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Abstract

Background: It has been well established that theoretical kernel for recently surging genome-wide association study
(GWAS) is statistical inference of linkage disequilibrium (LD) between a tested genetic marker and a putative locus affecting
a disease trait. However, LD analysis is vulnerable to several confounding factors of which population stratification is the
most prominent. Whilst many methods have been proposed to correct for the influence either through predicting the
structure parameters or correcting inflation in the test statistic due to the stratification, these may not be feasible or may
impose further statistical problems in practical implementation.

Methodology: We propose here a novel statistical method to control spurious LD in GWAS from population structure by
incorporating a control marker into testing for significance of genetic association of a polymorphic marker with phenotypic
variation of a complex trait. The method avoids the need of structure prediction which may be infeasible or inadequate in
practice and accounts properly for a varying effect of population stratification on different regions of the genome under
study. Utility and statistical properties of the new method were tested through an intensive computer simulation study and
an association-based genome-wide mapping of expression quantitative trait loci in genetically divergent human
populations.

Results/Conclusions: The analyses show that the new method confers an improved statistical power for detecting genuine
genetic association in subpopulations and an effective control of spurious associations stemmed from population structure
when compared with other two popularly implemented methods in the literature of GWAS.

Citation: Jiang N, Wang M, Jia T, Wang L, Leach L, et al. (2011) A Robust Statistical Method for Association-Based eQTL Analysis. PLoS ONE 6(8): e23192.
doi:10.1371/journal.pone.0023192

Editor: Momiao Xiong, University of Texas School of Public Health, United States of America

Received April 29, 2011; Accepted July 7, 2011; Published August 9, 2011

Copyright: � 2011 Jiang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The research was funded by the Biotechnology and Biological Sciences Research Council (RRAD11534) and the Leverhulme Trust (RCEJ14713). NJ was
also supported by a joint studentship between the University of Birmingham and Biomathematics and Statistics Scotland (BioSS). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: z.luo@bham.ac.uk

Introduction

Linkage disequilibrium (LD) based association mapping has

received increasing attention in the recent literature [1–6] for its

potential power and precision in detecting subtle phenotypic

associated genetic variants when compared with traditional

family-based linkage studies. Association mapping methods for the

genetic dissection of complex traits utilize the decay of LD, the rate

of which is determined by genetic distance between loci and the

generation time since LD arose [7]. Over multiple generations of

segregation, only loci physically close to the quantitative trait loci

(QTL) are likely to be significantly associated with the trait of

interest in a randomly mating population, providing great efficiency

at distinguishing between small recombination fractions [8]. Despite

this potential, many reported association studies have not been

replicated or have resulted in false positives [9–10], commonly

caused by ‘cryptic’ structure in population-based samples. Popula-

tion structure, or population stratification [11], arises from

systematic variation in allele frequencies across subpopulations,

which can result in statistical association between a disease

phenotype and marker(s) that have no physical linkage to causative

loci [12–13], i.e. false positive or spurious associations. This gives rise

to an urgent need for methods of adjusting for both population

structure and cryptic relatedness occurring due to distant related-

ness among samples with no known family relationships.

To avoid the problems raised from population stratification,

family-based association studies have been proposed, such as the

transmission-disequilibrium test (TDT), which compares the

frequencies of marker alleles transmitted from heterozygous parents

to affected offspring against those that are not transmitted [14]. In

this design the ethnic background of cases and controls is necessarily

matched, conferring robustness to the presence of population

structure. However, TDT design requires samples from family trios,

which are difficult to obtain compared to population based designs

where a large sample is feasibly obtained. Moreover, increased

genotyping efforts are required for TDT design to achieve the same

power as population based design [15–16].

Numerous methods have been proposed to overcome the

problems caused by population structure without the need for

family based samples. Among the most widely used are the
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genomic control (GC) [17] and the structure association (SA)

analysis [18–19]. In the former, inflation of the test statistic by

population structure is estimated as a constant from unlinked

markers in the genomic control group and then the test statistic

will be adjusted from the estimate before being applied to infer the

association. In the latter, unlinked markers are used to estimate the

number of subpopulations from which the sample are collected,

and then assign sample individuals to subpopulations. The former

method considers an ideal but unrealistic situation of constant

inflation factor for all markers, while in reality the influence of

population structure on statistical inference of marker-trait

association varies over genome locations [20]. For the SA method,

it is computationally intensive to obtain accurate and reliable

values for both the number of subpopulations in real datasets and

to assign individual population membership. Alternative methods

have been adopted to infer the subpopulation number, including

Latent-Class model [21], mixture model [22] and a Bayesian

model AdmixMap [23]. These methods share the assumption that

associations among unlinked markers are the result of population

structure and subpopulations are allocated to minimize these

associations. This step depends critically upon the correct selection

of a panel of markers to reflect population structure information.

Price et al. [24] proposed a principal component analysis (PCA)

based method, EIGENSTRAT, to model the ancestral difference

in allele frequency and correct for population stratification by

adjusting genotypes through linear regression on continuous axes

of variation. While EIGENSTRAT provides specific correction for

candidate markers, how to choose appropriate markers to infer

population structure remains in question. In fact, prediction of the

population structure may fail whenever the key assumption behind

the structure prediction methods is violated.

Rather than using a panel of unlinked markers to exploit the

cryptic population structure, a single null marker can be used to

correct for bias of the test statistic in association studies. Wang et al.

[25] suggested using a well-selected null marker to correct biases

from population stratification on odds ratio estimation for a

candidate gene within a logistic regression framework. They

assumed a simplistic situation that the null marker had the same

genotypic distribution as the candidate gene, which, however, was

unknown in practice.

The expression quantitative trait locus (eQTL) analyses have

recently shown that variation in human gene expression levels

among individuals and also populations is influenced by

polymorphic genetic variants [26–28]. The use of structured

populations has meant that to detect the genetic variants

accounting for differences in gene expression between subpopu-

lations, GWAS had to be carried out separately for each

subpopulation and the results subsequently compared. We

present here a simple regression model of utilizing only one

‘control’ marker to remove the population structure effect in

detecting LD between a marker and a putative quantitative trait

locus. We first established the theoretical basis for selection and

use of a control marker to correct for population structure and

established a regression-based method for detecting the LD which

is integrated with information of the control marker. We

investigated the method for its efficiency to test the LD and to

reduce false positives stemmed from population structure through

intensive computer simulation studies and re-analysis of the gene

expression (or eQTL) datasets collected from genetically diver-

gent populations. The new method (Method 1) was compared

with two alternative methods: single marker regression without

population structure correction (Method 2) and multiple

regression analysis with incorporation of known individual

ancestry information (Method 3).

Materials and Methods

Method 1 (Regression analysis with correcting
population structure)

The method analyzes a structured randomly mating population

produced through instant admixture of two genetically divergent

subpopulations. The proportion of subpopulation 1 in the mixed

population is denoted by m. Let us consider three bi-allelic loci:

one affects a quantitative trait (Q) while another two are

polymorphic markers devoid of direct effect on the trait. We call,

for convenience, one of the markers the test marker (T) which is to

be tested for association with the QTL, and the other as control

marker (C), assumed to be not associated with both the QTL and

the test marker (i.e. the linkage disequilibrium D equal 0). Two

alleles are denoted by A and a at the putative QTL, T and t at the

test marker, and C and c at the control marker. Three genotypes at

the QTL, AA, Aa and aa, are assumed to affect the quantitative

trait by d, h and –d respectively. Trait phenotype of an individual

(Y) is assumed to be normally distributed with mean depending on

its genotype at the QTL and residual variance s2
e . Genotypic

values at the test marker and control marker are denoted by X and

Z, which are the number of alleles T and C respectively. In

subpopulation i (i = 1 or 2), the allelic frequencies of the QTL, test

marker and control marker are denoted by p
(i)
Q , p

(i)
T and p

(i)
C

respectively, while the coefficients of linkage disequilibrium

between any pair of the loci are denoted by D
(i)
TC , D

(i)
TQ and

D
(i)
CQ. Table 1 illustrates probability distribution of joint genotypes

at a test marker and a putative QTL in randomly mating

populations together with genotypic values at the QTL and details

Table 1. Probability distribution of joint genotypes at a test marker and a putative QTL and genotypic values at the QTL.

Genotypes at QTL AA Aa aa

Marker genotypes TT Tt tt TT Tt tt TT Tt tt

Probabilities (qQ)2 2q2Q(12Q) q2(12Q)2 2 q(12q)QR 2 q(12q)
(Q+R22QR)

2 q(12q)
(12Q)(12R)

(12q)2R2 2(12q)2

R(12R)
(12q)2(12R)2

Genotypic values at QTL m+d m+h m2d

where A and a are segregating alleles at a putative QTL, T and t are alleles at the test marker locus. Allele frequency of A is q, allele frequency of T is p. Q and R are
conditional probabilities of marker allele T given QTL allele A and a respectively, which are formulated as Q~pzD=q and R~p{D=(1{q) where D is the coefficient of
linkage disequilibrium between the marker and QTL. m, d and h are population mean, additive and dominance genic effects at the QTL.
doi:10.1371/journal.pone.0023192.t001
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for the parameterization can be found in Luo [29]. It is clear from

Table 1 that the marker-QTL distribution can be fully

characterized by the parameters defining population allele

frequencies at the two loci and the coefficient of linkage

disequilibrium between them. This provides the theoretical basis

for statistical analyses developed below.

