showed a

dramatic decrease of the oxacillin resistance level according to

the PAP profile (see Figure 2, panel A) and the MIC as determined

by E-test dropped from .256 to 1.5 mg/ml. Strains N315 and

BK2464 (SCCmec type II) showed a slight decrease of the oxacillin

resistance level according to the PAP profiles (see Figure 2, panel

C for PAP profile of strain BK2464), although by E-test there was

no detectable decrease for strain BK2464 (MIC.256 mg/ml for

both parental and recombinant strains) and only a slight decrease

for strain N315 (from 32 to 16 mg/ml). Strains PER34 and

HPV107 (SCCmec type I) and HU25 and BK2421 (SCCmec type

III) showed no significant alteration of the oxacillin resistance

phenotypic expression profile (see Figure 2, panels B and D, for

PAP profiles of strains PER34 and HU25, respectively) nor in the

MIC as determined by the E-test (MIC.256 mg/ml for all cases).

A control experiment was done with the mutated mecI sequence

found in SCCmec type III strains (mecI*). The cloning strategy was

exactly the same used for obtaining the recombinant plasmid

pGC2-mecI. When strain COL was transformed with pGC2-mecI*

no significant alteration of the oxacillin resistance level was

detected – see Figure 2, Panel A. Moreover, the northern blot

Figure 1. Northern blot analysis of the mecA induction profile
in three prototype MRSA strains. Induction of mecA transcription
for three prototype strains upon exposure to oxacillin at 09, 59, 159, 309,
and 609. Strain relevant characteristics are as follows: strain PER34 -
SCCmec type I, mecI negative, DmecR1; strain HU25 - SCCmec type III,
mecI*, mecR1WT; strain N315 - SCCmec type II, mecIWTmecR1WT. The
three strains are b-lactamase positive.
doi:10.1371/journal.pone.0023287.g001
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analysis of the mecA transcription showed no differences between

COL and COL+pGC2-mecI*, whereas no mecA transcript could be

detected for COL+pGC2-mecI – see Figure 3, lanes 1–3.

Since strain COL is negative for the mecI and has a truncated

mecR1, the phenotype observed for COL+pGC2-mecI could be

explained by the lack of an inducer of the mecA transcription able to

release the mecI-mediated repression. To test this hypothesis, we have

transformed COL with a recombinant plasmid containing the wild-

type sequences for both mecImecR1 (pGC2-mecImecR1). Although by

northern blotting analysis the mecA transcription was restored after

overnight growth in the presence of oxacillin (see Figure 3, lanes 4–5),

suggesting a fully functional mecI-mecR1 regulatory system, no

significant increase on the oxacillin MIC was detected when

compared to COL+pGC2-mecI. Moreover, when grown in liquid

Figure 2. Population analysis profiles of representative parental strains and recombinant strains. Panel A – strain COL and its
recombinants strains COL+pGC2-mecIWT, COL+pGC2-mecI*, and COL+pGC2-mecImecR1 grown overnight with and without oxacillin before plating
onto TSA plates. Panel B – strain PER34 (SCCmec type I) and PER34+pGC2-mecIWT. Panel C – strain BK2464 (SCCmec type II) and BK2464+pGC2-mecIWT.
Panel D – strain HU25 (SCCmec type III) and HU25+pGC2-mecIWT.
doi:10.1371/journal.pone.0023287.g002
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culture, this recombinant strain exhibited an atypical aggregation of

cellular mass in solution (data not shown), suggesting a cellular toxic

effect due to the overexpression of MecR1.

Overexpression of mecI in an extended collection of
representative MRSA strains

In order to confirm the previous observations, all strains listed in

Table 2 were also transformed with the high-copy plasmid

containing the wild-type mecI (pGC2-mecI). This collection includes

four additional SCCmec type II strains, 13 SCCmec type IV strains,

and isolates for SCCmec types V and VI. SCCmec types IV–VI are

characterized by deletions in the mecImecR1 locus due to the

presence of insertion sequences. Once again, we could not detect

significant alterations in the phenotypic expression of oxacillin

resistance upon the overexpression of the mecA repressor, except

for one strain negative for the nitrocefin assay (VNG17). However,

for another nitrocefin negative strain (RJP17) the resistance

phenotype was stable. The absence of b-lactamase was confirmed

for these two strains by PCR amplification of internal fragments of

blaZ, blaI and blaR1. No amplification signals were detected. DNA

sequencing of the mecA promoter region for both strains revealed

no mutations in the operator sequences but a point mutation in the

mecA ribosomal-binding site was identified by comparison to the

wild-type sequence of strain N315 (GGA GGARGGA GTA).

Relative affinity of MecI and BlaI for the mecA promoter
sequence

In an attempt to explain the lack of effect on the resistance

phenotype upon the overexpression of mecI, we have evaluated the

in vitro relative binding affinity of MecI and BlaI repressors to the

mecA operator sequences by an electrophoretic mobility shift assay

(EMSA). For this purpose, we have expressed in E. coli N-terminal

histidine-tag fusions to the wild-type protein sequences of

prototype strain N315 (His-MecI and His-BlaI) and evaluated

the binding of purified proteins to a DNA fragment containing the

mecA promoter sequences of prototype strain COL. As illustrated

in Figure 4, by using equivalent concentrations of the purified

MecI and BlaI repressors, lower amounts of recombinant MecI

protein are required to induce an electrophoretic shift of the DNA

fragment containing the mecA promoter; i.e., suggesting that the

cognate repressor of mecA has an increased affinity for its promoter

sequences.

Discussion

The transcription of mecA, the gene responsible for the ‘‘broad-

spectrum’’ b-lactam resistance in S. aureus, may be controlled by

two regulatory systems: mecI-mecR1 and blaI-blaR1. Due to the

extremely slow induction of mecA expression mediated by mecI-

mecR1 regulators, it is believed that the high-level b-lactam

resistance characteristic of many contemporary clinical MRSA

strains requires a non-functional mecI-mecR1 regulatory locus [5,9].

In this study we aimed to understand how the mecA transcription

is regulated in contemporary pandemic MRSA strains, which in

many cases express full b-lactam resistance. Based on previous

studies by us and many others on the global epidemiology of

MRSA, which included the characterization of the SCCmec

element, we could, based on the current model of the mecA

regulation, justify the potential for the expression of high-level b-

lactam resistance in many MRSA clones; i.e. all those clones

characterized by SCCmec types I and IV–VII, which have no-

functional mecI-mecR1 genes due to the presence of insertion

sequences. However, for MRSA clones characterized by SCCmec

types II, III and VIII, which carry a complete mecI-mecR1 region,

we could not explain the high-level b-lactam resistance phenotype.

In addition, as illustrated among the MRSA strains selected for

this study, no clear relationship exists between SCCmec type (i.e.

mecI-mecR1 functionality) and the level of resistance. For instance,

low-level resistance is detected among SCCmec type IV strains that

have no functional mecI-mecR1 locus.

Upon DNA sequencing of the mecI coding region, we found a

conserved non-sense mutation at Gln68 in all SCCmec type III

strains tested. This mutation leads to a truncated MecI protein of

67 a.a. (instead of the 123 a.a. of the wild-type). This mutation

appears to be conserved in the ST239-III lineage since it has also

been detected in all isolates of a diverse international collection of

c.a. 60 ST239-III strains whose genomic sequences have been fully

Figure 3. Northern blotting analysis of mecA transcription in
COL transformants. Lane 1, parental strain COL; lane 2, COL+pGC2-
mecIWT; lane 3, COL+pGC2-mecI*; lane 4, COL+pGC2-mecImecR1
uninduced; lane 5, COL+pGC2-mecImecR1 induced with oxacillin.
doi:10.1371/journal.pone.0023287.g003

