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1 Biotechnology Research Institute, Montréal, Québec, Canada, 2 Microbiology and Immunology Department, University of Montréal, Montréal, Québec, Canada,
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Abstract

We have previously demonstrated that C5-deficient A/J and recombinant congenic BcA17 mice suffer from cardiac
dysfunction when infected with C. albicans blastospores intravenously. During these studies we had observed that, even in
the control un-infected state, BcA17 hearts displayed alterations in gene expression that have been associated with
pathological cardiac hypertrophy in comparison to parental C5-sufficient C57Bl/6J (B6) mice. Of note was an increase in the
expression of Nppb, a member of the fetal gene program and a decrease in the expression of Rgs2, an inhibitor of the
hypertrophic response. We now report that C5-deletion has also affected the expression of other elements of the fetal gene
program. Moreover deleting the C5a receptor, C5aR, has essentially the same effect as deleting C5, indicating a key role for
C5a-C5aR signaling in the phenotype. Having noted a pathological phenotype in the un-infected state, we investigated the
role of C5 in the response to cardiac stress. In previous studies, comparison of the expression profiles of C. albicans-infected
BcA17 and similarly infected B6 hearts had revealed a paucity of cardioprotective genes in the C5-deficient heart. To
determine whether this was also directly linked to C5-deficiency, we tested the expression of 5 such genes in the C. albicans-
infected C5aR2/2 mice. We found again that deletion of C5aR recapitulated the alterations in stress response of BcA17. To
determine whether our observations were relevant to other forms of cardiac injury, we tested the effect of C5-deficiency on
the response to isoproterenol-induced hypertrophic stimulation. Consistent with our hypothesis, A/J, BcA17 and C5aR2/2

mice responded with higher levels of Nppa expression than B6 and BALB/c mice. In conclusion, our results suggest that an
absence of functional C5a renders the heart in a state of distress, conferring a predisposition to cardiac dysfunction in the
face of additional injury.
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Introduction

The innate immune system uses a number of surface and

intracellular sensing molecules to detect the presence of invading

microbes or products derived from them, triggering a so-called

‘‘pro-inflammatory’’ response [1]. The complement component

C5 is cleaved to give rise to C5a, a potent pro-inflammatory

molecule and C5b, that participates in the formation of the

membrane attack complex (MAC). C5a is essential for the

recruitment and activation of inflammatory cells such as

granulocytes [2] and it mediates its effect primarily by binding a

G-protein coupled receptor (GPCR), C5aR (or CD88) [2,3].

Another C5a-binding receptor C5L2 (or GPR77) [4], has been

described relatively recently. However, its role in C5a function is

the subject of some debate [5]. The relevance of C5a to early pro-

inflammatory response is highlighted by pathological situations,

including sepsis, where damage to vital organs including the heart

is driven in part by a cytokine storm, which includes excessive C5a

production [6]. Also, in systemic lupus erythamatosis, C5a

activation results in the disruption of the blood brain barrier

integrity [7] and C5a-dependent activation of microglia and

astrocytes has been proposed to contribute to progression of

Alzheimer’s disease [8]. