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Abstract

Systems biology modeling typically requires quantitative experimental data such as intracellular concentrations or copy
numbers per cell. In order to convert population-averaging omics measurement data to intracellular concentrations or
cellular copy numbers, the total cell volume and number of cells in a sample need to be known. Unfortunately, even for the
often studied model bacterium Escherichia coli this information is hardly available and furthermore, certain measures (e.g.
cell volume) are also dependent on the growth condition. In this work, we have determined these basic data for E. coli cells
when grown in 22 different conditions so that respective data conversions can be done correctly. First, we determine
growth-rate dependent cell volumes. Second, we show that in a 1 ml E. coli sample at an optical density (600 nm) of 1 the
total cell volume is around 3.6 ml for all conditions tested. Third, we demonstrate that the cell number in a sample can be
determined on the basis of the sample’s optical density and the cells’ growth rate. The data presented will allow for
conversion of E. coli measurement data normalized to optical density into volumetric cellular concentrations and copy
numbers per cell - two important parameters for systems biology model development.
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Introduction

Systems biology ultimately tries to attain quantitative under-

standing about biological systems [1]. For this endeavor, mathe-

matical models are important tools. For their development, most

often quantitative data on intracellular concentrations or copy

numbers of proteins, metabolites or other biomolecules are needed

(e.g. as in [2,3,4]). Current omics technologies resemble a great

source for such data [5,6,7]. However, these measurement tech-

niques typically only sample at the cell population-level, thus

yielding molecule copy numbers (moles) per sample (i.e. per

cell dry weight or per optical density), while for mathematical

modeling intracellular molecule concentrations or absolute intra-

cellular molecule copy numbers are needed. In order to convert

the current omics data into such units, knowledge of the volume

and number of the sampled cells is instrumental. This information

is however lacking even for the well-studied model organism E.

coli.

Cell dimensions and cell volume have often been determined

by coulter counter measurements [8] or by electron microscopy,

where the cells undergo extensive preparation procedures before

they can be observed, often introducing a measurement bias [9].

For E. coli, cell volume has also been determined by measurement

of the volume of a cell pellet and subsequent division of the volume

by the cell number [10]. Microscopy as another measurement

option requires cells to be held in place and high magnification

[11,12] and is rather laborious. Using these different methods, the

average length of the rod-shaped bacterium E. coli was determined

to lie between 1.6 and 3.1 mm [12,13], the average width was

determined as 0.7–1.1 mm [11,14] and the volume was deter-

mined to range from 0.5–4 mm3 [10,15,16,17]. The differences

between the determined cell lengths and volumes can be explained

by the increase in cell length and therefore volume with growth

rate [18]. Unfortunately, information about the cell volume is only

available for a limited number of growth conditions.

To infer intracellular concentrations and molecule numbers

from population-level measurements, the total cell volume and

total number of cells in the sample need to be known, respectively.

The total cell number in a sample is dependent on the bacterial

cell density. Bacterial density is typically measured on the basis of

determining the amount of transmitted or scattered light. Such

optical density (OD) measurements do not measure the number of

cells directly but correlate the absorption of light to the cell

concentration. In preliminary experiments, we observed that the

OD-specific concentration of E. coli cells in a culture (i.e. the

number of cells per milliliter at an OD of 1 measured at 600 nm)

varies when the cells are grown in different conditions. Therefore,

the number of cells in a sample cannot simply be determined by

measuring the OD of the culture. Unfortunately today, there is no

data available that describes the dependence between the number

of cells and the OD when cells grow in different conditions.

In order to make omics data generated for E. coli accessible to

modeling endeavors, in this work we determined the optical

density, cell concentration and cell size of E. coli BW25113, a
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commonly used K-12 strain in several systems biology programs

[7,19,20], when grown under 22 different growth conditions. We

report the growth-condition dependent cell dimensions and show

that the OD-specific cell concentration decreases with increasing

growth rate. Further, we show that OD correlates with the total

cell volume in a sample. We derive an empirical equation that can

be used to calculate both the cell concentration in a sample and

the total cell volume from the OD value and the cells’ growth rate.

Comparison experiments using the MG1655 strain show that

these results are generally valid for E. coli. Altogether, the pre-

sented results now allow for correct determination of cellular

concentrations or copy numbers from typical omics data.