Figure 4. Electrophoretic mobility shift assay of relative MecI
and BlaI affinities for the mecA promoter sequence. Binding
reaction was performed with a labeled 200 bp DNA fragment
encompassing the mecA promoter mixed with increasing amounts of
purified MecI (panel A) and BlaI (panel B). Lanes are as follows: lane 1 –
no protein (control); lane 2 – 0,001 mg; lane 3 – 0,01 mg; lane 4 –
0,05 mg; lane 5 – 0,1 mg; lane 6 – 0,25 mg; lane 7 – 0,5 mg; lane 8 – 1 mg;
lane 9 – 0,1 ug of protein with a 125 molar excess of unlabelled DNA
(specific competition).
doi:10.1371/journal.pone.0023287.g004
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determined [39]. In addition, this very same mutation has been

detected in a cluster of 12 clinical MRSA strains and found to be

statistically associated to an increase in the mecA transcription,

suggesting a non-functional MecI protein [40]. In our northern

blotting experiments, overexpression of this mutated mecI failed to

repress the mecA transcription on the prototype strain COL that is

characterized by a constitutive expression of the resistance

determinant. Altogether, these observations suggest that this

conserved non-functional version of mecI accounts for the high-

level resistance phenotype of SCCmec type III strains.

Concerning SCCmec type II strains, we detected in strain

BK2464 a mutation within the ribosomal binding site (RBS) of

mecI, from GGAG to GGAA. This mutation has also been

previously detected among clinical MRSA strains and showed to

be statistically associated to a decrease of mecA repression [40],

which could explain high-levels of b-lactam resistance. However,

since we could not detect this mutation in the other two SCCmec

type II strains analyzed, neither in all genomic and SCCmec

sequences of type II strains available at GenBank (e.g. strains

MRSA252, Mu3, Mu50, JH1, JH9, etc.), it seems that this

alteration of the mecI RBS per se does not justify the b-lactam

resistance phenotype of SCCmec type II strains. Rosato et al have

also noticed that the mecI RBS differences could not entirely

explain the difference in mecA transcription between isolates [40].

Regarding the mecA promoter, we identified a point mutation

found in one single strain in the position 25, which theoretically

may affect the binding of MecI [41]. However, this mutation was

not detected either in the other SCCmec type II strains or in the

available genomic sequences and, as such, it also does not justify

the resistance phenotype of SCCmec type II strains. As we have not

sequenced mecR1, the hypothesis that the inducer is mutated and

able to induce mecA transcription more efficiently cannot be

excluded. Nevertheless, this hypothesis seems unlikely since no

mutations within the mecR1 coding sequence were detected among

genomic sequences available at Genbank, which include SCCmec

type II and fully oxacillin-resistant strains. In addition, in a large

study which addressed the allelic variation of mecA regulators only

two silent mutations were found within the mecR1 coding sequence

[25].

In order to further explore the puzzling observations described

above, we have cloned the wild-type sequence of mecI from the

reference strain N315 in a high-copy number plasmid with strong

bacteriophage promoters flanking the cloning site and we have

introduced this recombinant plasmid into prototype and repre-

sentative MRSA strains. By over-expressing the repressor in trans,

according to the current model for the mecA transcriptional

control, we were expecting to see a significant decrease in the

resistance level to oxacillin, particularly for strains naturally

negative for mecI (i.e. containing SCCmec types I and IV–VII). To

our surprise, except for strains COL and VNG17, the resistant

phenotype to oxacillin showed no significant changes in all strains.

Since we could see an effect in strains COL and VNG17, we were

confident about the functionality of the cloned mecI. Nevertheless,

we have also transformed COL with the truncated mecI found in

SCCmec type III strains cloned into the same plasmid using exactly

the same cloning strategy. As expected, the overexpression of the

truncated mecI failed to cause any phenotypic alterations. Northern

blotting analysis of mecA in COL and its transformants also showed

that only the wild-type mecI was able to repress the mecA

constitutive transcription of the parental strain. Because COL

has no functional mecR1, the phenotype observed could be

explained by the lack of an inducer able to release the mecI-

mediated repression on mecA, although this would also apply to all

other SCCmec types I and IV–VI tested for which there was no

effect upon the overexpression of mecI (except for strain VNG17).