Regression analysis correcting effect of population

structure. For phenotype of a quantitative trait and each of

the test markers, we fitted the following model: the genotype Xij of

individual i at the given marker locus j may be classified as one of

three states: Xij~0, 1, or 2 for homozygous rare, heterozygous

and homozygous common alleles, respectively. For this model, we

fitted a linear regression of the form for each genetic marker:

Yi~b0zb1Xijzei ð1Þ

where Yi is phenotype for individual i~1, � � � � � � ,n, and ei are

independent normally distributed random variables with mean 0

and variance s2
e . We have demonstrated that significance of the

regression coefficient can be used to infer significance of LD

between a polymorphic marker locus and a QTL in a single

randomly mating population since the regression coefficient has a

form of

b1~
sX ,Y

s2
X

~
E(XY ){E(X )E(Y )

E(X 2){E2(X )
~

2DTQ½dz(1{2pQ)h�
2pT (1{pT )

ð2Þ

[29]. However, in a structured population, we note that the LD

between a marker and a QTL is given by

DTQ~mD
(1)
TQz(1{m)D

(2)
TQzm(1{m)dT dQ, ð3Þ

[30], where m is the proportion of subpopulation 1 in this mixed

samples, the superscripts (1) and (2) refers to the subpopulations,

dT~p
(1)
T {p

(2)
T and dQ~p

(1)
Q {p

(2)
Q . The covariance between the

QTL and the test marker can be worked out as

sX ,Y ~2mD
(1)
TQ(dzh{2hp

(1)
Q )z2(1{m)D

(2)
TQ(dzh{2hp

(2)
Q )

z4m(1{m)dT dQ½dzh(1{p
(1)
Q {p

(2)
Q )�:

ð4Þ

Equations 3 and 4 show that the association between the QTL and

test marker in a mixed population is the summation of (i) a linear

combination of the associations between the two loci in each of the

subpopulations (i.e. the genuine association due to LD between the

two loci in each of the subpopulations), and (ii) a nonlinear

component of the differences in allele frequencies between the two

subpopulations (i.e. a spurious term of association). The objective

of our analysis is to remove the spurious term by using a control

marker ‘C’. If the control marker is neither in association with the

QTL (i.e. D
(1)
CQ~D

(2)
CQ~0) nor with the test marker

(D
(1)
TC~D

(2)
TC~0), then the covariance between control marker

and QTL (or test marker) can be given by

sY ,Z~4m(1{m)dCdQ½dzh(1{p
(1)
Q {p

(2)
Q )� ð5Þ

sX ,Z~4m(1{m)dT dC ð6Þ

In an admixed population, the control marker’s allelic frequency is

pC~mp
(1)
C z(1{m)p

(2)
C . In a population with allelic frequency pC

at the control marker locus, the expected and observed variances

at the control marker are

E½s2
Z�~2½mp

(1)
C z(1{m)p

(2)
C �½1{mp

(1)
C {(1{m)p

(2)
C �~2pC(1{pC)ð7Þ

s2
Z~2½mp

(1)
C z(1{m)p

(2)
C �½1{mp

(1)
C {(1{m)p

(2)
C �z2m(1{m)d2

C ð8Þ

where dC~p
(1)
C {p

(2)
C . Thus, the difference between the expected

and observed variances at the control marker indicates the

existence of population structure,

s2
Z{E½s2

Z�~2m(1{m)d2
C ð9Þ

The spurious term in the covariance in equation (4) can be

completely corrected using a single control marker, as follows:

~ssX ,Y ~sX ,Y {
sX ,ZsY ,Z

2fs2
Z{E½s2

Z�g

~2mD
(1)
TQ(dzh{2hp

(1)
Q )z2(1{m)D

(2)
TQ(dzh{2hp

(2)
Q )

