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Abstract

The persistence of Shiga toxin-producing E. coli O157:H7 in the environment poses a serious threat to public health.
However, the role of Shiga toxins and other virulence factors in the survival of E. coli O157:H7 is poorly defined. The aim of
this study was to determine if the virulence factors, stx1, stx2, stx1–2, and eae in E. coli O157:H7 EDL933 play any significant
role in the growth of this pathogen in rich media and in soils. Isogenic deletion mutants that were missing one of four
virulence factors, stx1, stx2, stx1–2, and eae in E. coli O157:H7 EDL933 were constructed, and their growth in rich media and
survival in soils with distinct texture and chemistry were characterized. The survival data were successfully analyzed using
Double Weibull model, and the modeling parameters of the mutant strains were not significantly different from those of the
wild type. The calculated Td (time needed to reach the detection limit, 100 CFU/g soil) for loamy sand, sandy loam, and silty
clay was 32, 80, and 110 days, respectively. It was also found that Td was positively correlated with soil structure (e.g. clay
content), and soil chemistry (e.g. total nitrogen, total carbon, and water extractable organic carbon). The results of this study
showed that the possession of Shiga toxins and intimin in E. coli O157:H7 might not play any important role in its survival in
soils. The double deletion mutant of E. coli O157:H7 (stx1

2stx2
2) may be a good substitute to use for the investigation of

transport, fate, and survival of E. coli O157:H7 in the environment where the use of pathogenic strains are prohibited by law
since the mutants showed the same characteristics in both culture media and environmental samples.
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Introduction

Escherichia coli O157: H7 was initially identified as an important

human pathogen in 1982 during an investigation into a food-

borne disease outbreak in the United States [1]. Since then, an

increasing number of E. coli O157:H7 outbreaks have been

reported in the United States. It is estimated that in the United

States E. coli O157: H7 alone is responsible for a total of 73,480

cases of disease per year, among which, there are more than 1,800

cases of hospitalizations and 52 deaths. Evidence has shown that

E. coli O157:H7 is one of the most commonly isolated bacterial

pathogens from meat and fresh produce after Campylobacter,

Salmonella, and Shigella spp [2]. In addition to the USA, many

large outbreaks of E. coli O157:H7 infections have also been

reported in many countries making E. coli O157:H7 an increasing

public health concern worldwide. The infectious threshold of E.

coli O157:H7 is very low, and ingestion of 10 cells may be enough

to cause severe gastrointestinal illness [3]. The typical clinical

symptoms of E. coli O157:H7 infections are watery diarrhea and

hemorrhagic colitis [1], which can progressively develop into life-

threatening hemolytic uremic syndrome (HUS) [4,5].

Outbreaks of E. coli O157: H7 infections are always traced back

to consumption of food that has been directly or indirectly

contaminated by manure/water containing E. coli O157:H7.

Animals including deer, horses, dogs, and birds [6,7,8,9] are

known to be E. coli O157:H7 carriers. However, cattle are thought

to be the main carrier of E. coli O157:H7 [10,11]. E. coli O157:H7

in the environment may originate from farms where manure

amendments are used as fertilizer. The pathogen could be

mobilized through irrigation water, providing an opportunity for

the pathogen to spread out into its secondary reservoir, typically

water and soil. The persistence and regrowth in these habitats may

increase the potential for the pathogen to enter into the food chain

and thereby constitute a public health risk. There have been some

cases of infection from direct contact with E. coli O157:H7

contaminated soil, and more cases of food poisoning caused by or

consumption of vegetables grown in soils contaminated by E. coli

O157:H7 [12,13].

The survival of E. coli O157:H7 in water [14,15,16,17,18,19],

manure and manure slurry [20,21,22], manure-amended soil

[23,24,25], and sediment [26,27], is well documented with

sporadic reports in natural soils [28,29]. More direct results could
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be obtained by applying pathogenic strain in the survival

experiments [30], however, most of the studies used nonpatho-

genic E. coli O157:H7 strains [22,24,31,32] due to environmental

safety and regulations. This raises the question on how well those

indirect results can represent results using pathogenic strains for

comparison. Therefore, additional evidence is needed to clearly

understand the role of stx genes and other virulence factors in the

survival of pathogenic E. coli O157:H7 in the environment.

