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Abstract

Background: Few studies have compared the validity of objective measures of physical activity energy expenditure (PAEE)
in pregnant and non-pregnant women. PAEE is commonly estimated with accelerometers attached to the hip or waist, but
little is known about the validity and participant acceptability of wrist attachment. The objectives of the current study were
to assess the validity of a simple summary measure derived from a wrist-worn accelerometer (GENEA, Unilever Discover, UK)
to estimate PAEE in pregnant and non-pregnant women, and to evaluate participant acceptability.

Methods: Non-pregnant (N = 73) and pregnant (N = 35) Swedish women (aged 20–35 yrs) wore the accelerometer on their
wrist for 10 days during which total energy expenditure (TEE) was assessed using doubly-labelled water. PAEE was
calculated as 0.96TEE-REE. British participants (N = 99; aged 22–65 yrs) wore accelerometers on their non-dominant wrist
and hip for seven days and were asked to score the acceptability of monitor placement (scored 1 [least] through 10 [most]
acceptable).

Results: There was no significant correlation between body weight and PAEE. In non-pregnant women, acceleration
explained 24% of the variation in PAEE, which decreased to 19% in leave-one-out cross-validation. In pregnant women,
acceleration explained 11% of the variation in PAEE, which was not significant in leave-one-out cross-validation. Median
(IQR) acceptability of wrist and hip placement was 9(8–10) and 9(7–10), respectively; there was a within-individual difference
of 0.47 (p,.001).

Conclusions: A simple summary measure derived from a wrist-worn tri-axial accelerometer adds significantly to the
prediction of energy expenditure in non-pregnant women and is scored acceptable by participants.
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Introduction

Glucose metabolism is closely linked to physical activity [1] and

maternal glucose homeostasis during pregnancy plays an impor-

tant role in foetal programming of the endocrine pancreas [2].

However, it is unclear whether higher levels of physical activity

during pregnancy are associated with maternal glucose [3–5],

which is partly because the accurate assessment of physical activity

in pregnancy is a major challenge. Perhaps because of this, little is

known about suitability of objective methods for physical activity

assessment which can be used in large-scale studies of pregnant

populations [3].
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Accelerometers are becoming increasingly popular in epidemi-

ological studies, and because they are relatively non-invasive, they

may be suitable for use in a range of settings, including pregnancy.

Moreover, accelerometers may provide a more accurate estima-

tion of physical activity-related energy expenditure (PAEE) than

can be obtained from more traditional epidemiological approach-

es, such as questionnaire-based estimations [6–10]. It is however

important that the method used is acceptable to the study

participant to minimize selection bias and maximize the amount of

data obtained; thus studies that seek to evaluate validity and

acceptability of monitors are important.

Accelerometers are most commonly attached to the waist using

an elastic belt, which, for reasons of discomfort, requires that

participants remove the monitor during water-based activities and,

generally, also during sleep. This may affect the incompleteness of

the data beyond the intended periods of non-wear time because

participants forget to re-attach the monitor. Small, waterproof

accelerometers allow attachment to the wrist without the need

to intermittently remove the monitor, which may improve data

completeness. However, accelerometers attached to the wrist may

not capture the main body movements that contribute to PAEE as

suggested in early laboratory studies comparing uniaxial accel-

erometry obtained at wrist and waist level [11,12]. However, a

recent study reported similar correlations (r.0.8) for triaxial

wrist and waist acceleration with energy expenditure during a

laboratory simulation of daily activities [13].

The purpose of this study was to examine whether a simple

summary measure of tri-axial acceleration from a wrist-worn

accelerometer can contribute to estimated PAEE in pregnant

and in non-pregnant women. Further, we compared participant

acceptability of accelerometers attached to wrist and hip in a

different sample, comprising both men and women.

Methods

Ethics statement
Ethical approval was obtained from the Regional Ethical Re-

view Board in Umeå, Sweden, and from the Cambridgeshire

research ethics committee, Cambridge, UK.

Participants
One hundred and eight healthy women (aged 20–35 yrs)

residing in the eastern area of the county of Västerbotten, Sweden

were recruited through local media advertising and with the

assistance of midwives working in local antenatal clinics. Thirty-

five of these women were studied during weeks 28–32 of preg-

nancy, whereas the remainder were non-pregnant. Non-pregnant

and pregnant women were of a similar socio-demographic back-

ground. The vast majority of non-pregnant women had main-

tained a stable relationship for at least a year prior to recruitment

and reported that they anticipated becoming pregnant in the

future. The outcome of the 35 pregnancies (all occurring after the

current investigation) was 34 successful deliveries at term (31

vaginal deliveries, 1 planned and 2 acute caesarean sections) and 1

premature birth (including offspring health complications).

Ninety-nine healthy women and men (aged 22–65 yrs) from

Cambridgeshire in the UK were recruited through local media

advertising to a study aimed at evaluating the validity of a physical

fitness test.

Participants in both studies were initially interviewed by tele-

phone and asked to complete a modified version of the Rose

Angina Questionnaire to identify major contraindications to

exercise [14]. Exclusion criteria included recent major cardiovas-

cular events, recent physically debilitating surgical procedures,

serious unmanaged psychiatric disorders, illicit drug dependency,

and an inability to commit fully to the study procedures. The

objectives and procedures of the study were explained in detail to

the participants, after which they provided written and verbal

informed consent.

Study design
In the Swedish study centre, the accelerometer was worn on the

wrist continuously for 10 days of free-living and total energy

expenditure (TEE) was simultaneously measured using the doubly

labelled water (DLW) method. Additionally, resting energy ex-

penditure (REE) and anthropometric characteristics were mea-

sured [15].

In the British study centre, participants were asked to wear one

hip and one wrist accelerometer for 7 days of free-living. At the

end of the monitoring period, participants were asked to indicate

the acceptability of each monitor on a 10 level ordinal rating scale,

where 1 represented a very low level of acceptability and 10

represented a very high level of acceptability.

Accelerometer
The accelerometer (GENEA, Unilever Discover, Sharnbrook

Bedfordshire, UK) comprised a tri-axial STMicroelectronics

accelerometer (LIS3LV02DL) with a dynamic range of 66 g

(1 g = 9.81 m?s22), as described elsewhere [13]. The acceleration

was sampled at 40 Hz (Sweden) and 80 Hz (UK) and data were

stored in g units for offline analyses. The accelerometer (126
29637 mm) was attached to the wrist with a nylon weave strap

(both groups) and to the hip with an elastic belt (UK sample only).

In order to ensure an even balance of left and right wrist

positioning in the Swedish study, every second participant entering

the study was asked to wear the accelerometer on the left wrist and

every other to wear it on their right wrist, irrespective of hand

dominancy. In the British study, both accelerometers were worn

on the non-dominant body side. Participants were instructed to

wear the accelerometer on the wrist continuously but to remove

the hip-placed accelerometer during water-based activities and

sleeping. A diary was provided to assess monitor non-wear time.

Signal processing
Accelerometer non-wear time was estimated on the basis of the

standard deviation and the value range of each accelerometer axis,

calculated for consecutive blocks of 30 minutes. A block was

classified as non-wear time if the standard deviation was less than

3.0 mg (1 mg = 0.00981 m?s22) for at least two out of the three

axes or if the value range, for at least two out of three axes, was less

than 50 mg. Thresholds were based on lab experiments in which

thirty GENEA accelerometers were left motionless on a flat, stable

surface for 30 minutes, showing that the standard deviation of an

acceleration signal (which has some inherent noise) is 2.6 mg

during non-motion. Therefore, the 3.0 mg threshold will allow a

maximal increase of 0.4 mg in the standard deviation, which when

expressed in angular orientation of the acceleration sensor

corresponds to a standard deviation of 1.6 degrees [a cos 1:000mgð

{0:0004mgÞ: 180ð Þ
p

~1:60]. Phan et al. showed that the acceler-

ation of the chest in a resting person resulting from the breathing

movement alone has an amplitude of 10 mg, while the vibrations

resulting from the heart beat have a peak-to-peak amplitude of

80 mg [16]. Therefore, even the tiniest wrist movements are likely

to be picked up by the method as described above.

Participants for whom more than 50% of the wrist data was

classified as non-wear were excluded from further analyses (two
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pregnant women from the Swedish study). For the remainder of

the participants, non-wear time segments were labelled as missing.

Next, a simple summary measure was derived from the raw

acceleration signals, involving a filtering stage to extract the

accelerations related to body movement using a fourth-order

Butterworth band pass filter (v0: 0.2–15 Hz), followed by the

calculation of the vector magnitude (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax

2zay
2zaz

2
p

). The

resulting signal was then averaged over intervals of one second.

Three basic approaches for the imputation of movement during

non-wear segments were evaluated: i) no imputation, with non-

wear time regarded as no movement (Acc0); ii) imputation of non-

wear time by the average movement during wear time for that

participant (Acc1); and iii) imputation of non-wear time using the

available wear time data at similar times on other days for each

participant (Acc2). Here, Acc2 is assumed to be best capable of

dealing with large periods of missing data as it takes into account

the 24-hour cycle of human behaviour. Finally, the average was

calculated for each participant. All signal processing was done in R

(http://cran.r-project.org) using package Signal.

Anthropometry and energy expenditure (Swedish study
only)

Participants visited the Clinical Research Center at Umeå

University Hospital the morning after a 10-hour fast on day 1 of

the study. Height was measured using a wall-mounted stadiometer

to the nearest 0.5 cm, body weight was measured using a

calibrated digital scale (Tanita Corporation, Tokyo, Japan) to

the nearest 0.1 kg, and arm length, defined as the distance be-

tween the lateral edge of the acromion and the processes styloidius

of the ulna, was measured using a non-stretchable measurement

tape to the nearest 0.5 cm. Arm length was included as it may

explain variation in wrist acceleration, because of the mechanical

relationship between radius (arm length) and acceleration of a

rotating object (accelerometer). REE was measured under

thermoneutral conditions for 30 minutes using indirect calorim-

etry with a ventilated hood (Deltatrac II, Datex-Ohmeda, Inc.,

WI, USA) placed over participants who were lying still and quietly

on a bed without sleeping for 30 minutes. The accelerometer was

thereafter fitted to the wrist. Prior to the completion of the testing

session, each participant was given an accurately weighed oral

dose of DLW stable isotopes (0.07 g 2H2O and 0.174 g H2
18O per

kg body weight). In addition to a pre-dose urine sample, 10

additional urine samples were collected, one for each of the 10

days that followed the day of dosing. The time of each sample was

noted by the participant in a log. Urine samples were stored in

plastic urine vials at +4uC until collection by the research team.

Samples were subsequently frozen at 220uC pending analysis.

Isotopic enrichments of dose and urine samples were analyzed at

MRC Human Nutrition Research, Cambridge, UK [17]. PAEE

was calculated as 0.96TEE – REE [17].

Statistics
Linear regression analysis was applied to develop prediction

models for PAEE. A priori, separate models for pregnant and non-

pregnant women were evaluated, including the following vari-

ables: wrist acceleration, body weight, age, body height, body side

(dominant wrist vs. non-dominant wrist), and arm length. To

determine whether the relationship between wrist acceleration and

PAEE was affected by body side (dominant or non-dominant wrist

attachment) an interaction analysis was performed using a

multiplicative term (acceleration6body side) plus the marginal

effects for this term. Finally, a leave-one-out cross validation

analysis was applied to estimate model performance outside the

training dataset [18], which was evaluated by modified Bland-

Altman plots using criterion PAEE on the horizontal axis [19]. All

models are expressed in MJ day21 as this is regarded to be the

most appropriate way to evaluate the contribution of wrist

acceleration independent of body weight to the total explained

variation in PAEE (MJ day21) from a statistical point of view [9].

However, we acknowledge the preference for other normalisation

approaches from a biological perspective [20], so regression

models for PAEE expressed in Joules min21 kg21 are reported in

the appendix S1 (table A) to facilitate a more complimentary

interpretation of our results.

Acceptability scores (UK study) for wrist and hip accelerometer

placements are summarised as median (inter-quartile range) for

wrist and hip attachments and stratified by sex. The equality in

acceptability between wrist and hip sites was tested using a two-

sided Wilcoxon paired signed-rank test and a non-paired signed-

rank test for male vs. female comparisons.