ð10Þ

Therefore, the regression coefficient calculated from

b1~
~ssX ,Y

s2
X

~

sX ,Y {
sX ,ZsY ,Z

2fs2
Z

{E½s2
Z
�g

s2
X

ð11Þ

would reflect correction for the population structure. The students

t-test can be used to test for significance of the regression

coefficient b1. Standard error (se) of b1 is given by

Sb1
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

X s2
Y {~ss2

X ,Y

ns2
X

s
ð12Þ

Given the regression coefficients and their variances, the power of

the regression analysis can be predicted from the probability [31]

rt~Prftv(dt)wta=2;vg ð13Þ

where tv(dt) represents a random variable with non-central

t-distribution with v degrees of freedom and non-centrality

parameter dt and ta=2;v is the upper a=2 point of a central

t-variable with the same degrees of freedom. The value of v equals

n23 and the non-centrality parameter is given by [31] as

dt~
C½v=2�b1ffiffiffiffiffiffiffi

v=2
p

C½(v{1)=2�Sb1

ð14Þ

where C(:) stands for a gamma function.

Selection of the control marker. In practice, we propose

the following procedure to select the control marker for a given test

marker. Firstly, any marker but the test marker would be

candidate for the control marker if it has or is

N an autosomal location on different chromosomes from the test

marker,

N less missing genotype data than a prior given proportion

Robust LD-Based eQTL Mapping
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For each marker passing the above screening, one calculates the

expected and observed variances from

E½s2
Z�~2pC(1{pC) ð15Þ

s2
Z~

Xn

i~1

(Zi{m)2=(n{1) ð16Þ

where Zi is the genotypic value of the candidate control marker (0,

1, 2) for individual i~1, � � � � � � ,n, and m and pC are the mean

genotypic value across all individuals (
Pn
i~1

Zi=n ) and the allelic

frequency of this marker, respectively. It should be noted that

equations (7) and (15) are the same and that equation (16) stands

for the sampling variance of the control marker whose expectation

is given by equation (8) in the presence of population structure.

The control marker is the one with the maximum difference

between observed and expected variances, which has the

maximum ability to remove the spurious term in mixed

populations and does not introduce bias in single population.

Method 2 (Regression analysis without correcting
population structure)

The method fits a simple regression model for detecting LD

between the trait phenotype and a test marker as we proposed

previously [29] and implemented in a recent population based

eQTL analysis in [28], in which the regression coefficient has a

form of

b1~
s�X ,Y

s2
X

ð17Þ

with a standard error equal to

Sb1
~

s2
X s2

Y {(s�X ,Y )2

ns2
X

ð18Þ

where s�X ,Y is the non-corrected covariance between test marker

locus and the quantitative trait.

Method 3 (multiple regression analysis)
The method regresses the trait phenotype on genotypic value of

a test marker (Xij = 0, 1, 2) and the probability of membership to

each constituent population Pi (i = 1, 2 here) as described in the

following multiple regression model

Yi~b0zb1Xijzb2Pizei ð19Þ

where the b2Pi term reflects the population structure effect in

mixed populations.

The regression coefficients are given by

b1~
s2

PsX ,Y {sX ,PsP,Y

s2
X s2

P{s2
X ,P

ð20Þ

b2~
s2

X sP,Y {sX ,PsX ,Y

s2
X s2

P{s2
X ,P

ð21Þ

and standard errors of the regression coefficients are formulated as

Sb1
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

Ps2
Y

ns2
X s2

P{s2
X ,P

s
ð22Þ

Sb2
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

X s2
Y

ns2
X s2

P{s2
X ,P

s
ð23Þ

according to [32]. Significance of association of the test marker

with the quantitative trait can be tested through testing for

significance of the regression coefficient b1 by the Student t-test.

Results

Simulation study
To explore statistical properties and limitations of the methods

described above, we developed and conducted a series of

computation simulation studies. The simulation program mimics

segregation pattern of genes at multiple marker loci and QTL in

randomly mating natural populations in terms of simulation

parameters defining allele frequencies, linkage disequilibria and

population structure as illustrated in Table S1. The methods were

detailed for simulating a population characterized the joint

genotypic distribution at two loci and for sampling individuals

from the simulated population [33]. Although the distribution

involves only two loci, it is easy to extend to multiple loci because

the two locus joint distribution can be easily converted into

conditional (or transition) probability distribution of genotypes at

one locus on that at another, and genotypes at multiple loci can be

simulated as a Markov process governed by the conditional

probability distribution. Of course, this will not undermine

flexibility to specify any required linkage disequilibrium pattern

among any loci. Subpopulations were independently generated

and merged to produce the admixed population. In the present

study, we were focused on 10 simulated populations defined by

simulation parameters listed in Table S1.

Each simulation was repeated 100 times and simulation data

was analyzed using the three different methods described above.

We tabulated in Table 2 means and standard errors of 100

repeated regression coefficients and proportions of significant tests

of the regression coefficients. It can be seen that Methods 1 and 2
predicted the regression coefficients adequately in all simulated

populations, but Method 3 did so when all individuals were

correctly allocated to their correct subpopulations. Listed in

Table 2 were also proportions of significant tests of the regression

in repeated simulations. It should be stressed that the proportion

measures rate of false positive when the test marker and QTL were

in linkage equilibrium such as in the first 4 simulated populations

whilst it provides evaluation of an empirical statistical power for

detecting the genetic association in populations 5 to 10. It is clear

that the rate of false positive was properly controlled in association

analysis with Method 1, and Method 3 when all individuals

were correctly allocated, and that LD between the test marker and

QTL in populations 5–9 was tested significant by these methods

with a high statistical power. In contrast, the simple regression

analysis (Method 2) made a high proportion of false positive

inference of the marker and QTL association when the LD was

actually absent (populations 1–4) but failed to detect truly existing

LD between the two loci (populations 5–9). The method is thus

inappropriate to be used for genetic association analysis when

population structure was present. Performance of Method 3,

Robust LD-Based eQTL Mapping
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which incorporates membership of individuals to constituent

populations as a covariate in multiple regression analysis, depends

on the extent by which individuals are correctly allocated to their

belonging populations. For example, the method lost its statistical

power to detect the truly existing LD (populations 5–9) or made

false positive inference of genetic association when on average a

quarter of individuals under analysis were wrongly allocated to

subpopulations (populations 1–4). These results show that the

present method provides a powerful test for linkage disequilibrium

between polymorphic markers and QTL and an effective control

of population structure in the test.

Use of control markers in Method 1 is the key underpinning

for the method to be able to control influence of population

structure in the genetic association test. To investigate effect of

the control marker on efficiency of the association test, we

explored performance of the method when population structure

is actually absent or when different control markers are used in

the presence of population structure. Table S2 shows predicted

and observed proportions of significant tests of the disequilibri-

um between a test marker and a putative QTL in 10 simulation

populations with (b) or without (a) population structure. The

proportions were calculated from analyses with Method 1 by

using the control marker either with a constant allele frequency

between two subpopulations or with varying allele frequencies. It

demonstrates that the type I error is well controlled and the

disequilibrium is efficiently detected by the method using a

control marker even when population structure does not actually

exist (a). In addition, when population structure is present (b), the

method bears a high chance to make a false positive inference

and to lose its detecting power if the control marker selected to

be implemented in the analysis has a small difference in allele

frequency between the subpopulations. However, the risk can be

effectively controlled and the reduced power can be recovered

when using the control marker with a large allele frequency

difference. All these suggest that implementation of control

markers with a non-trial difference in allele frequency will not

cause any significant problem of false positive/negative inference

when population stratification is actually not existent. In

presence of population structure, we propose selection of a

marker with largely divergent allele frequencies as the control

marker.

Gene expression and genotype datasets
The gene expression and SNP datasets were collected from

Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines of

unrelated individuals of European-derived (CEU, 60 Europeans),

and Asia-derived (CHB+JPT, 41 Chinese and 41 Japanese). The

datasets were originally developed by Spielman et al [28] to

explore population specified gene expression and genetic control

of the population specified gene expression, and were downloaded

from http://www.ncbi.nlm.nih.gov/geo (Gene Expression Omni-

bus: GSM5859). The expression arrays were analyzed using the

Affymetrix MAS 5.0 software and the hybridization intensity was

log2-transformed into expression phenotype. The study focused on

4,197 genes that are expressed in lymphoblastoid cell lines. Of the

4,197 genes, 1,097 were detected to be significantly differentially

expressed between the CEU and CHB+JPT samples (t-test,

Pv10{5; Pcv0:05, Sidak correction) [34]. SNP data scored on

the 60 CEU, 41 CHB and 41 JPT samples were obtained from the

><International HapMap Project (release 19,). All markers with

an allele frequency of $5% were included, giving more than 2.2

million and 2.0 million common SNP markers for the CEU

samples and CHB+JPT samples respectively. Comparison be-

tween the CEU and CHB+JPT samples provided genotype data

for 1,606,182 unique SNP markers among all 142 individuals (60

CUE and 82 CHB+JPT samples).

