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Abstract

Walking speed is a fundamental indicator for human well-being. In a clinical setting, walking speed is typically measured by
means of walking tests using different protocols. However, walking speed obtained in this way is unlikely to be
representative of the conditions in a free-living environment. Recently, mobile accelerometry has opened up the possibility
to extract walking speed from long-time observations in free-living individuals, but the validity of these measurements
needs to be determined. In this investigation, we have developed algorithms for walking speed prediction based on 3D
accelerometry data (actibeltH) and created a framework using a standardized data set with gold standard annotations to
facilitate the validation and comparison of these algorithms. For this purpose 17 healthy subjects operated a newly
developed mobile gold standard while walking/running on an indoor track. Subsequently, the validity of 12 candidate
algorithms for walking speed prediction ranging from well-known simple approaches like combining step length with
frequency to more sophisticated algorithms such as linear and non-linear models was assessed using statistical measures. As
a result, a novel algorithm employing support vector regression was found to perform best with a concordance correlation
coefficient of 0.93 (95%CI 0.92–0.94) and a coverage probability CP1 of 0.46 (95%CI 0.12–0.70) for a deviation of 0.1 m/s (CP2
0.78, CP3 0.94) when compared to the mobile gold standard while walking indoors. A smaller outdoor experiment
confirmed those results with even better coverage probability. We conclude that walking speed thus obtained has the
potential to help establish walking speed in free-living environments as a patient-oriented outcome measure.
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Introduction

Walking speed is increasingly considered to be an important

indicator of a subject’s health status [1]. Previously, changes in

walking speed measured in a clinical setting have been accepted by

the FDA as primary outcome in a phase III clinical trial in multiple

sclerosis (MS) [2]. Only recently, the EMA has reconsidered its

previous negative opinion towards fampridine – a drug intended to

improve walking ability in MS patients – provided that long-term

efficacy and clinically meaningful outcomes for walking ability will

be investigated by the sponsor [3].

In a clinical setting, walking speed is typically measured by either

short or long walking tests which have been demonstrated to be a

powerful predictor for survival, disability, hospitalization, dementia

and falls [4,5]. However, the 10-meter walk test, a typical example for

short walking tests, shows a considerable amount of measurement

noise and bias due to its brevity [6] and variations of measurement

protocols. Long walking tests such as the 6-minute walking test or

500-meter walking test may often not be feasible to embed into daily

clinical routine because of space [7] and time requirements as well as

logistic efforts, can vary with patients’ motivation and learning effect

[8] and even if performed in a highly standardized setting show a high

day-to-day variability [9,10]. Moreover, discrepancies between

objective measurements and patient-reported limitations of walking

ability are often not reflected by these tests [11] with self-report

instruments such as physical activity questionnaires lacking content
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and construct validity as well as reliability [12]. Consequently, there is

a need for methods to determine walking speed as a key descriptor

and predictor of physical activity which have less bias, higher

precision and better practicability. Therefore walking speed should

ideally be measurable also in uncontrolled environments, since longer

tests can better capture an individual’s walking performance [13].

However, preparatory work using appropriate gold standards prior to

application in a free-living environment is necessary to determine the

accuracy of such a new method under conditions which resemble

those in a free-living environment.

GPS devices are inappropriate for usage in free-living conditions

as they are power-consuming, restricted to outdoor usage,

dependent on weather conditions and satellite availability [14]

and entail potentially problematic data privacy issues. Instrument-

ed walkways (e.g. GAITRiteH [15]) have a high accuracy but are

confined to a laboratory setting. Other available mobile devices to

measure walking speed in free-living environments such as Pedar

[16] and IDEEA [17] have restricted usability with a standard

operating time of less than seven days.

Mobile accelerometry can overcome these limitations, but type

and accuracy of measured parameters strongly depend on the type of

accelerometer. Currently there are several mobile accelerometry

devices on the market claiming to be able to assess walking speed, but

in order to yield usable high-quality data, user-friendliness is of utmost

importance. Systems consisting of five accelerometers attached to

chest, thighs and forefoot [18], three accelerometers mounted on

waist and thighs [19] or a single accelerometer integrated in a tight-

fitting elastic short [20] are unlikely to gain high user acceptance for

long-term monitoring due to their cumbersomeness resulting in

incomplete data sets. Other accelerometers which are attached to the

Figure 1. Mobile gold standard. Example of a test subject operating the mobile gold standard.
doi:10.1371/journal.pone.0023080.g001
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ankle [21] may cause discomfort to the user due to their resemblance

to electronic tags in addition to being only able to capture the motion

of one leg similar to the thigh-worn activPAL [22]. Comparable

devices such as GENEA [23] and Philips DirectLife [24] lack a

standardized method of attachment. In general, this can lead to a sub-

optimal performance of algorithms [25].

The actibeltH platform contains a tri-axial accelerometer integrat-

ed in a belt buckle which the wearer fixes around the waist by either a

leather or elasticated belt [26]. This design was chosen for two

reasons: First, the unobtrusiveness of this set-up ensures a high user

acceptance which has been demonstrated in an independent

assessment [27]; secondly, from a biomechanical point of view the

location where a belt buckle is usually placed is ideal because it is close

to the body’s centre of mass and the axis of symmetry in the sagittal

plane which allows to capture asymmetries of both lower extremities.

Although treadmills are widely-used tools in the context of

research related to gait, exercise and sports due to their

convenience, it is known that treadmill walking significantly differs

from overground walking in terms of kinetics and kinematics

[28,29] and therefore has unclear ecological validity. For this

reason a new mobile gold standard was developed to measure the

walking speed of a freely-moving individual.

This investigation describes the development and validation of

various algorithms for walking speed prediction using actibelt

technology suitable for long-term monitoring with an additional

quality assessment framework including a newly developed mobile

gold standard which allows a direct comparison of algorithms

based on a controlled data set and appropriate statistical measures.

Methods

actibeltH
The actibeltH is a tri-axial accelerometer (512 MB memory

corresponding to 10 days of continuous recording, sampling

frequency 100 Hz, battery life w 20 days) placed inside a belt

buckle [26]. The design is unobtrusive and allows the device to be

closely located to the subject’s centre of mass. It can either be used

for long-term monitoring in a free-living environment (‘‘week-in-a-

box’’) or activity assessment in a clinical setting (‘‘rapid tests’’).

Mobile gold standard
The mobile gold standard consists of a high-end bicycle computer

(CS600X, Polar Electro, Kempele, Finland) mounted on a

perambulator (M10, Geofennel, Baunatal, Germany) (Figure 1).

A perambulator is a device commonly used for land surveying to

measure distance covered with a calibrated mechanism to record

distance for each revolution of the wheel by pushing the wheel

overground. The device used in this study has a wheel circumference of

Table 1. Step features.

Feature Computation MA-model C-model Energy-model RBWE-model

Minimum min s1, . . . ,snð Þ
Maximum max s1, . . . ,snð Þ 3 (y)

Mean 1
n

Pn
i~1 si 3 (z, e) 3 (e)

Sum
Pn

i~1 si 3 (x, z)

Sum of absolute values
Pn

i~1 jsi j 3 (y, z) 3 (x, y, z) 3 (z)

Range max{min

Step duration n 3 3

Root mean squared (RMS)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1
sið Þ2

n

r
3 (x, z, e) 3 (z)

Maximum-mean max{mean (x) 3 (x) 3 (x)

Step amplitude max{mean

n
3 (x) 3 (x)

Min/max amplitude duration

Characteristics calculated for each detected step Sxyz consisting of n values s1, . . . ,sn . Each of the features listed above (except for the step duration) was computed for
each axis x, y, z as well as for the energy e derived from the actibeltH signal which results in a total of 41 features. The columns three to six indicate which features and
axes were used for the respective models.
doi:10.1371/journal.pone.0023080.t001

Table 2. SVR models.

MA-model C-model Energy-model

C 100 5 64

k 0.03 0.0024 0.004

� 0.2 0.01 0.00049

MSE 0.092 0.063 0.065

Parameters for the various SVR models which were found through 10-fold
cross-validation using a grid search over a supplied range of values and total
mean squared error (MSE) during cross-validation.
doi:10.1371/journal.pone.0023080.t002

Table 3. Speed levels.

Speed level Mean speed (sd)

Slow walking 0.65 (0.21)

Normal walking 1.11 (0.17)

Fast walking 1.47 (0.20)

Even faster walking 1.83 (0.25)

Running 2.70 (0.46)

Mean gait speed in m/s and standard deviation (sd) for each speed level as
measured by the mobile gold standard.
doi:10.1371/journal.pone.0023080.t003
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Table 4. Algorithm ranking (indoor ecological validation including running).