Previous work [20] showed that there was a similar survival

pattern between a Shiga toxin negative E. coli O157:H7 strain and

a Shiga toxin positive E. coli O157:H7 strain. However, these

strains were not isogenic, and the minor differences in survival

might be attributed to other factors, such as the differences in their

genomic DNA. Indeed, the variability in growth and survival of E.

coli in soils has been shown to be strain-dependent [28].

In the current study, we chose E. coli O157:H7 EDL933 as the

model pathogenic E. coli since its genome has been fully sequenced

and annotated [42]. E. coli O157:H7 EDL933 and its isogenic

mutant derivatives that are missing one of the following virulence

factors, stx1, stx2, stx1–2, and eae, were constructed, their growth in

rich medium and survival in soils compared to that of the wild type

parental strain (Fig. 1). We hypothesized that since all of the strains

are isogenic the results will provide insights into the role of stx and

eae genes in the survival of E. coli O157:H7 in soils. Additionally,

the survival of the E. coli O157:H7 EDL933 in soils will correlate

with the survival of pathogenic E. coli O157:H7 strains in the

environment.

Materials and Methods

Bacterial strains, construction and growth of mutants
The bacteria and plasmids used in this study are listed in

Table 1. In order to facilitate the enumeration of E. coli O157:H7

EDL933 on selective media, the E. coli O157:H7 wild type was

tagged with nalidixic acid in addition to rifampicin resistance, and

its growth curve in LB (Luria-Bertani) broth was found to be

identical to that of the non-tagged wild-type strain.

Mutants lacking Stx1, Stx2, and Eae were generated by allelic

exchange protocol [33]. The flanking regions were amplified by

PCR with specific primers (Table 1), among which primers B and

C (e.g. stx1_B, stx1_C) have the linkers at the 59 end that are

complimentary to primers P1 and P2 [14], respectively, for

crossover PCR. The kanamycin (Km) cassette was amplified from

pKD4 (GenBank accession #, AY048743.1) and the chloram-

phenicol (Cm) cassette was amplified from pKD3 (GenBank

accession #, AY048742.1) using the universal primer set

consisting of forward primer P1 and reverse primer P2. Three-

way crossover PCR was performed using the flanking regions and

Km or Cm cassette as templates, and primers A and D (e.g.

stx1_A, stx1_D) were used in this process. The PCR product was

then cloned into pWM91 digested with XcmI (T-vector). The

resulting plasmid was transformed into E. coli S17-1 l pir, and then

introduced into EDL933 by transconjugation. Recombinants

resulting from double crossover events were obtained by sacB

and sucrose positive selection. All the mutant strains and the wild

type strain were separately stored under 280uC on cryoprotective

beads in MicroBank microbial storage tubes (Pro-Lab Diagnostics,

Ontario, Canada).

The stx and eae mutants, together with the wild type strain were

inoculated into 100 ml of LB broth, and grew under 37uC with a

rotation rate of 250 rpm. The optical density at 610 nm

(OD610 nm) was monitored using a VIS-UV spectrophotometer

(Pharmacia Biotech Inc. NJ). The OD610 nm was plotted against

incubation time, and the apparent growth rate (k, h21) was

calculated using the following equation,

k~(OD2{OD1)=(t2{t1)

where OD1, OD2 are the optical density measured at time t1 and

time t2, respectively, k is the apparent growth rate (h21).