We selected and re-analysed the gene expression and SNP

datasets in the present study for several reasons. Firstly, these

samples were collected from the populations whose genetical

diversification was well verified [35–37], and make a typical

example which the method is designed for. Secondly, gene

expression phenotype bears a wide spectrum of genetic controls

from cis to trans regulation and different levels of heritability. Some

of these quantitative phenotypes show population specified

expression or heterogeneity of underlying genetics. These enable

the method to be tested under different genetic backgrounds.

Finally, re-analysis of the same datasets recently published allows a

direct comparison of analysis with the method developed in the

present study with that implemented in the published analysis.

Validation of population structure
In 2005, The International HapMap Project reported that the

CHB and JPT samples’ allele frequencies were generally very

similar, but different to the allele frequencies of CEU samples

(Figure S1). We first explored deviation in genotypic distribution at

each of nearly 2 million SNP markers from the Hardy-Weinberg

equilibrium (HWE) within CEU and CHB+JPT samples sepa-

rately and in mixed of the two samples by using both Pearson’s

chi-squared test and Fisher’s exact test. To account for the

multiple tests, we set the significant different level at

Pv2:5|10{8 (Pc~0:05 after Sidak correction). The analyses

did not detect any of the SNP markers whose genotypic

distribution showed significant deviation from HWE in either of

the two samples. However, when all CEU and CHB+JPT samples

were merged together there were approximately 3,000 markers

scattered across all autosomes deviating significantly from the

HWE expectation (2911 markers from Pearson’s chi-squared test,

consistent with 3011 markers from Fisher’s exact test). These

analyses show that the CEU and CHB+JPT samples can be

recognized to be collected from genetically divergent random

matting populations and that a mixed of them represents an

example of samples from these populations. Population structure

in the mixed sample was visualized as a score plot of the first two

principal components built on the 2911 SNP markers, which

explained a total of 62% of variability of the marker data (Figure 1).

Genome-wide association eQTL analysis
We implemented the three methods described above to perform

association mapping of eQTL using the gene expression and SNP

marker datasets. The analysis was carried out on the CEU and

CHB+JPT samples separately or jointly. An eQTL in the present

analysis was defined as an independent peak in the p-value profile

across a given chromosome. Peaks occurring within 5 Mb of

adjacent peaks were taken as a single eQTL peak because of

insufficient evidence to declare the existence of multiple eQTL

peaks over such narrow intervals [38]. The eQTL location was

defined as the location within the peak with the smallest p-value.

To account for the large number of tests, we set the significance

level at nominal Pv2:5|10{8 (Pcv0:05 after Sidak correction),

a conservative level also used previously [28,34]. A cis-regulated

eQTL was operationally defined by the presence of significant

association with a SNP in the region 500 kb upstream of the start

of the transcript to 500 kb downstream of the 39 end; otherwise,

the eQTL was classified as trans-acting. Table 3 summarizes the

number of eQTL detected by the three methods (Method 1
developed in the present study, Method 2 the simple regression

analysis employed by Spielman et al in [28], and Method 3 the

multiple regression analysis) from the Europe derived, Asia derived

Robust LD-Based eQTL Mapping

PLoS ONE | www.plosone.org 6 August 2011 | Volume 6 | Issue 8 | e23192



samples and their mixed respectively. It can be seen that the eQTL

analysis results from the CEU and CHB+JPT samples are

comparable between Method 1 and 2 in terms of the number

of detected eQTLs and estimated locations of these eQTLs,

suggesting a comparable predictability of the two methods in the

absence of population structure. In the mixed sample, 64% of

eQTL detected by the multiple regression analysis (Method 3)

with use of full population membership information can be

recovered by the method developed in the present study (Method
1), confirming the predictability of the latter in the presence of the

population structure. We explored the predictability of Method 3
when individuals were randomly assigned to the Europe derived

sample (CEU) with probability of 58% or to the Asia derived

sample (CHB+JPT) otherwise. The analysis showed that only 12%

Figure 1. The first 2 Principal Components from PCA of 142 mixed HapMap Project human samples. The first and second principal
components explained 60.77% and 1.34% of total variability respectively.
doi:10.1371/journal.pone.0023192.g001

Table 3. The number of eQTLs detected by three different methods (Methods 1, 2, 3 or M1, 2, 3 accordingly) or detected
common between two of these methods from the CEU, CHB+JPT and their mixed samples.