Algorithm CP1 (95% CI) CP2 (95% CI) CP3 (95% CI) CCC (95% CI)

SVR (energy-model) 0.35 (0.10-0.58) 0.64 (0.35-0.89) 0.83 (0.52-0.98) 0.95 (0.94-0.96)

Walk ratio (calibrated) 0.33 (0.16-0.83) 0.60 (0.31-0.99) 0.79 (0.46-1.00) 0.95 (0.94-0.96)

SVR (C-model) 0.31 (0.07-0.52) 0.57 (0.24-0.84) 0.76 (0.41-0.97) 0.94 (0.92-0.95)

Step length (walk/run) 0.27 (0.17-0.44) 0.51 (0.33-0.76) 0.70 (0.48-0.92) 0.93 (0.92-0.94)

SVR (MA-model) 0.25 (0.11-0.41) 0.47 (0.26-0.72) 0.66 (0.41-0.89) 0.90 (0.88-0.92)

Integration 0.22 (0.03-0.54) 0.43 (0.09-0.88) 0.61 (0.17-0.98) 0.89 (0.87-0.91)

LR (RBWE-model) 0.21 (0.12-0.49) 0.40 (0.24-0.81) 0.57 (0.35-0.97) 0.81 (0.79-0.83)

Walk ratio (default) 0.21 (0.10-0.79) 0.41 (0.21-0.98) 0.58 (0.32-1.00) 0.85 (0.83-0.87)

LR (MA-model) 0.21 (0.12-0.34) 0.41 (0.24-0.63) 0.58 (0.35-0.83) 0.82 (0.80-0.84)

Step length (pendulum) 0.16 (0.01-0.29) 0.32 (0.04-0.54) 0.47 (0.16-0.74) 0.82 (0.79-0.84)

Step length (default) 0.15 (0.09-0.26) 0.30 (0.19-0.50) 0.43 (0.28-0.68) 0.65 (0.62-0.68)

LR (C-model) 0.14 (0.09-0.25) 0.27 (0.19-0.47) 0.40 (0.27-0.65) 0.53 (0.49-0.57)

Individual coverage probability with a maximum difference of 0.1 m/s (CP1) to 0.3 m/s (CP3) as well as concordance correlation coefficient (CCC) including 95%
confidence intervals (95% CI) for each algorithm across all speed levels.
doi:10.1371/journal.pone.0023080.t004

Figure 2. Visualization of coverage probability for slow walking in the indoor ecological validation. The black solid line represents
speed as measured by the mobile gold standard for slow walking. Green, yellow, red and blue lines in different linestyles represent different speed
estimates by different algorithms and models. The filled areas colored from light to dark grey around the black solid line indicate coverage probality
levels from 0.1 to 0.3 m/s. Speed intervals are sorted increasingly across all participants for reasons of clarity and readability.
doi:10.1371/journal.pone.0023080.g002
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1 m and a high-precision counter accurate to within a centimetre. The

speedometer is usually mounted on a bicycle to record speed, heart rate

and altitude of an athlete. For this study the bicycle computer was

mounted on the wheel of the perambulator to measure walking speed

of a subject operating the perambulator. The speed measurement is

wirelessly transmitted to a small hand-held computer from which data

can then be exported to text files using provided software (ProTrainer

5, Polar Electro, Kempele, Finland) for further analysis.

With this mobile gold standard speed can be measured in the

range of 0 to 127 km/h with a frequency of 1 Hz. Agreement

between velocities measured by the mobile gold standard and

treadmill is very high with a concordance correlation coefficient of

0.99 for speeds ranging from 1 to 8 km/h.

Besides overcoming the limitations of the treadmill, an

advantage of this set-up is the tight coupling of the perambulator

with the bicycle computer which allows to correct for potential

aberrations of the bicycle computer by scaling the obtained values

with an individually calculated factor based on the distance

measured by the perambulator.