All analyses were carried out in the open-source tool R (http://

www.r-project.org). An alpha level of p,.05 was regarded as

statistically significant.

Results

Participant characteristics are shown in table 1. In the Swedish

study no significant differences were found between pregnant and

non-pregnant women in their PAEE, REE, TEE, physical activity

level (PAL = TEE/REE), and wrist acceleration (see table 1).

Energy expenditure (Swedish study)
No accelerometer data was retrieved from 9 participants due to

failure to wear the monitor or technical errors. Three of these

participants also failed to collect urine samples, resulting in 99

participants with a complete set of data. Owing to suboptimal

power management in the monitor firmware (a problem that

appears to affect measurement duration in this version of the

GENEA monitor), the data collection period was curtailed for

some participants in the Swedish study. On average, 8.2 days of

data were collected (median: 9.6, 25th percentile: 7.6 days). In 97

out of these 99 participants, at least one day worth of data was

collected. These figures relate to the length of the raw data and

may partially represent periods of non-wear. According to the

diaries, all participants wore the wrist accelerometers for the entire

duration of the 10 day monitoring period. However, the non-wear

detection classified two participants out of the 97 as having worn

the monitor for less than 50% of the measurement duration; these

individuals were thus excluded from further analyses. An example

of the acceleration (Acc2) and the non-wear detection over time in

one Swedish participant is shown in Figure 1. Next, regression

analysis was done in two groups separately: i) for all participants in

whom more than 7 days of data were collected (N = 74, 26

pregnant and 48 non-pregnant women) and ii) for the first three

days of data in all participants for whom one or more days of data

was collected (N = 95; 30 pregnant and 65 non-pregnant women).

The average space ratios (Ko/Kd) for non-pregnant and

pregnant women were 1.034 and 1.030, respectively. Significant

correlations were found between accelerometer output and PAEE

(table 2 and 3). A graphical evaluation of Acc2 as a function of

PAEE is shown in figure 2. In non-pregnant women, Acc2

explained 24% (1–3 days of data. SE: 1.00 MJ) and 21% (.7 days

of data. SE: 0.98 MJ) of the variation in PAEE. Introducing body

weight to the model increased the explained variation for the 1–3

days of data model and the .7 days of data model to 31% (SE:

0.95 MJ) and 31% (SE: 0.92 MJ), respectively (table 2). No

significant correlation was found between PAEE and body weight

Estimation of Daily Energy Expenditure
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(p = 0.21), nor between PAEE and arm length (p = 0.12) (table 2).

Further, no interaction was found between body side and Acc2 in

non-pregnant women (p = 0.62), (table 3). Acc2 and body weight

were not significantly correlated to each other in non-pregnant

women: r 20.16, p = 0.20 (1–3 day of data), r 20.27, p = 0.07 (.7

day of data). In pregnant women, Acc2 over the first three days

explained 11% (SE: 0.71 MJ) of the variation in PAEE, and after

addition of body side to the model this increased to 27% (SE: 0.65

MJ). None of the models significantly explained variation in PAEE

during pregnancy when .7 days of data was used. In pregnant

women, there was also no significant correlation between body

weight and PAEE (p = 0.95). Acc2 and body weight were not

significantly correlated to each other in pregnant women: r 20.01,

p = 0.94 (1–3 day of data), r 20.17, p = 0.42 (.7days of data). In

both pregnant and non-pregnant women, squared wrist acceler-

ation did not significantly contribute to the explained variation by

wrist acceleration alone, thus providing support for a linear model

analysis of the data (models not shown).

Table 1. Participant characteristics providing at least one valid day of accelerometer data.

Non-pregnant women Pregnant women Non-pregnant women Men

(SWE) (SWE) (UK) (UK)

N 65 30 46 37

Body mass (kg) 77.3619.2 76.9614.8 63.269.7 77.5610.8***

Height (m) 1.6760.07 1.6760.06 1.6460.07 1.7760.07***

Age (yrs) 2864 3063** 41612 43614

Arm length (cm) 5764 5964** - -

BMI (kg?m22) 27.866.6 27.765.3 23.463.3 24.763.3

PAEE (MJ/d) 3.5561.22 3.7560.91 - -

TEE (MJ/d) 11.1761.63 11.1761.24 - -

REE (MJ/d) 6.5060.98 6.3060.53 - -

PAL 1.7360.23 1.7860.16 - -

Acc2 (g) wrist 0.12260.019 0.12360.023 0.12360.024 0.12060.029

Acc2 (g) hip - - 0.06560.019 0.06560.021

EWT wrist (%){ 99.4 (98.2–99.8) 99.2 (98.1–99.7) 98.5 (88.4–99.4) 99.1 (97.9–100.0)