Results

To determine condition-specific cell volume and concentration

data, we selected those conditions that are most commonly used in

the literature for experimental data acquisition in E. coli systems

biology endeavors. We grew the cells in steady-state on complex

medium (LB), on M9 minimal medium containing different

carbon sources with various entry points into metabolism and on

M9 minimal with different carbon sources with amino acids added

to be able to sample a larger range of growth rates. Furthermore,

the cells grown in glucose minimal medium were also exposed

to different stress conditions (pH, temperature, osmotic and oxy-

gen stress) and also subjected to four different growth rates in a

chemostat. Lastly, we also analyzed cells that had entered sta-

tionary phase. The OD values at 600 nm of the cultures were

determined by spectrophotometry, the OD-specific cell concen-

tration was analyzed by flow cytometry and the cell volume by

fluorescence microscopy. Besides the E. coli K-12 strain BW25113,

the strain MG1655 was analyzed for a selected subset of conditions

to test whether the results obtained with BW25113 are transferable

also to other E. coli strains.

Cell size and volume
The average cell size was determined from microscopic images

of cells taken directly from steady state cultures. To facilitate image

analysis we used fluorescence microscopy and cells expressing GFP

from a plasmid under the control of the pykF promoter, allowing

precise software-based measurement of both the long and short

axis of the cells. The cell volume was calculated by approximating

the cell shape as a cylinder capped by two half-spheres as done

previously [9,12,17].

Consistent with the literature, the length of the cells varied with

the condition, between 1.6 mm for stationary cells and 3.9 mm for

cells growing on LB medium (Table 1). Since E. coli cells grow by

elongation, the cell length of individuals varies greatly in a

Table 1. Measured cell parameters on different growth conditions.

growth
condition

growth
rate [h21]

cell length
[mm]

cell width
[mm]

single cell
volume [fl]

OD-specific cell
concentration
[108cells?ml21?OD21]

OD-specific total
cell volume
[ml?ml21?OD21]

complex medium LB 1.6160.05 3.960.9 1.360.2 4.461.1 7.860.8 3.4

LB MG1655 1.6260.04 3.560.9 1.460.1 3.961.2 7.560.8 2.9

glucose+AA 1.4960.05 3.561.0 1.560.1 4.061.3 5.960.6 2.4

mannose+AA 1.2860.07 3.760.9 1.560.2 4.161.2 6.360.6 2.5

glycerol+AA 1.2660.04 3.560.9 1.560.1 3.961.2 8.260.8 3.2

carbon sources acetate 0.2960.02 2.360.6 1.260.1 2.461.3 16.861.7 4.0

fumarate 0.4760.03 2.460.6 1.160.1 2.461.2 17.061.7 4.1

galactose 0.1760.02 2.060.5 1.160.1 1.961.2 19.962.0 3.8

glucose 0.6060.05 3.060.7 1.460.2 3.261.2 11.161.1 3.6

glucose MG1655 0.6760.05 2.860.7 1.460.2 3.061.3 11.061.1 3.3

glucosamine 0.3960.03 2.760.7 1.360.1 2.961.3 12.261.2 3.5

glycerol 0.4760.03 2.360.6 1.260.1 2.361.3 19.662.0 4.5

pyruvate 0.4060.03 2.260.6 1.060.1 2.161.2 21.062.1 4.5

succinate 0.4960.02 2.460.6 1.160.2 2.461.3 16.761.7 4.1

stress conditions
on glucose

anaerobic 0.5560.01 2.860.7 1.360.2 2.961.2 10.461.0 3.1

50 mM NaCl 0.6560.02 2.660.7 1.360.2 2.861.2 11.361.1 3.1

pH 6 0.5060.11 2.960.8 1.360.2 3.161.3 10.561.1 3.3

42uC 0.6560.02 2.760.7 1.360.2 2.861.2 11.061.1 3.1

fixed growth rate
on glucose

chemostat m = 0.5 0.50 2.561.2 1.260.2 2.661.9 13.461.3 3.5

chemostat m = 0.35 0.35 2.461.0 1.060.1 2.461.7 19.762.0 4.8

chemostat m = 0.20 0.20 2.261.0 1.060.1 2.261.8 20.662.1 4.5

chemostat m = 0.12 0.12 2.161.1 1.160.1 2.161.9 23.062.3 4.9

starved cells stationary 1 day 0.00 1.660.4 1.160.2 1.561.2 21.962.2 3.3

stationary 3 days 0.00 1.760.3 1.460.1 1.661.1 22.962.3 3.7

Unless indicated otherwise the data is for the E. coli strain BW25113. Errors are given as standard deviations.
doi:10.1371/journal.pone.0023126.t001
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population, thereby leading to a large standard deviation of the

average cell length. Also in agreement with the literature, we found

the cell width to be condition-independent (1.26 mm 60.16 mm).