Speed prediction algorithms
Most algorithms for walking speed prediction use one of

following basic principles: combining step length with step

frequency, linear regression (LR), support vector regression

(SVR) or integration. Different variations and models for each

algorithm subgroup were evaluated.
Combining step length with step frequency. Step length

(default). The individual’s walking step length is multiplied by

the number of steps to obtain distance. Subsequently, walking

speed can be deduced taking into account the time needed to

cover this distance.
Step length (walk/run). The above described approach is

extended by introducing a second step length which is applied

during running.
Step length (pendulum). Assuming an inverted pendulum

model for human walking, the above described approach is

extended by estimating step length from the upward and

downward acceleration using a geometrical formula taking a

subject’s leg length into account [30].

Figure 3. Visualization of coverage probability for normal walking in the indoor ecological validation. The black solid line represents
speed as measured by the mobile gold standard for normal walking. Green, yellow, red and blue lines in different linestyles represent different speed
estimates by different algorithms and models. The filled areas colored from light to dark grey around the black solid line indicate coverage probality
levels from 0.1 to 0.3 m/s. Speed intervals are sorted increasingly across all participants for reasons of clarity and readability.
doi:10.1371/journal.pone.0023080.g003
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Walk ratio (default). This approach exploits the fact that the

ratio between step length (measured in meters) and step frequency

(measured in steps per minute) – the so-called walk ratio – is found

to be relatively constant across a range of different walking speeds

[31]. Assuming that the walk ratio is a universally applicable

parameter and step frequency can be extracted from the actibeltH
signal, the step length can be determined.

Walk ratio (calibrated). The above described approach is

extended by not assuming a universally valid walk ratio for all

individuals but rather calibrating the walk ratio based on an

individual’s step length and frequency.

Linear and support vector regression. Table 1 shows the

computation and application for all features based on step intervals

used in the models for linear and support vector regression.

For each detected step in the actibeltH signal, each feature was

calculated seperately for the vertical, antero-posterior and medio-

lateral (x, y and z, respectively) acceleration as well as for the so-

called energy Exyz consisting of n values e1, . . . ,en (Equation 1) of a

tri-axial acceleration signal resulting in a total of 41 features.

ei~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i zy2
i zz2

i

q
ð1Þ

Except for the energy-model, all features were found via automated

backward feature selection. The feature set for the energy-model was

determined by the fact that the sum of absolute values of an

accelerometer has been found to contribute significantly to models

which were used to estimate energy expenditure [32]. For this reason,

the four extracted features are the sum of absolute values for each axis

as well as the mean energy of the acceleration signal (Table 1).

Features for training the linear and support vector regression

were taken from an independent data set of the institute’s

accelerometry warehouse. A total of 15 subjects (50% male, aged

40 + 24 years) participated in three different outdoor protocols

with speeds ranging from slow walking over jogging to sprinting.

Out of these 15 subjects, 8 participants also took part in the below

mentioned indoor and outdoor ecological validity experiments. All

Figure 4. Visualization of coverage probability for fast walking in the indoor ecological validation. The black solid line represents speed
as measured by the mobile gold standard for fast walking. Green, yellow, red and blue lines in different linestyles represent different speed estimates
by different algorithms and models. The filled areas colored from light to dark grey around the black solid line indicate coverage probality levels from
0.1 to 0.3 m/s. Speed intervals are sorted increasingly across all participants for reasons of clarity and readability.
doi:10.1371/journal.pone.0023080.g004
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gait speeds were self-selected and subjects wore their usual every-

day shoes. Since this data set was collected before the mobile gold

standard had been available, walking speed for each participant

and stretch of way was calculated as the ratio between distance

covered and time needed to cover this distance.

All SVR models were fitted using a radial kernel. Characteristic

parameters for the SVR models were found through 10-fold

crossvalidation using a grid search over a supplied range of values

(Table 2).

Integration. Since acceleration a is defined as the rate of

change of velocity v, v can can be directly obtained by integrating

acceleration between two points in time t0 and tn after adjusting for

integration drift. As a pre-processing step, a fourth-order, low-pass

Butterworth filter with a cut-off frequency of 0.1 Hz was applied [30].

Pre-processing
Since the actibeltH and the mobile gold standard both measure with

different frequencies (100 Hz and 1 Hz, respectively), it is necessary to

execute several pre-processing steps in order to match the two signals.

To simplify this process the data acquisition protocol was designed to

incorporate inactivity periods of 15 seconds between different speed

levels. Subsequently, both signals can be scanned for the respective

regions of interest and synchronized to within a second.

In order to avoid boundary effects, which can occur when the

subject starts or stops walking/running due to the fact that it may

take several seconds for the subject to resume a regular rhythm

when accelerating or decelerating, only the middle portion of each

interval was used for the subsequent data analysis, that is the first

and last five seconds of each interval were cut off.

Step intervals which were later on used by each algorithm were

automatically detected by a separately validated step counting

algorithm. This algorithm uses a simple peak detection method

with different delays (before detecting a new step) and thresholds

for walking and running.

Participants and protocols
In order to assess the validity of our method to measure walking

speed in free-living environments, we aimed to create situations

Figure 5. Visualization of coverage probability for even faster walking in the indoor ecological validation. The black solid line
represents speed as measured by the mobile gold standard for even faster walking. Green, yellow, red and blue lines in different linestyles represent
different speed estimates by different algorithms and models. The filled areas colored from light to dark grey around the black solid line indicate
coverage probality levels from 0.1 to 0.3 m/s. Speed intervals are sorted increasingly across all participants for reasons of clarity and readability.
doi:10.1371/journal.pone.0023080.g005
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which best resemble those found under free-living conditions.

Since people tend to spend only 2–3 hours per day outdoors on

average [33] (which is roughly about 10–15% of their 16 waking

hours), the major part of our experiment was for testing indoor

ecological validity. In order to further confirm the ecological

validity outdoors, a separate experiment was performed with a

subset of participants.

Indoor ecological validity. A total of 17 healthy subjects

(41% male, aged 32 + 15 years) were recruited from the staff and

student population of the Sylvia Lawry Centre for Multiple

Sclerosis Research in Munich. Subjects were instructed to walk at

five different self-selected gait speeds ranging from slow walking to

running (Table 3) for 1.5 minutes each on a 79.0 m (35.0 m |

4.5 m) long and 1.6 m wide circular indoor track while operating

the above described mobile gold standard and wearing an

actibeltH device attached to the waist. Change of gait speed was

triggered by an automatic beep of the mobile gold standard

followed by a break of 15 seconds. Additionally, each subject was

accompanied by an investigator who gave additional instructions

when to start and stop, reset the counter of the measurement

wheel after each speed level and took down notes regarding the

respective experiment. All subjects gave written informed consent.

The study was approved by the SLCMSR Local Ethics and

Validation Committee (REVA 0001/20100112).

Outdoor ecological validity. A subset of subjects (n = 2,

50% male, aged 35 + 16 years) also participated in an additional

experiment with the aim to approximate another important aspect

of real-life situations. For this purpose the subjects were instructed

to walk outdoors on a 812 m long pavement with increasing

walking speed ranging from slow walking to very fast walking

peaking approximately after having covered half of the total

distance followed by a gradual decrease of walking speed until the

end of the way was reached. Walking speed was self-selected

without any predefined speed or time intervals.

Statistical analysis
The use of Pearson’s correlation coefficient r was deliberately

avoided as it is an inappropriate measure for assessing agreement

Figure 6. Visualization of coverage probability for running in the indoor ecological validation. The black solid line represents speed as
measured by the mobile gold standard for running. Green, yellow, red and blue lines in different linestyles represent different speed estimates by
different algorithms and models. The filled areas colored from light to dark grey around the black solid line indicate coverage probality levels from 0.1
to 0.3 m/s. Speed intervals are sorted increasingly across all participants for reasons of clarity and readability.
doi:10.1371/journal.pone.0023080.g006
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between two methods [34]. Instead limits of agreement (LOA),

coverage probability (CP) and concordance correlation coefficient

(CCC) were used to assess agreement as a joint parameter for

accuracy and precision [35] between walking speed measured by

the mobile gold standard and estimated values.

Bland-Altman’s LOA aid in judging the degree of variation of

agreement, whether the measurements are affected by a systematic

error and whether the differences between methods are dependent

upon the mean [34]. If discrepancies between the two methods as

high as the limits of agreement are not of clinical importance, the

two methods can be used interchangeably.

CP represents the probability that the difference D~X{Y

between two measurements X and Y is within a predefined

boundary k [35]. Since CP is a probability, it is scaled to be

between 0 and 1. Usually k is set to the maximum allowed

difference between two methods. If a large proportion of the data

lies within the k boundary and meets a predefined sufficient

coverage probability level, the two methods can be used

interchangeably.

The CCC is a modified correlation coefficient which – unlike

the well-known Pearson correlation coefficient r – is able to

capture any deviation from the line of equality [36].