Figure 1. Construction of stx and eae mutants (top) and multiplex PCR confirmation of the mutant constructed (bottom). M
represents 100 bp lDNA ladder.
doi:10.1371/journal.pone.0023191.g001
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Multiplex PCR confirmation of mutants
Multiplex PCR was performed on the mutants and the wild type

to confirm the deletions of stx1, stx2, stx1–2, and eae genes in their

genomes. PCR was performed using Ready-to-Go PCR beads

with the three primer pairs (Table 2) targeting stx1, stx2, and eae

gene [34]. Thermocycler protocol included an initial denaturation

at 95uC for 10 min, followed by 35 cycles of denaturation at 94uC
for 30 s, annealing at 55uC for 30 s, and extension at 72uC for

40 s, and a final extension at 72uC for 5 min. The PCR product

was resolved by electrophoresis on a 1.0% agarose gel. The gel was

then stained with ethidium bromide, visualized and photographed

using a gel imaging system (Bio-Rad Lab., Irvine, CA). The PCR

products with the correct sizes were cloned into TOPO TA

cloning kit (Invitrogen, Carlsbad, CA) according to manufacture’s

protocol, and the resulting plasmids were sequenced. DNA

sequence analysis was performed using DNAStar software

(Lasergene, Madison, WI). Database searches were conducted

with identified open reading frames (ORFs) by using the BLAST

algorithm (http://blast.ncbi.nlm.nih.gov) to confirm the deletion

of the corresponding gene(s).

Collection, characterization, and inoculation of soils
samples

Dello loamy sand, Arlington sandy loam, and Willow silty clay

were collected from Santa Ana River bed, fallow field at the

University of California-Riverside, and Mystic Lake dry bed,

California, respectively (Table 3). Arlington sandy loam is a typical

agricultural soil found in Riverside, CA, while the other two soils

are typical soil types used for cattle production in eastern and

western Riverside County, USA. Permit was obtained from the

University of California Riverside to collect the Arlington sandy

loam. The soil from the Mystic Lake dry bed has high clay content

(71%), and the soil from Santa Ana River bed has high sand

content (99%). The texture and chemistry of the three soils are

listed in Table 3. Soil samples were collected, sieved (2 mm), put

into plastic bags, and stored at 4uC in dark. Soil properties

characterized included, clay, silt, and sand content, water content,

water holding capacity (WHC), soil organic carbon (OC), and total

nitrogen (T-N) [35]. Soil microbial biomass carbon (MBC) was

extracted by the chloroform-fumigation-extraction method [36],

and water extractable organic carbon (WEOC) was measured by a

total organic carbon analyzer (TOC-500, Shimadzu Corp., Kyoto,

Japan) according to the method by Liang et al. [37]. The

assimilable organic carbon (AOC) fraction in WEOC was

determined using a luminous bacterium strain, Vibrio harveyi (Ma

et al., unpublished).

One cryoprotective bead from MicroBank microbial storage

tube containing E. coli O157:H7 was aseptically transferred to a

15 ml tube containing 5.0 ml LB broth and incubated at 37uC for

18 h. From the overnight culture, a 1.0 ml aliquot was transferred

into a 250 ml flask containing 100 ml LB broth, and incubated at

37uC for 18 h to achieve early stationary phase. Stationary phase

cells were used because in the natural environment, the majority of

bacteria exist in this condition [38]. The cells were harvested by

centrifugation at 3500 g (Beckman, Brea, CA), washed three time

using phosphate buffer (10 mM, pH 7.2), and finally resuspended

in sterile deionized water. The wash step was essential to remove

the nutrient, typically organic carbon from the LB broth, since E.

coli O157 is able to grow at low carbon concentrations in

freshwater [39].

Cell from stock cultures were streaked on LB agar (without

antibiotics), and incubated 37uC overnight. Single colonies were

picked and restreaked onto LB agar with appropriate antibiotics.

Single colonies were streaked onto SMAC (sorbitol MacConkey)

agar supplemented with BCIG (5-bromo-4-chloro-3-indoxyl-ß-D-

glucuronide) (Lab M, Lancashire, UK). The isolated colonies were

inoculated into 100 ml LB broth with appropriate antibiotics

(Table 1), and incubated at 37uC for about 16 h. The overnight

culture were harvested by centrifugation at 4uC, washed three

times with phosphate buffer (10 mM, pH 7.2), resuspended in

sterile deionized water, and inoculated into soil samples. Cell

concentrations in soils were about 0.56107 CFU per gram soil (g/

dw) according to Franz et al. [22]. Briefly, the cell suspension was

thoroughly mixed with soil in a plastic bag and 500 gram of the

inoculated soil was transferred to a top perforated plastic bag for

air exchange. The same amount of non-inoculated soil was put

into another plastic bag, which was used as uninoculated control,

with deionized water added instead of cell suspension. The

experiment use triplicate bags of soils. The plastic bags were

weighed and incubated at 10uC in darkness. Moisture content of

Table 1. Bacterial strains and plasmids.