Nevertheless, we have transformed COL with a recombinant

plasmid containing the full wild-type mecI-mecR1 system. Interest-

ingly, although we could see induction of mecA transcription in the

presence of oxacillin, the resistance phenotype of the parental

strain could not be restored. Moreover, the transformed strain

presented clear physiological perturbations when grown in liquid

medium, which suggests that the overexpression of MecR1, a

trans-membranar protein, might be toxic for the cell, as previously

observed [42].

The two strains for which the mecI overexpression caused a

decrease in the oxacillin-resistance level (COL and VNG17) were

negative for the b-lactamase locus, suggesting that this locus might

be responsible for the observed ‘‘resistance’’ of MRSA strains to

the mecI overexpression. Indeed, it has been shown that blaI-blaR1

can efficiently repress and induce mecA transcription [6,7]; we also

confirmed these observations by northern blotting analysis of the

mecA induction profile in three prototype strains (Figure 1).

However, two lines of evidence may reject this hypothesis. First, in

another b-lactamase negative strain (RJP17), belonging to the

same clone of VNG17 and isolated in the same country and time

period, we could not detect significant alterations in the oxacillin

resistance phenotype upon the overexpression of mecI. Second,

although blaI-blaR1 can efficiently induce mecA transcription, the

blaI-blaR1 and mecI-mecR1 systems are not inter-changeable; i.e.

BlaR1 is not able to release the MecI-mediated repression on mecA

[8]. That is to say, there is no evidence so far supporting the

hypothesis that the blaI-blaR1 system is able to out-compete the

MecI-mediated repression on mecA, which could eventually

account for the lack of effect on the resistance phenotype observed

in our overexpression experiments. Moreover, in our experimental

system the blaI-blaR1 expressed from its native promoter would

have to out-compete MecI expressed constitutively from a strong

bacteriophage promoter.

Inspired by the fact that the mecI-mecR1 and blaI-blaR1 systems

differ remarkably in the induction efficiency of mecA, we have

tested the hypothesis that our observations could be explained by

differences in the relative affinities of MecI and BlaI for the mecA

promoter sequences. We have addressed this hypothesis in vitro

through an electrophoretic mobility shift assay, which clearly

showed that lower concentrations of purified MecI are required for

detecting a binding to the DNA fragment containing the mecA

promoter sequences, suggesting an increased affinity when

compared to BlaI. Therefore, our observations could not be

explained by an increased affinity of BlaR1 for the mecA promoter,

which eventually would ‘‘protect’’ against the increased cellular

amounts of MecI. Actually, this hypothesis would make little sense

if one takes into account that the induction process involves the

proteolysis of BlaR1 and BlaI and that the sustained expression of

the resistance gene requires the continuous expression of both

regulatory proteins from their common promoter [43]. In our

experimental system, this signal transduction cascade would have

to out-compete the binding of MecI (overexpressed constitutively)

to the mecA promoter.

In short, this study has shown that unexpectedly the b-lactam

resistance phenotype of MRSA strains is not affected by the

overexpression in trans of the mecA repressor, even in strains

negative for or with non-functional mecI gene. This puzzling

observation, besides contradicting the current model for the mecA

transcriptional control in contemporary MRSA strains, strongly

suggests that other yet unidentified determinants are involved

directly or indirectly in the transcriptional control of the mecA gene

and, consequently in the phenotypic expression of b-lactam

resistance. Elucidation of the nature of these determinants is under
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way and will be of paramount clinical relevance, since the full

understanding of the molecular mechanisms controlling the

phenotypic expression of the ‘‘broad-spectrum’’ b-lactam resis-

tance in clinical MRSA strains may contribute to the design of new

therapeutic strategies, which may extend the clinical utility of b-

lactams.
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