The number of
eQTLs per
expression trait The CEU samples The CHB+JPT samples The mixed CEU and CHB+JPT samples

M1 M2 M1+2 M1 M2 M1+2 M1 M3 M1+3 M3a M3+3a

1 280 312 225 263 255 209 206 251 145 398 89

2 58 57 33 43 41 25 16 13 5 136 1

3 20 21 10 13 16 7 2 7 2 97 0

4 10 16 6 8 6 4 2 2 1 72 0

5 4 4 1 5 6 2 0 0 0 48 0

6 3 1 1 1 3 1 0 0 0 37 0

7 3 3 1 0 2 0 0 0 0 22 0

8 0 2 0 1 0 0 1 0 0 22 0

9 2 1 1 0 0 0 0 1 0 14 0

. = 10 19 22 5 6 7 1 2 2 1 1,111 1

Total eQTLs 1,009 1,149 912 633 670 554 296 354 226 1,975 240

cis-eQTLs 21 22 21 48 49 48 51 58 51 618 53

trans-eQTLs 988 1127 891 585 621 506 245 296 175 1,339 187

M3a is for Method 3 when individuals were randomly assigned to the Europe derived sample (CEU) with probability of 58% or to the Asia derived sample (CHB+JPT)
otherwise.
doi:10.1371/journal.pone.0023192.t003
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(240/1,975) of eQTL detected by the method with the partial

population membership information was consistent with those

detected by the same method with the full membership

information, suggesting that the predictability of the method

depends heavily on certainty of the membership information and

that the method may generate a large proportion of false positives

when the information is not complete.

The POMZP3 and HSD17B12 (on the human chromosome 7

q11.23 and chromosome 11 q11.2 respectively) are two well-

characterized and cis-regulated genes [26,28,38–41]. Although all

the three methods considered here were able to detect the

previously identified cis-regulators from the three samples, there

were a large number of spurious association signals predicted from

the simple regression analysis (Method 2) with the mixed sample

(Figure 2: a and b, respectively). It is clear that these spurious

associations were effectively removed in the analysis with Method
1, reflecting the effectiveness of the latter in controlling the false

positives (Figure 2: c and d, respectively). In the mixed samples,

Method 1 was able to reveal 296 significant eQTL, 51 of which

were cis-regulators (Table 3). Firstly, the cis- eQTL predicted here

include all the 11 cis-acting regulators reported by Spielman et al.

[28] who performed the simple regression analysis (Method 2) in

the CEU and CHB+JPT samples separately. In addition to 16

previously detected cis- acting factors, Method 1 detected 35

novel cis- eQTL and all the eQTL explained 20,70% of

variability in expression of the genes regulated (Table S3). We

compared the 245 trans-regulators detected by our method from

the mixed sample against the Gene Ontology (GO) Molecular

Function annotation database (http://www.geneontology.org/)

and found that 101 (42%) trans-eQTLs predicted were mapped

Figure 2. Manhattan plots for the genome-wide eQTL analysis of two genes POMZP3 and HSD17B12; Quantile-quantile (QQ) plots
to compare the distributions between expected and observed p-values. Plots show score (2log10 p-value) for all SNPs by physical position
for POMZP3 and HSD17B12 respectively based on simple linear regression (Method 2, a and b) and corrected linear regression (Method 1, c and d)
in 142 mixed population samples.
doi:10.1371/journal.pone.0023192.g002
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into the category of transcriptional factors, 82 (33%) trans-

regulators played a role in signal pathway activity. In total, 75%

trans-regulators predicted by the present method were previously

known to play a role in gene regulation. All these reveal a

significantly improved statistical power of the present method in

detecting the true genetic associations.

It is interesting to note that the number of cis- eQTL detected

from the mixed samples is larger than that from the component

samples separately whilst a much larger number of trans- eQTL

are detected in the component samples than in their mixed. This

observation may reflect the fact that an increase in size of the

mixed sample has enhanced the statistical power to detect cis-

eQTL and thus led to an increased number of cis- eQTL detected.

However, if linkage disequilibria between genes regulated and

their trans- regulators are in opposite directions between different

populations, the LD may be counter-balanced in the merged

population, and thus decrease the number of the trans- eQTL to

be detected. Despite a relatively small number of cis eQTLs

detected, the cis-regulated effects were generally stronger than

those in trans, with about 14% (7/51) cis-acting eQTL having a

determination coefficient R2
w50% (Figure 3), consistent with

findings in human and mice [38,42–44].