All calculations were done using R 2.10.1 [37] with the ‘‘e1071’’

package for SVR support [38] based on the library ‘‘libsvm’’ [39].

Results and Discussion

Table 4 allows a direct comparison of all available models based

on coverage probability with tresholds ranging from 0.1 to 0.3 m/s

as well as the concordance correlation coefficient between the

estimated velocity of the respective algorithm and the velocity

measured by the mobile gold standard. Figures 2, 3, 4, 5 and 6

visualize each algorithm’s coverage probability for the five distinct

speed levels.

The non-linear support vector regression approaches outper-

form their linear counterparts (C-model, MA-model). Out of all

SVR models, the energy-model performs best in terms of coverage

probability which may be a hint that features for models should be

selected according to bio-mechanical and sports science-based

considerations rather than just ‘‘blind’’ automatic selection.

The top-performing SVR (energy-model) is closely followed by

the walk ratio approach with individual calibration. However, it is

evident (Figure 6) that running poses a problem to almost all

algorithms indicated by a poor coverage probability which is to be

expected from a biomechanical point of view. Furthermore

running is not necessarily relevant in the context of our work

with outcome parameters.

For this reason, all parameters listed in Table 4 were re-

evaluated after excluding the subsample of the indoor ecological

validation involving running (Table 5). After exclusion of running,

the calibrated walk ratio overtakes the SVR (energy-model).

Considering that all other models do not require an individual

calibration prior to their application and that one of the

measurements (normal walking) of the indoor ecological validation

experiment was used for calibrating step length and step

frequency, it is not surprising that this unfairly boosts this

algorithm’s performance and introduces a bias in this method’s

Table 6. Algorithm ranking (outdoor ecological validity).

Algorithm CP1 CP2 CP3 CCC

SVR (energy-model) 0.73 0.97 1.00 0.95

SVR (MA-model) 0.68 0.95 1.00 0.94

SVR (C-model) 0.64 0.94 1.00 0.94

LR (RBWE-model) 0.56 0.88 0.98 0.89

LR (C-model) 0.50 0.91 1.00 0.92

LR (MA-model) 0.50 0.82 0.96 0.85

Step length (walk/run) 0.41 0.72 0.90 0.78

Step length (default) 0.39 0.70 0.88 0.74

Walk ratio (default) 0.37 0.67 0.86 0.72

Walk ratio (calibrated) 0.34 0.62 0.81 0.81

Integration 0.30 0.58 0.78 0.81

Step length (pendulum) 0.12 0.28 0.48 0.68

Individual coverage probability with a maximum difference of 0.1 m/s (CP1) to
0.3 m/s (CP3) as well as concordance correlation coefficient (CCC) for each
algorithm across all speed levels.
doi:10.1371/journal.pone.0023080.t006

Table 5. Algorithm ranking (indoor ecological validation excluding running).

Algorithm CP1 (95% CI) CP2 (95% CI) CP3 (95% CI) CCC (95% CI)

Walk ratio (calibrated) 0.62 (0.36–0.89) 0.92 (0.65–1.00) 0.99 (0.84–1.00) 0.97 (0.97–0.98)

SVR (energy-model) 0.46 (0.12–0.70) 0.78 (0.48–0.96) 0.94 (0.73–1.00) 0.93 (0.92–0.94)

Walk ratio (default) 0.45 (0.12–0.92) 0.76 (0.41–1.00) 0.92 (0.62–1.00) 0.94 (0.92–0.95)

LR (RBWE-model) 0.39 (0.18–0.63) 0.69 (0.44–0.92) 0.87 (0.65–0.99) 0.89 (0.88–0.91)

SVR (C-model) 0.38 (0.06–0.69) 0.68 (0.27–0.95) 0.87 (0.59–1.00) 0.90 (0.88–0.92)

SVR (MA-model) 0.31 (0.14–0.59) 0.58 (0.32–0.86) 0.78 (0.50–0.95) 0.84 (0.81–0.86)

LR (C-model) 0.30 (0.15–0.61) 0.56 (0.33–0.91) 0.76 (0.51–0.99) 0.82 (0.79–0.84)

Step length (default) 0.30 (0.20–0.45) 0.56 (0.40–0.77) 0.75 (0.56–0.93) 0.79 (0.77–0.81)