This value is slightly higher than what was previously reported.

However, a control experiment using fluorescent beads of known

size confirmed the correctness of our size measurements. Presum-

ably, earlier reported smaller widths might have been caused by the

fact that fixation by formaldehyde for electron microscopy leads to

cell shrinkage and reduces the measured volume [9,16]. To determine

the cell volume, we used an average cell width of 1.26 mm for all

conditions, obtaining a volume range from 1.5 to 4.4 fl (1 fl = 1 mm3).

As can be seen in Figure 1A, there is a clear growth rate

dependence of the cell volume; cells with a higher growth rate also

have a larger volume. This trend is visible across all conditions,

and thus knowing the growth rate is sufficient to the estimate an

individual cell’s volume (e.g. with equation in Figure 1A).

OD-specific cell concentration decreases with growth
rate

In order to convert metabolite or protein data measured per

OD unit (as for example reported in [21,22,23]) into intracellular

molar concentrations, often a fixed conversion is assumed for

different growth conditions [7,24]. In doing so, the changes in the

cells’ sizes and the OD-specific cell concentration associated with

these different conditions are disregarded.

In order to enable the calculation of intracellular molar con-

centrations in a condition-dependent manner, we determined the

OD-specific cell concentration by flow cytometry for different

conditions and report this data as cell concentrations normalized

to the corresponding OD values (cells?ml21?OD21) to be able to

compare the different conditions with each other.

As can be seen in Figure 1B the cell concentration per OD

decreases with increasing growth rate. Between cells with the

lowest and the highest growth rate the OD-specific cell con-

centration changes by a factor of four, demonstrating that the

number of cells in a sample varies although the OD is identical.

Therefore, when determining intracellular molecule concentra-

tions or copy numbers, either the cells need to be counted directly

or the OD and the number of cells per OD need to be known.

Total cell volume in a sample correlates with culture OD
Now that we know that both the cell volume and OD-specific

cell concentration are growth rate dependent, we asked whether

knowing the OD may be sufficient to allow the determination of

the total cell volume in a sample – a correlation that one could use

to convert any OD-specific omics measurement into actual molar

concentrations. When multiplying the cell volume (Figure 1A) and

the OD-specific cell concentration (cells?ml21?OD21; Figure 1B)

one can obtain an OD-dependent total volume of the cells

(ml?ml21?OD21; Figure 2A).

It turns out that independent of the condition or growth rate we

obtain a almost constant number for this value (with the highest

and lowest values differing only by a factor of two, which can

be considered marginal given the higher condition-dependent

variation in cell volumes and OD-specific cell concentrations).

This means that the total cell volume per OD is basically constant

for a wide range of different cultivation conditions and that OD

measurements can in fact be used to estimate the total cell volume

in a sample. With the spectrophotometer used in this study, one

milliliter of culture at OD 1 would correspond to a total cell

volume of approximately 3.6 ml. This value can now be used to

estimate volumetric concentrations of cellular molecules. With the

equation shown in Figure 2B it is further possible to infer the OD-

specific cell number in a sample, thereby allowing the determi-

nation of cellular copy numbers from OD-normalized data.