Strain or plasmid Relevant characteristics Source or reference

strains

E. coli DH5a General laboratory strain Gibco-BR

E. coli S17-1 General laboratory strain Simon et al. 1983

E. coli EDL933 wild type ATCC 43895

E. coli EDL933 rifampicin tagged, Rifr This study

E. coli EDL933 stx1(del), , Km, Kmr This study

E. coli EDL933 stx2(del), , Cm, Cmr This study

E. coli EDL933 stx1–2(del), , KmCm, KmrCmr This study

E. coli EDL933 eae(del), , Km, Kmr This study

plasmids

pWM91 Suicide vector, Apr Metcalf et al., 1996

pKD3 plasmid carrying Cm resistance cassette, Cmr Datsenko and Wanner, 2000

pKD4 plasmid carrying Km resistance cassette, Kmr Datsenko and Wanner, 2000

Rifr, rifampicin resistance; Kmr, kanamycin resistance; Cmr, chloramphenicol; Apr, ampicillin resistance.
doi:10.1371/journal.pone.0023191.t001
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the soil sample were adjusted to 60% water holding capacity

(WHC), and water concentration was maintained during the

course of experiment by adding additional deionized water weekly

to obtain the original weight. Antibiotics were added into the agar

media at the following concentrations, kanamycin (Km), 50 mg/

ml; chloramphenicol (Cm), 25 mg/ml; rifampicin (Rif), 100 mg/ml;

and nalidixic acid (Nal), 25 mg/ml.

Sampling and enumeration
The inoculated soils were sampled periodically to determine the

survival of the wild-type and mutant strains over time. At each

point, two samples (1.0 g) of each triplicate bag was removed from

the middle of the soil sample and put into pre-weighed dilution

tubes. The tubes containing soil samples were weighted to

calculate the exact size of soil sample. A 5.0 ml of 0.1% peptone

buffer (Lab M, Lancashire, UK) was added to the test tube

containing the soil sample, and the soil was thoroughly mixed with

the buffer by inverting the tube several times and then vortexed for

2620 s. The resulting soil paste (cell suspension) was then

subjected to 10-fold serial dilutions. Fifty ml of the two highest

dilutions were plated in duplicate on SMAC/BCIG agar with

appropriate antibiotics for enumeration. The inoculated SMAC

agar plates were incubated at 37uC for 16 h, and the results

expressed as log colony forming units per gram dry weight

(CFU g/dw). The detection limit of the plating method was

approximately 100 CFU g/dw. Our preliminary experiments

showed that the average cell recovery rate of the method was

from 90 to 110% of the theoretical value.

Survival data
Survival of E. coli O157:H7 was modeled by fitting the

experimental data to the double Weibull survival model proposed

by Coroller et al. [40] using GInaFiT version 1.5 developed by Dr.

Annemie Geeraerd at Katholieke Universiteit, Leuven, Belgium

[41]. The double Weibull survival model was constructed based on

the hypothesis that the population is composed of two subpopu-

lations differing in their capability on resistance to stress, and

deactivation kinetics of both subpopulations follows a Weibull

Table 2. Primers for mutants’ construction and multiplex PCR.