Step length (walk/run) 0.30 (0.19–0.49) 0.57 (0.37–0.81) 0.76 (0.53–0.95) 0.85 (0.82–0.88)

Integration 0.29 (0.03–0.62) 0.54 (0.12–0.94) 0.73 (0.21–1.00) 0.85 (0.82–0.88)

LR (MA-model) 0.26 (0.13–0.57) 0.50 (0.28–0.83) 0.69 (0.43–0.93) 0.72 (0.69–0.75)

Step length (pendulum) 0.15 (0.00–0.28) 0.31 (0.02–0.52) 0.46 (0.11–0.72) 0.64 (0.59–0.69)

Individual coverage probability with a maximum difference of 0.1 m/s (CP1) to 0.3 m/s (CP3) as well as concordance correlation coefficient (CCC) including 95%
confidence intervals (95% CI) for each algorithm across all speed levels excluding running.
doi:10.1371/journal.pone.0023080.t005
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favour. Looking at Table 6 and Figures 7 and 8 which display the

results for the experiment to confirm the ecological validity

outdoors, one can see that under conditions which approximate

real-life situations SVR (energy-model) again outperforms all other

algorithms, including the calibrated walk ratio approach. Further

drawbacks of the calibrated walk ratio approach are the time and

effort needed to calibrate the algorithm and the open question

about how often this calibration process should be repeated in

order to remain valid.

In Table 5 SVR (energy-model) is closely followed by the default

walk ratio approach which is a computationally much simpler

method and would therefore be more favourable for real-time data

processing embedded in the device’s firmware. However, the

outdoor ecological validity for computationally simpler methods

including walk ratio or step length approaches fails (Table 6),

stabilizing SVR (energy-model) ’s position on top of the ranking list.

A potential drawback of the newly developed mobile gold

standard is the fact that the device may constrain the natural arm

swing inherent to human gait. However, in experiments

conducted by the authors using a treadmill at a fixed speed with

and without perambulator, evidence suggests that the centre of

mass at which the actibeltH is placed is only marginally (if at all)

affected and that therefore the difference between the two

conditions is negligible. Another limitation of the mobile gold

standard is the so-called boundary effect. Due to the speedometer

which is dependent on the wheel’s (full) revolution, these

boundary effects can occur while starting or stopping, i.e.

measurements in the first/last few seconds may not be fully

accurate. For this reason, only the middle portion of the acquired

data was used for analysis.

A novel method for measuring self-selected walking speed

using support vector regression combined with mobile accel-

Figure 7. Visualization of coverage probability for participant 01 (male, 46 years) in the experiment for outdoor ecological validity.
The black solid line represents speed as measured by the mobile gold standard for running. Green, yellow, red and blue lines in different linestyles
represent different speed estimates by different algorithms and models. The filled areas colored from light to dark grey around the black solid line
indicate coverage probality levels from 0.1 to 0.3 m/s.
doi:10.1371/journal.pone.0023080.g007
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erometry data using actibeltH technology was developed and

validated. Accuracy and precision are high with a CCC of 0.93

(95%CI 0.92–0.94) and a CP1 of 0.46 (95%CI 0.12-0.70) for a

deviation of 0.1 m/s when compared to the mobile gold

standard while walking indoors. This new method allows the

assessment of self-selected walking speed in free-living individ-

uals over a prolonged period of time which may increase

confidence in the use of walking speed as a patient-oriented

outcome measure.

Only recently, the construct validaty of our new method has been

shown in a study involving healthy blood donors [40]. Further steps

towards demonstrating that walking speed can be a new outcome

and effective measure require comparisons of walking speed

measured in short distance walk tests and long-term measurements

as well as an extension of experiments to confirm the ecological

validity in free-living conditions for diseased subjects. For this

purpose, future studies will need to determine the ability of walking

speed to discriminate between different levels of disease progression

and assess the accuracy of walking speed provided by the actibeltH
under controlled conditions such as the 6-minute walking test across

levels of walking ability. We plan to perform studies with multiple

sclerosis patients with different levels of disability status as a

representative for other chronic disabling diseases as a precursor to

the method’s application administered under real free-living

conditions. Longitudinal studies could provide pivotal information

about test-retest reliability of the new method of walking speed

assessment, the ability of walking speed to detect changes of disease

status and the potential use as surrogate variable.
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