Cell volume at different growth conditions can be
determined by flow cytometry

Now that we have determined the condition-specific cell

volumes (by microscopy), we asked whether we could determine

these volumes also by flow cytometric measurements. For bacterial

cells, a relationship between bacterial volume and forward scatter

Figure 1. Cell volume and OD-specific cell concentration of cells grown in 22 different conditions. Diamonds: BW25113 (empty) and
MG1655 (filled) grown on glucose minimal medium. Squares: BW25113 (empty) and MG1655 (filled) grown on LB medium. Grey circles: Non-growing
stationary cells plotted at a growth rate of 0.1 on the logarithmic x-axis. A: Cell volume plotted against the growth rate. Dashed line: polynomial fit. B:
OD-specific cell concentration (cells/[ml?OD]) plotted against the growth rate. Error bars indicate the standard deviation of at least two independent
experiments (only available for a subset of conditions). The day-to-day variability in the cell concentration measurements was found to be less than
10% (data not shown).
doi:10.1371/journal.pone.0023126.g001
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(FSC) has been observed [25,26,27]. For mammalian cells, FSC is

used to measure cell size, while the sideward scatter (SSC) is used

to measure granularity of the cells [28].

When plotting the FSC and SSC values measured at different

conditions against the cell volumes, we find that both scatter mea-

surements – within limits - correlate with cell volume (Figure 3).

Exceptions for the FSC measurements are the stationary cells,

since the cell volume of the stationary cells is very low and many of

the cells are just around the detection limit of the instrument

(Figure 3A). Thus, cells below a certain volume may escape

detection and in turn result in a too large FSC value. The

correlation of the SSC-values with cell volume (Figure 3B) show

that the chemostat cultivation condition, where the growth rate is

controlled by nutrient limitation, may lead to an increase of

granularity and thereby result in an slightly altered SSC signal.

The data shown in Figure 3 nevertheless indicates that the volume

of E. coli cells can be estimated – within limits - by both FSC and

SSC measurements regardless of the growth condition. However,

it has to be noted that the scatter signal needs to be calibrated for

volume measurements as these readings are dependent on flow

cytometer settings. For doing this calibration the data presented in

Figure 1A or Figure 2B can be used.

Figure 2. The OD-specific total cell volume is condition independent. Diamonds: BW25113 (empty) and MG1655 (filled) grown on glucose
minimal medium. Squares: BW25113 (empty) and MG1655 (filled) grown on LB medium. A: Total cell volume per ml?OD is plotted against the growth
rate. Grey circles: Non-growing stationary cells plotted at a growth rate of 0.1 on the logarithmic x-axis. Error bars indicate the standard deviation
introduced by the variation in the OD-specific cell concentration measurement (only available for a subset of conditions). B: Cell concentration (cells/
[ml?OD]) is plotted against cell volume. Continuous line: fixed volume of 3.6 ml divided by the condition dependent cell volume.
doi:10.1371/journal.pone.0023126.g002

Figure 3. Forward and sideward scatter correlate with cell volume. Diamonds: BW25113 (empty) and MG1655 (filled) grown on glucose
minimal medium. Squares: BW25113 (empty) and MG1655 (filled) grown on LB medium. FSC (A) and SSC (B) values plotted against single cell
volumes. Grey circles: stationary cells.
doi:10.1371/journal.pone.0023126.g003
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Conclusions
Systems biology modeling endeavors typically require ex-

perimental data on either molecule copy numbers per cell or

volumetric concentrations e.g. in terms of mol/cell/volume.

Unfortunately, omics data are often only referenced to OD values

making it difficult or impossible for the modeler to directly use the

data. Here, we addressed this problem and shed light on the

dependencies between OD, growth rate, cell number and cell size

of E. coli for a large number of experimental conditions. Our

results provide the means to covert population data into a per cell

format and at the same time to correct for different cell sizes and

OD-specific cell concentrations at different conditions such that

now frequently reported experimental omics data can be con-

verted into units that can be used for systems biology modeling.

Materials and Methods

Strains and plasmids
The wild type (wt) Escherichia coli K-12 strain BW25113

harboring a reporter plasmid for pykF, which contained the

E. coli pykF-promoter region followed by a gfp gene [29] was used

throughout this work. Where indicated, the wild-type strain

MG1655 (MG) was used for comparison; equally containing the

pykF reporter plasmid.