EWT hip (%){ 64.9 (60.4–67.6) 64.6 (61.0–67.3)

[Values are mean 6 standard deviation, or {median (Inter-Quartile Range); SWE, Sweden; UK, United Kingdom; t-test to test for differences between pregnant (28–32
weeks of gestation) and non-pregnant women (SWE) or between men and women (UK), where *p,0.05, **p,0.01; PAEE: physical activity-related energy expenditure;
TEE: total energy expenditure; REE: resting energy expenditure; PAL: physical activity level calculated as TEE/REE; Acc2: average acceleration (g) where non-wear time
was imputed by all wear-time data at similar time of the day for that participant; EWT: estimated wearing time].
doi:10.1371/journal.pone.0022922.t001

Figure 1. Example of the acceleration (Acc2) and the non-wear detection score (number of acceleration sensor axes that meet the
threshold for non-wear) for one participant in the Swedish study.
doi:10.1371/journal.pone.0022922.g001
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Table 2. Overview of regression models for predicting PAEE (MJ day21), stratified by amount of accelerometer information used.

Group Model input .7 days 1–3 days
1–3 days, participants
with .7 days

N SE R2 N SE R2 N SE R2

Non- Acc0 48 0.97 0.22*** 65 0.99 0.25*** 48 0.98 0.21***

pregnant Acc1 48 0.99 0.19*** 65 1.01 0.22*** 48 1.00 0.17***

women Acc2 48 0.98 0.21*** 65 1.00 0.24*** 48 0.98 0.20***

Weight 48 1.09 0.01 ns 65 1.13 0.03 ns 48 1.09 0.01 ns

Acc2+Weight 48 0.92 0.31*** 65 0.95 0.31*** 48 0.94 0.27***

Acc2+Body side 1 (with interaction) 48 0.99 0.18* 65 1.01 0.23* 48 1.00 0.18*

Pregnant Acc0 26 0.76 0.08 ns 30 0.73 0.08 ns 26 0.74 0.13*

women Acc1 26 0.75 0.09 ns 30 0.72 0.10 ns 26 0.73 0.15*

Acc2 26 0.75 0.09 ns 30 0.71 0.11* 26 0.73 0.15*

Weight 26 0.81 20.04 ns 30 0.76 20.02 ns 26 0.81 20.04 ns

Acc2+Weight 26 0.77 0.05 ns 30 0.72 0.09 ns 26 0.74 0.12 ns

Acc2+Body side (with interaction) 26 0.71 0.19 ns 30 0.65 0.27* 26 0.66 0.30*

[SE: Residual standard error; ***: p,.001; **: p,.01; *: p,.05; ns: not significant; 1 no significant contribution from Body side (values based on forced inclusion); Acc:
acceleration, where Acc0: not based on non-wear detection and succeeding imputation; Acc1: average acceleration (g) where non-wear time was imputed by the
average of all wear-time data for that participant; Acc2: average acceleration (g) where non-wear time was imputed by all wear-time data at similar time of the day for
that participant; Body side, dominant wrist vs. non-dominant wrist].
doi:10.1371/journal.pone.0022922.t002

Table 3. Regression models for PAEE (MJ day21) in non-pregnant and pregnant Swedish women.

Non-pregnant women Pregnant women

Model 1 Coefficients SE p Coefficients SE p

Constant 1.11 0.73 0.13 1.568 0.946 0.11

(1.16) (0.59) (0.05) (1.779) (0.759) (0.03)

Acc2 (g) 18.97 5.13 ,.001 14.276 7.692 0.08

(19.21) (4.19) (,.001) (13.052) (6.191) (,0.05)

Model 2 Coefficients SE p Coefficients SE p

Constant 20.873 1.009 0.39 1.26 1.63 0.45

(20.429) (0.808) (0.60) (1.22) (1.04) (0.25)

Acc2 (g) 22.553 5.005 ,.001 14.59 7.96 0.08

(21.014) (4.040) (,.001) (13.13) (6.23) (,.05)

Weight (kg) 0.019 0.007 ,.05 0.00 0.02 0.82

(0.017) (0.006) (,.01) (0.01) (0.01) (0.43)

Model 3 Coefficients SE p Coefficients SE p

Constant 0.76 1.11 0.5 3.856 1.408 ,.05

(0.49) (0.93) (0.6) (3.759) (1.01) (,.01)

Acc2 (g) 21.33 8.39 ,.05 24.780 12.038 0.71

(24.75) (7.05) (,.001) (23.447) (8.647) (0.69)

Body side 0.89 1.59 0.58 24.238 1.886 ,.05

(1.01) (1.26) (0.43) (24.038) (1.427) (,.05)

Acc2 (g)6Body side 25.57 11.24 0.62 33.762 15.485 ,.05

(28.22) (9.04) (0.37) (32.156) (11.693) (,.05)

[Values are based on all participants with .7 days of data; numbers in brackets are results from the first three days in all participants that had at least one day of data;
Body side: 1 = accelerometer attached to dominant wrist; 0 = accelerometer attached to non-dominant wrist; SE: Residual standard error; Acc2: average acceleration (g)
where non-wear time was imputed by all wear-time data at similar time of the day for that participant].
doi:10.1371/journal.pone.0022922.t003
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In the cross-validation based on the leave-one-out approach,

PAEE estimates based on Acc2 remained significantly correlated to

measured PAEE in non-pregnant women, but this correlation was

not statistically significant in pregnant women (table 4). In

pregnant women, the interaction between body side and Acc2 was

weaker in the cross-validation analysis although still statistically

significant in the shorter measurement period and larger sample

size (see table 4). A graphical evaluation (modified Bland & Altman

plot) of the PAEE estimation error against measured PAEE (cross-

validation) is shown in figure 3 for models based on Acc2 and

body weight (non-pregnant women) and Acc2 with body side

(pregnant women).

Participant acceptability (UK study)
Fourteen UK participants were excluded, as acceptability scores

were not collected, and two additional participants were excluded,

as no acceleration was recorded for either the wrist or the hip,

resulting in 83 participants with data available for analysis. The

acceptability score for wrist attachment was 0.47 higher than hip

attachment (p,.001). The median (IQR) score for wrist

attachment was 9 (8–10), and the corresponding value for hip

attachment was 9 (7–10) as shown in figure 4. When stratified by

sex, men scored the wrist placement on average 0.51 higher (IQR:

0–1) compared to the hip placement (p = 0.02). Women scored the

wrist placement 0.43 higher (IQR: 0–1), a difference which was

Figure 2. Acceleration (Acc2) as a function of physical activity-related energy expenditure (PAEE) in MJ day21 for p-group
(pregnant) and np-group (non-pregnant). Lines represent the best fit of the data. See table 3 (model 1) for regression equation.
doi:10.1371/journal.pone.0022922.g002
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not statistically significant. No significant difference was found

between sexes for the wrist scores (p = 0.57) or for the hip scores

(p = 0.89). The estimated percentage of wear time was higher for

wrist attachment (median: 99%) compared with hip attachment

(median: 65%) in the UK sample (t = 214.6, p,.001). Sixty five

percent wear time represents 97.5% of waking hours (assuming 16

waking hours per day). Wrist acceleration explained 45.3% of the

variation in hip acceleration (p,.001), which was not improved by

addition of BMI (p = 0.68), age (p = 0.07), or body weight

(p = 0.68) to the regression model.

Discussion

The results from the present study suggest that a simple

summary measure derived from a tri-axial accelerometer attached

to the wrist contributes significantly to the explained variation in

daily PAEE in non-pregnant women but we did not find strong

associations in pregnant women. The difficulty in assessing PAEE

in pregnant women may be related to the unique patterns of

movement and energy metabolism resulting in reduced variance in

PAEE (0.91 MJ vs. 1.22 MJ in non-pregnant women). There are

no indications that the accuracy of the assessment of TEE is

compromised in pregnant women. Although some have argued

that the increase in body-weight during pregnancy to some extent

will be associated with the binding of 2H in newly synthesized

protein and fat and with a gradual increase in the body water pool,

each of these effects has been estimated to account for ,1% mean

bias [21]. The day-to-day variability in basal metabolic rate and

energy expenditure due to the synthesis of protein and fat in new

tissue in pregnancy has not been evaluated. It is possible that an

increased day-to-day variability of these energy components may

have biased the estimation of average BMR and PAEE over the

10-day measurement period within pregnant women, but we are

unaware of any studies which have evaluated this possibility.

The side of the body to which the monitors were attached, but

not arm length, significantly contributed to the explained variation

in PAEE in pregnant women but not in non-pregnant women; to

our knowledge, this observation has not been reported elsewhere,

and there is no clear physiological or biomechanical explana-

tion for this. One possible explanation may be that pregnant

women frequently caress their belly, an activity which may not

increase PAEE appreciably but significantly increase average wrist

acceleration.

Body weight did not correlate with PAEE in this sample of

women. Several other studies have shown significant correlations

between body weight and PAEE in non-pregnant women [22,23].

The absence of an association between body weight and PAEE

reported here may be explained by the lower variation in PAEE in

the current study compared with previous studies [22,23].

Accelerometer output is usually expressed in manufacturer-

dependent output values (i.e. ‘‘counts’’). A count is an arbitrary

unit aimed to be proportional to the average acceleration in a

specified period of time (epoch) [24]. Counts are difficult to

interpret as the underlying data processing method and assump-

tions are often concealed from the end-user. Further, valuable

information is often lost in the process of computing the count, e.g.

the frequency content. Unlike many traditional accelerometers,

the output from raw accelerometers, such as the type used in this

study, is not summarized during data collection (by the monitor),

thus providing the end-user with greater control over data

processing. Therefore, raw accelerometry (e.g., movement data

expressed in g) facilitates easier interpretation and may be of

particular value for studies which aim to compare data collected

from different monitors but it has so far not been used in large

studies. Accelerometer devices, based on inertial or seismic

acceleration sensors (MEMS), which allow for raw data storage

at a relatively high sampling frequency, have been previously used

in gait analysis [25,26] and ambulant activity classification [27,

28]. Since raw accelerometer data can be re-processed, the re-

evaluation of such data at a future date, when more advanced

signal processing approaches become available, is possible. For

example, differentiating activity types has previously been shown

to improve the accuracy of energy expenditure estimation from

waist accelerometry and may also be advantageous for wrist

accelerometry [29,30]. To this end, it is likely that vector mag-

nitude of wrist acceleration would not relate very strongly to

physiological intensity across biomechanically different activities

such as cycling, driving, and walking.

The accuracy of estimated PAEE in the current study may

be limited by the simple summary measure derived from the

accelerometer data. The metric chosen (band-pass frequency

filtering and vector magnitude) was designed to represent the

magnitude of body acceleration as a scalar and has been used in

previous studies [29,31]. This fairly rudimentary metric was

used because wrist accelerometry has so far not been evaluated

against the DLW method. The initial assessment of wrist worn

Table 4. Cross-validation using the leave-one-out method of regression models in which PAEE (MJ day21) is the dependent
variable.

.7 days 1–3 days

Group Model input N RMSE Bias R2 N RMSE Bias R2

Non-pregnant women Acc2 48 1.01 20.01 ns 0.14** 65 1.01 0.00 ns 0.19***

Acc2+Weight 48 0.95 20.01 ns 0.23*** 65 1.03 20.01 ns 0.26***

Pregnant women Acc2 26 0.79 0.02 ns 20.03 ns 30 0.74 0.01 ns 20.01 ns

Acc2+Body side (with
interaction)

26 0.78 0.02 ns 0.04 ns 30 0.68 0.01 ns 0.15*

[Acc2 average acceleration (g) where non-wear time was imputed by all wear-time data at similar time of the day for that participant; RMSE: Root mean square of the
error; body side, monitor attachment to dominant wrist vs. non-dominant wrist;
***: p,.001;
**: p,.01;
*: p,.05;
ns: not significant].
doi:10.1371/journal.pone.0022922.t004
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accelerometry should therefore include the evaluation of an easily

interpretable metric. Another element of signal processing that

may be improved is the non-wear detection, perhaps with

evaluation against direct observation.

Owing primarily to monitor power failure (which is unrelated to

participant acceptability), the monitoring period was substantially

curtailed in a subsection of the dataset. To determine whether this

limitation influenced the validity of the data, we conducted

sensitivity analyses for either 1–3 days or .7 days of monitoring.

The former analysis has the advantage of a larger sample size and

may also be more reflective of typical monitoring periods in large

epidemiological studies. The smaller sample with .7 days of data

may have resulted in weaker correlations, despite overlapping to a

greater extent with the criterion measurement period. However, as

we show, neither sampling strategy resulted in markedly different

conclusions about the validity of the monitor for the assessment of

PAEE. However, it should be noted that the derived models lack

precision on the individual level, with RMSE values only slightly

lower than the between-individual standard deviation in PAEE.

A direct comparison between the accuracy of wrist-mounted

and hip-mounted monitors would have been informative, but was

not possible due to a limited number of accelerometer devices

Figure 3. Error of estimated physical activity-related energy expenditure (PAEE) in MJ day21 based on acceleration (Acc2) as a
function of reference PAEE for p-group (pregnant) and np-group (non-pregnant). Dashed lines represent the average difference and 95%
confidence intervals (22.00–2.00 np-group 1–3 days; 21.97–1.99 np-group .7days; 21.50–1.47 p-group 1–3 days; 21.59–1.56 p-group .7 days).
doi:10.1371/journal.pone.0022922.g003
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available at the start of this study. Nonetheless, the current findings

in non-pregnant women are comparable to the accuracy reported

for accelerometer positioned on the hip or lower back [9,32–34].

For example, triaxial acceleration measured at the lower back

added 33% to the explained variance in PAEE (MJ day21) in a

study by Plasqui et al. [22] and 16–23% in a follow up study with a

different accelerometer by Bonomi et al. [33]. The accelerometer

contribution of 24% for non-pregnant women as found in the

current study falls in between these values. Further, we observed a

relatively high correlation between wrist and hip acceleration in

the acceptability study, an association which was not mediated

by body weight or BMI. However, it should be noted that

comparisons against other studies are limited by differences in

study design, study population, monitor type, and data analysis.

Our evaluation of monitor acceptability included both men

and women and indicate a high level of acceptability for both

placement sites, with wrist or hip accelerometry being tolerated by

almost everyone in the sample; on average men tended to favour

wrist attachment over hip attachment, while no significant

preference was found for women. The estimated percentage of

wear time was significantly higher when the monitor was worn on

the wrist, which was predominantly a result of monitor-specific

wear instructions to the participant. When the acceptability scores

are interpreted in the context of the estimated percentage of wear

time, the majority of the participants do not seem to object to

wearing a wrist accelerometer 24 hrs/day. We assessed accept-

ability by asking the participants to wear both accelerometer

devices at the same time for one week. Wearing the monitors in

parallel standardizes possible confounding variables such as

participant mood when scoring the monitors, the type of physical

activity performed during the wearing period and the type of

clothes worn in combination with the accelerometers. However, it

should be noted that the acceptability of each device is then

evaluated in the context of wearing two devices, which may differ

from the acceptability of wearing a single accelerometer. Further,

acceptability is likely to be population-dependent and the findings

in this sample of healthy adults from the Cambridge area in the

UK may therefore not generalise to other populations. Informa-

tion about monitor acceptability during specific activities in

occupational settings, commuting, and leisure time may be impor-

tant to optimize monitor acceptability and therefore enhance

compliance in future studies.

In conclusion, a simple summary measure derived from a non-

invasive tri-axial wrist accelerometer contributes significantly to

the explained variance in daily PAEE in non-pregnant women,

thus demonstrating its utility for large-scale physical activity

assessment in women. However, we were unable to differentiate

PAEE in pregnancy with this method. Future development of

more advanced analytical procedures may further improve the

estimation of energy expenditure.
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Appendix S1 Table A: Models of PAEE (J min21 kg21) as the
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numbers in brackets are results from the first three days in all
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