Primers ID Nucleotide sequence (59 end to 39 end) Predicted product size (bp) Source or reference

stx1_A GGGTCCGGACGGTCATATGT 827 This study

stx1_B gaagcagctccagcctacacTCAGTGAAAATAGCAGGCGC

stx1_C ctaaggaggatattcatatGACCCCCTGAAGGACGGCGTTTT 814 This study

stx1_D CACCCATTGCCGCCGGATTT

stx2_A CATGCTGATGATGCTGGGAGTG 781 This study

stx2_B gaagcagctccagcctacacGCGCGTTGTACTGGATTCGA

stx2_C ctaaggaggatattcatatGAACCTGATTCGTGGTATGTGGG 801 This study

stx2_D TGGATCAGGGCTGTCGAATG

eae_A GCAATAACCAAATCATATCCGC 852 This study

eae_B gaagcagctccagcctacacAACCACCCCGGCTAAAATATGT

eae_C ctaaggaggatattcatatGCTCGAGTTTTTCAGGGGTAGCA 799 This study

eae_D TCCAGCATAGGGACCGTGCA

P1 GTGTAGGCTGGAGCTGCTTC 1463 or 1014 Datsenko and Wanner, 2000

P2 CATATGAATATCCTCCTTAGTTCC

stx1_F ATAAATCGCCATTCGTTGACTAC 180 Paton and Paton, 1998

stx1_R AGAACGCCCACTGAGATCATC

stx2_F GGCACTGTACTGAAACTGCTCC 255 Paton and Paton, 1998

stx2_R TCGCCAGTTATCTGACATTCTG

eae_F GACCCGGCACAAGCATAAGC 384 Paton and Paton, 1998

eae_R CCACCTGCAGCAACAAGAGG

doi:10.1371/journal.pone.0023191.t002

Table 3. Soil texture and chemistry.

Soil type
Sand
(%)

Silt
(%)

Clay
(%)

Bulk
density
(g/cm)

WHC
(%) pH

T-N
(g/kg)

OC
(g/kg)

WEOC
(mg/kg)

MBC
((mg/kg)

AOC
((mg/kg)

Dello loamy sand 99.1 0.2 0.7 1.67 17 7.1 0.07 0.58 10 11 0.20

Arlington sandy loam 70.9 20.8 8.3 1.54 21 7.2 0.61 5.40 44 56 0.90

Willow silty clay 3.7 49.1 47.2 1.51 63 7.2 1.61 20.4 242 278 4.94

WHC, water holding capacity; T-N, total nitrogen; OC, organic carbon; MBC, microbial biomass carbon; AOC, assimilable organic carbon.
doi:10.1371/journal.pone.0023191.t003
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distribution. The size of the surviving population can be calculated

using equation 1,

Nt~
N0

1z10a
10

{ t
d1

� �
p

za
z10

{ t
d2

� �
p" #

ð1Þ

a~log10

f

1{f

� �
ð2Þ

Where N is the number of survivors, N0 is the inoculum size; t is

the time; p is the shape parameter, when p.1 a convex curve is

observed; when p,1 a concave curve is observed, when p = 1 a

linear curve is observed. The scale parameter, d, represents the

time needed for first decimal reduction; f, varying from 0 to 1, is

the fraction of subpopulation 1 in the population. Another

parameter, a, varying from negative infinity to positive infinity,

is obtained by logit transformation of f as shown in equation 2.

The strong correlation between the scale (d) and the shape (p)

parameters makes the double Weibull model to fit most of the

shapes of deactivation curves. Previous study proved that the

double Weibull model can successfully describe a biphasic shape

with nonlinear decrease, which can not be described by other

survival models [40]. Additionally, when d1 = d2, the double

Weibull model can be simplified into a single Weibull model, and

the survival curve can be described by only three parameters. A

very important and useful parameter, Td (time needed to reach

detection limit, 100 CFU g/dw) can also be calculated when using

GInaFiT to fit the experimental survival data.

Statistical analysis
Analysis of variance (ANOVA) was performed to investigate the

differences in growth in rich medium, and the survival in soils

using SPSS 16.0 software package (Chicago, IL).

Results

Mutant construction and confirmation
The genome of E. coli O157:H7 EDL933 has been fully

sequenced and annotated [42], which makes it possible to knock

out the genes of interest. The multiplex PCR assay (Fig. 1) clearly

showed that the wild type strains displayed three bands

representing the amplicons from eae, stx2, and stx1 genes, from

top to bottom, with predicted sizes of 384, 255, and 180 bp,

respectively. For the mutant derivatives, there was one band

missing for Dstx1, Dstx2, and Deae, and two bands missing for the

double mutant construct Dstx1–2, compare to the wild type strain.