Media and cultivation
All water for media components was purified (Nanopure type I

ultrapure water system, Barnstead) and autoclaved. Salt solutions

are always aqueous solutions if not indicated otherwise. LB-

medium was prepared as follows: Five grams of yeast extract (BD),

10 g Tryptone (BD) and 10 g NaCl were dissolved in one liter of

purified water and the mixture sterilized by autoclaving. LB-plates

were produced by adding 20 g agar (BD) to the LB-medium

mixture before autoclaving. Before pouring the plates Kanamycin

(25 mg/ml) was added after the mixture had cooled to approxi-

mately 50uC. M9 minimal medium without carbon source was

prepared in the following way: To 700 ml of autoclaved, purified

water, 200 ml of 5x base salt solution (211 mM Na2HPO4,

110 mM KH2PO4, 42.8 mM NaCl, 56.7 mM (NH4)2SO4, auto-

claved), 10 ml of trace elements (0.63 mM ZnSO4, 0.7 mM

CuCl2, 0.71 mM MnSO4, 0.76 mM CoCl2, autoclaved), 1 ml

0.1 M CaCl2 solution (autoclaved), 1 ml 1 M MgSO4 solution

(autoclaved), 2 ml of 500x thiamine solution (1.4 mM, filter

sterilized) and 0.6 ml 0.1 M FeCl3 solution (filter sterilized) were

added. The resulting solution was filled up to 1 liter with water. All

chemicals used were obtained from Sigma-Aldrich.

In order to prepare M9 minimal medium with a specific amount

of carbon source, aqueous stock solutions were used. Aqueous

stock solutions were prepared for every carbon source, adjusted to

pH 7 by titration with 1 M sodium hydroxide or fuming

hydrochloric acid. M9 minimal medium was complemented with

carbon source by mixing appropriate amounts of carbon source

free M9 minimal medium and carbon source stock solutions. The

medium was always filtrated prior to use (Steritop-GP 500 ml,

Millipore). The following carbon sources and concentrations were

used: acetate (sodium acetate, 3.5 g/L), fumarate (disodium fuma-

rate, 2.8 g/L), galactose (2.3 g/L), glucose (5 g/L), glucosamine

(2.1 g/L), glycerol (2.2 g/L), pyruvate (sodium pyruvate, 3.3 g/L),

succinate (disodium succinate hexahydrate, 5.7 g/L). For chemo-

stat growth only 1 g/L of glucose was used. Medium for the cells

grown with osmotic stress was supplemented with NaCl to a

concentration of 50 mM; for the cells grown with pH stress,

fuming hydrochloric acid was titrated to the medium until a pH of

6 was reached. When appropriate, a stock solution containing all

amino acids (AA) was added to the M9 minimal media containing

either glucose, mannose or glycerol. The AA concentrations in

these media are indicated in Zaslaver et al. [30].

Cells were grown as follows. Cells were reconstituted from

280uC stocks using LB-agar plates with Kanamycin added, grown

on the plate overnight and kept at 4uC for a maximum of three

weeks. Preculture: a single colony was picked from a plate and

grown overnight in 5 ml M9 glucose medium in a 14 ml pre-

culture tube with a loosely closed cap (Greiner bio-one) at 37uC,

300 rpm and 5 cm shaking diameter (ISF-4-V shaker, Kühner).

Batch cultures: Cells from a preculture were re-inoculated into

50 ml of pre-warmed medium in a 500 ml unbaffled wide-neck

Erlenmeyer flask covered by a 38 mm silicone sponge closure

(BellCo glass) and grown at 37uC, orbital shaking at 300 rpm and

5 cm shaking diameter (ISF-4-V, Kühner). To ensure steady state-

growth, the cells were first grown over-night and passaged into a

second shake-flask containing fresh medium the next day thus

having undergone at least 10 divisions when measured. Cells

undergoing temperature stress were grown at 42uC. Anaerobic

cultures were grown in 200 ml closed bottles, after residual oxygen

was removed by flushing the medium with nitrogen for 30

minutes. Cells grown in a mini-chemostat as described in Nanchen

et al. [31] were inoculated from a preculture to an OD of 0.1 and

allowed to grow in batch mode to an OD of around 0.8 before

dilution (rates: 0.12, 0.2, 0.35, 0.5) was started. Stationary phase

cells were continuously shaken after reaching stationary phase for

either 1 or 3 days. Additionally cells of all conditions except for the

stress conditions, chemostat growth and growth of the MG1655

strain, were cultivated using an automated cultivation device

(Tecan Infinite 200 Pro plate reader). For this, cells from the

second shake flask culture were washed twice by centrifuging of

1 mL of the culture and resuspending the pellet in 1 mL M9

minimal medium without carbon source. From the washed cells

4 mL of culture were inoculated into a well on a 96-well plate

(Nunc) with 196 mL of medium. The plate was covered with its

transparent plastic cover and sealed with parafilm. Cultivation was

done at the maximal linear shaking speed (160 min21, 1 mm

displacement). The cells were grown to stationary phase or for at

least 50 hours to ensure observation of steady state growth.