Discussion

Linkage disequilibrium based association mapping has been

advocated as the method of choice for identifying chromosomal

regions containing disease-susceptibility loci or loci affecting other

complex quantitative traits of interest [45]. However, it is well

known that the presence of population structure can result in false

positive inference of genetic association between a test marker and

trait loci. Various methods have been proposed in the literature to

tackle this problem [19,21–23,46] and many of them have heavily

depended on adequate prediction of the population structure

[18,24]. Efficiency of the methods is thus largely affected by

adequacy of population structure prediction. It has been shown

that adequate prediction of population structure is in fact not a

feasible task [47]. On the other hand, it is obvious that effect of the

population stratification on association tests may vary across

different regions of the genome [6–8]. Thus, the methods designed

to correct for the stratification caused spurious associations

through adjusting the test statistic by subtracting a constant

inflation in the statistic may not perfectly reflect this observation

[10,25]. To address these problems, we have proposed here a

statistical method for correcting for stratification confounding

effect in LD-based QTL mapping. The method extends the idea of

using control markers to correct for background effect on a

statistical test for significance of QTL at any given genome

position in linkage-based QTL mapping analysis [48] and enables

the effect of population stratification in the LD-based QTL

analysis to be adjusted at a local basis. We presented here a simple

but effective method to determine the control marker and

demonstrated that incorporation of control markers would not

cause any significant statistical problem even though population

structure does actually not exist.

The new method developed in this study is tested and compared

with other most popularly implemented methods in the literature

of genetic association studies through intensive computer simula-

tion studies and analysis of large scale and high quality gene

expression and SNP datasets for mapping expression QTL. These

analyses strongly support outperformance of the new method for

its significantly improved statistical power to detect genuine LD

between any polymorphic markers and putative trait loci and its

effectiveness in controlling spurious association due to population

stratification. Worthwhile, although the multiple regression

analysis based on a mixed linear model does also provide a

control of the influence of population stratifications, its efficiency

depends heavily on accuracy of prediction of the population

structure and on accurate allocation of individuals’ membership to

the constituent populations. Any bias in the structure prediction

and uncertainty in the membership allocation may lead to severe

consequence on its analytical efficiency. It has been argued that

several factors may substantially influence or even disable the

prediction of population structure [49–50]. Therefore, the method

virtually avoids the need for sophisticated prediction of population

ancestry of individuals and, in turn, effectively controls any bias

embedded with the prediction. The method was designed for

modeling and analyzing samples collected from different ethnical

(or ecological) cohorts (or populations) with or without a clear clue

about their genetic diversity. This is a very popular practice in

many GWAS analyses, particularly with human samples [28,51–

54].

Wang et al has proposed use of a single null marker to correct

for population structure in a candidate gene based association

analysis using case and control samples [25]. In their settings, the

null marker was fitted as a dichotomous variable in parallel to the

test candidate gene in a logistic regression model, and the

influence of population structure on the association test at the

Figure 3. Histograms of coefficient of determination for eQTLs from 142 mixed sample set. a for Method 1 and b for Method 3.
doi:10.1371/journal.pone.0023192.g003
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candidate gene was adjusted by subtracting the regression

coefficient associated with the null marker from the coefficient

associated with the gene. Question rises to the parallel formula-

tion: which is the major effect to be tested in the model? In

contrast, our method was developed upon a rigorous population

genetics model in which contributions of three different loci (i.e.

the test marker, QTL and control marker) to the linkage

disequilibrium pattern are properly formulated. The method is

thus more appropriate for population based association studies.

Although theoretical analysis was built on a single marker test, the

idea and principle of the method could be extendable to the

haplotype-based association mapping which uses information from

multiple marker loci [55–56]. This is because the population

confounding term is linearly attached to the main disequilibrium

terms in the covariance between the test polymorphism and trait

effect (Equation 3). Our goal is to remove the confounding term

from the covariance and, thus form of the main disequilibrium

terms either in genotype at an individual marker locus or in

haplotypes at multiple marker loci will not affect the way to correct

for the confounding term. Although the method was presented for

two genetically divergent populations, the overall pattern of LD

between any test marker and trait locus in their admixed

population may become theoretically more complicated when

the admixture involves more than two populations. Before having

invested more theoretical investigation to the problem, we would

suggest to merge those genetically less divergent objects together as

we did in the present analysis with the Chinese and Japanese

samples and to correct for the stratification raised from between

the most divergent populations such as the European derived and

the Asia derived samples.

Supporting Information

Figure S1 Comparison of allele frequencies between
populations for all SNP markers genotyped in the

International HapMap Project. The colour in each bin
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frequencies.

(TIF)

Table S1 Parameters defining two subpopulations that
are merged to produce admixed populations.
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population structure exist, and has varied allele fre-
quency differences at control marker locus.
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the mixed sample.
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