Figure 1 clearly showed that the virulence factors were successfully

deleted as evidenced by the missing of the corresponding bands on

the agarose gel.

Growth in rich medium and survival in soils
The growths of the mutant strains in LB broth were compared

with that of the wild type (Fig. 2). The results showed that the E.

coli O157:H7 EDL933 mutant derivatives growth was not

significantly different from that of the wild type. Overall, there

was about 1.5 h lag time followed by an exponential phase (5 h

from incubation), then stationary phase (8 h post inoculation), and

no decay phase was observed until 25 h of growth in LB broth

under 37uC. The calculated apparent growth rates (r) of wild type,

Dstx1, Deae, Dstx2, and Dstx1–2 were as following, 0.4660.02,

0.4660.03, 0.4660.03, 0.4760.04, and 0.4660.03.

The wild type strain and the mutant strains were inoculated in

soils to test their survival at 10uC. The results (Fig. 3) showed that

within the same soil, there were no significant differences in

deactivation profiles between the mutant and the wild type strains.

It was also observed that the survival varies greatly in different

soils. The cells survived shortest (32 day) in loamy sand with less

nutrients (Fig. 3A), longest survival (113 day) was found in silty clay

soil where there are more finer particles and more nutrient (e.g.,

organic carbon, nitrogen) (Fig. 3C), while the survival length was

intermediate (82 day) in sandy loam soil. In loamy sand (Fig. 3A),

there was a sharp decline of cell population within the first two

weeks post inoculation, followed by a steady decrease until cell

concentration dropped below detection limit. In sandy loam

(Fig. 3B), a similar trend was also observed, a quick drop during

first two weeks followed by a progressive decline. While in the silty

clay (Fig. 3C), cells survived longer, because the cell concentrations

did not decline significantly until four weeks post inoculation. Here

after, cells started a very slow decline and dropped below detection

limit (100 CFU g dw21) after 113 days.

Modeling of survival data
To accurately compare the survival kinetics between the wild

type and mutant strains, survival data were modeled using a

double Weibull equation as shown in Fig. 4. Similar modeling

parameters (a, d, and p) from mutant strains and the wild type

strain were calculated when they were inoculated into the same

soil. However, more variations in these parameters were observed

from different soils, especially the d values. When these strains

were characterized in loamy sand and sandy loam soils, distinct d1

and d2 were observed indicating that the two subpopulations

behave differently in both soils. The subpopulation with greater d
value declines slower than the one with smaller d value. In

contrast, almost identical d1 and d2 values were calculated from

the survival data in silty clay soil indicating that the two

subpopulations of cells in this soil likely behave similarly, thus

the survival data in silty clay might be simplified into one Weibull

model that can be described by only three parameters, a, d and p.

The initial sharp decrease in cell numbers in loamy sand soil might

largely be attributed to the faster decline of subpopulation with

smaller d. However, with the time, the subpopulation with greater

d dominated the cell population, leading to a slower and steadier

decline of the cell concentrations. A similar trend was also

Figure 2. Growth curves of wild type strain (N) and its derivative
mutants strains, Dstx1 (e), Deae (m), Dstx2 (%), and Dstx1–2 (#).
The data represent the average of triplicate measurements.
doi:10.1371/journal.pone.0023191.g002
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observed in sandy loam soil. However, in silty clay soil, the cell

concentrations did not change until 3 weeks post inoculation. This

was followed by a steady decrease in cell concentrations until the

population dropped below the detection limit (57–66 days).

The time to reach detection limit (Td) between the wild type and

mutant strains in the same soil was not significantly different

(P = 0.05) (Fig. 5). Td values in soils follow the order of, silty

clay.sandy loam.loamy sand, which is consistent with the order

of fine particle and nutrient levels in the soils. The effect of soil

properties on the survival of E. coli O157:H7, and the time that it

takes for the pathogen to reach detection limit was determined

(Fig. 6). The results showed that with the increase in clay content,

total organic carbon, total nitrogen, and water extractable organic

carbon, there was a corresponding increase in Td values.