Measurement of growth rate
For all shake flask batch cultures the OD was determined using

a spectrophotometer at 600 nm (Pharmacia biotech Novaspec II).

Samples were diluted with minimal medium to an OD value

below 0.2. The growth rate of the cultures was determined from

samples taken over time at OD-values from 0.05 to 0.75. The

growth rates were additionally determined for selected conditions

using the plate reader with the following settings for OD measure-

ments (Interval time 5 min, shaking 4:42, reading (no shaking):

18 s; number of flashes 1; wavelength 600 nm, bandwidth 9 nm).

The measured OD-values were corrected for the non-linearity of

the device using an empirical function derived from samples with

known OD-values (measured by spectrometry) from 10 to 0.001.

The growth rates obtained by the plate reader were in excellent

accordance with the values obtains for shake flask cultivation and

are the ones reported in this work.

Cell volume determination by microscopy
At an optical density of around 0.5, cells were harvested for cell

volume determination. Cells were analyzed by fluorescence micro-

scopy 1 to 3 minutes after removal from the shake flask without

putting the cells on ice in order to minimize possible changes in

cell volume induced by storage of the cells, e.g. by temperature

change. 3 ml of the bacterial culture was spotted onto a coverglass

Cell Volume and Concentration of Escherichia coli
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and then covered with a thin agarose pad (2% agarose in M9

minimal medium without carbon source) to prevent cell move-

ment. Brightfield DIC and green fluorescence images with a

resolution of 0.092 mm/pixel were recorded with a Nikon Eclipse

Ti-E microscope (objective: CFI planapochromat 100x VC oil,

camera: Hamamatsu ORCA C4742-95-12ER).

Fluorescence images were sharpened using an unsharp mask

filter and brightness and contrast were enhanced (Photoshop,

Adobe Systems). Adjacent cells were manually separated by

drawing a line between the neighboring cells. For each condition,

the dimensions of at least 200 individual cells were measured. To

test the accuracy of the microscope size measurements, we also

recorded images of fluorescent spherical beads (absolute counting

beads, Countbright, Invitrogen) with a diameter of 7 mm. The cells

and beads were automatically identified and their length and

width was determined using Cellprofiler [32]. The determined

bead size was 7.061.8 mm from a sample number of 15 beads.

Calculation of the cell volume (V) from the length (l) and width (w)

of the cells was done by assuming the cells to have the shape of a

cylinder capped by two half-spheres and the resulting formula: V

= p?w2?(l-w/3)/4 [9,12,17].

Cell counting by flow cytometry
For cell concentration determination, cells were harvested at an

optical density of around 0.5 and stored on ice to stop further cell

division. For analysis, samples were diluted with carbon source

free M9 minimal medium to an OD value of around 0.001,

corresponding to a cell density of approximately 106 cells/ml.

Prior to measurement, 20 ml of gently vortexed counting beads

(Countbright, Invitrogen) were added to 380 ml of cell suspension.

Samples were vortexed for at least 5 seconds and then immediately

measured for 1 minute without gating. A FACS Calibur flow

cytometer (BD Biosciences) was used in this work. The instrument

settings were the following: Flow rate: high, FSC: E02, SSC: 327,

FL-1: 999, FL-2: 700: all log scale. Primary parameter: SSC,

threshold: 50. For every condition, approximately 309000 cells

were counted.

Analysis of the data was done with FlowJo (Version 8.2, Tree

Star) and determination of the absolute cell concentration in a

sample was performed in the following way: (i) the total number of

cells counted in a sample was determined by manual gating of the

cells in a FL-1 over SSC dotplot, (ii) the total number of beads

counted in the sample was determined by manual gating of the

beads in a FSC over SSC dotplot, (iii) the measured volume was

calculated from the total number of beads measured, and (iv)

division of the measured cell number by the measured volume

yielded the absolute concentration of cells in a sample. The day-to-

day variability in the cell concentration measurements was found

to be not more than 10%.
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