Discussion

The most significant finding of this work is Shiga toxins and

intimin have no influence on the survival of pathogenic E. coli

O157:H7 EDL933 in the three soils. The Shiga toxins stx1, stx2

genes, and eae gene in E. coli O157:H7 have been intensively

investigated [43,44]. Shiga toxins might induce an advantage in E.

coli O157:H7 survival in the environment [44,45,46]. However,

the role of these genes in survival of the pathogenic E. coli

O157:H7 is still not completely understood [20]. Most of the

previous survival studies used nonpathogenic E. coli O157:H7

strains [30,24,31,32], and the survival data based on pathogenic

strains in the environment are not available due to regulations and

safety concerns [27,28]. The typical nonpathogenic E. coli

O157:H7 strain widely used in the literature include a green

Figure 3. Survival of the wild type (N) and its mutant
derivatives, Dstx1 (e), Deae (m), Dstx2 (%), and Dstx1–2 (#), in
loamy sand (3A), sandy loam (3B), and silty clay (3C). The data
represent the average of triplicate experiments.
doi:10.1371/journal.pone.0023191.g003

Figure 4. Double Weibull Model parameters of wild type strain
and its mutant derivatives in loamy sand (4A), sandy loam (4B),
and silty clay (4C).
doi:10.1371/journal.pone.0023191.g004

Figure 5. Td values calculated from the double Weibull model
for wild type and its mutants derivatives in loamy sand (m),
sandy loam (#), and silty clay (N). The data represent the average
of triplicate modeling of the raw survival data.
doi:10.1371/journal.pone.0023191.g005
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fluorescence protein labeled strain (E. coli O157:H7 B6-914 GFP-

91) constructed by Fratamico et al. [47] and a bioluminescent

construct (E. coli O157:H7 Tn5, luxCDABE) by Ritchie et al. [31],

both of which have been shown to survive in soil for months.

Researchers used these nonpathogenic strains in the survivals

studies on the assumption that they behave the same with the

pathogenic strains. Therefore, comparative studies relating the

survival of pathogenic E. coli O157:H7 strains to nonvirulent

strains are needed to make a firm conclusion. The study by Kudva

and colleagues [7] revealed that identical or very similar survival

patterns were observed within a Shiga toxin positive E. coli

O157:H7 strain (ATCC 43894) and Shiga toxin negative E. coli

O157:H7 strain (ATCC 43888), indicating that Shiga toxins might

have little or no influence on E. coli O157:H7 survival in manure

and manure slurry. However, the strains used in their analysis

were not isogenic, and factors other than Shiga toxins may have

contributed to the minor survival differences observed in that

study. In the present study, we have constructed a cluster of

mutant derivatives from E. coli O157:H7 EDL933, with one of the

following virulence factors deleted, stx1, stx2, stx1–2, and eae. The

indistinguishable growth curves between the mutants and the wild

type strains in rich medium, in combination with their similar

survival profiles in three different soils, offer strong evidence that

the Shiga toxin genes and eae gene do not likely play important

role in the survival of E. coli O157:H7 in soils.

In the current study, the survival data were successfully modeled

by the double Weibull model. Different models were fitted into the

survival data, but the best fit was obtained by applying double

Weibull model. Since double Weibull model was based on the

assumption that there are two subpopulations, and they differs in

level of resistance to stress, and the survival of both subpopulations

follow a Weibull distribution. Subpopulation with smaller d die off

faster compared to the other subpopulation with greater d. In

loamy sand, and sandy loam soils, distinct d values, i.e. d1?d2,

were obtained for the two subpopulations, indicating that the two

subpopulation exhibit different resistant capability in both soils.

On the other hand, almost identical d values, i.e. d1<d2, were

observed for the two subpopulations in silty clay soil, implying that

the two subpopulations show a similar survival behavior in silty

clay soil.

The persistence of E. coli O157:H7 is highly dependent on soil

types, since distinct persistence time (Td) of this pathogen varies

significantly in different soils in terms of soil chemistry and texture.

The longest survival was observed in silty clay soil, while the

shortest survival was found in loamy sand soil. The results of soil

characterization revealed that the silty clay soil is most abundant

in clay, organic carbon, total nitrogen, and water extractable

organic carbon, while the least abundant of those fractions is found

in loamy sand soil. The variation in Td was best explained by the

clay content in soils, since Td was closely correlated with the clay

content. This agrees with the fact that the pathogens survived

longer in finer-textured (clayey) than in courser (sandy) soils under

similar environmental conditions [48]. Colonization of soil

particles and aggregates is thought to be critical for the inoculated

bacteria to survive in soil [49]. Finer textured soils (clayey)

compared to coarser textured soils (sandy) may provide protective

pore spaces to improve the survival of soil bacteria [50]. Indeed,

the survival of a bacterial pathogen in 23 soils types was found to

be positively correlated with soil clay content, in addition to other

factors [51]. Indeed, greater survival of E. coli in sediment rich in

clay (.25%) has been observed [25].Similarly, survival of E. coli

O157:H7 was primarily determined by the soil texture, with

prolonged survival associated with more clay particles compared

with sand particles [22,52,53]. In addition to soil texture, soil

chemistry characteristics, such as organic carbon, total nitrogen,

and water extractable organic carbon, were also found to be

positively related to survival of E. coli O157:H7. In our study, the

availability of nutrient, such as nitrogen and organic carbon in soil

were found to correlate with the pathogen survival in soils.

Recently, Franz et al. [22] showed that the survival of E. coli O157

in 36 soils can best be explained by dissolved organic carbon and

the ratio of dissolved organic carbon to microbial biomass carbon.

In addition to soil texture and soil chemistry, biological factors

cannot be neglected when interpreting the survival data of E. coli

O157:H7 in soils. Overall, soils that are rich in clay or organic

carbon might be a good secondary medium for extended

persistence of E. coli O157:H7. Special attention should be paid

to such soils when evaluating the environmental risk associated

with E. coli O157:H7. The studies by the above authors and a

recent review [54], to the best of our knowledge, have produced

the most up to date data on survival of E. coli O157:H7 in soil. The

review showed that temperature, soil structure, and microbial

communities are the most important factors affecting survival.

These authors showed from their previous studies [32] that the

survival of E. coli O157:H7 was inversely proportional to the

diversity of the microbial community established through

differential fumigation and regrowth activities. Niche dependency

strategy has also been suggested as a mechanism for E. coli

O157:H7 survival in the open environment [55] rather than the

biphasic growth model tested in this study. This argument is based

on nutrient availability as the most important physiological factor

for survival of E. coli O157 in nutrient-limited environment.

However, we did not test this phenomenon in this study, but

further studies in our laboratory will be looking at this in the

nearest future.

In summary, stx1, stx2, and eae genes conferred in E. coli

O157:H7 EDL933 did not play any direct role in survival of this

pathogen in soil because the isogenic mutant strains showed

indistinguishable survival profiles in three soils with distinct soil

chemistry. The survival results obtained based on the non-

pathogenic isogenic E. coli O157 strains from this study might be

safely extrapolated to be equivalent to data obtained from

pathogenic strains since the survival data from pathogenic strains

in the environment are not available due to regulations and safety

concerns. However, other conditions should be considered, e.g.,

genes other than stx and eae that might be important in E. coli

Figure 6. Effects of clay content (%), soil organic carbon (OC,
%), total nitrogen (T-N, %), water extractable organic carbon
(WEOC, mg/kg) Td. Gray, white, and black columns represent loamy
sand, sandy loam, and silty clay, respectively.
doi:10.1371/journal.pone.0023191.g006
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O157 survival in the environment. Best management practices

(BMPs) and good agricultural practices (GAPs) must be followed

when leafy greens are grown in soils with high clay and organic

carbon contents to reduce the risk of such soils being contaminated

with E. coli O157:H7.
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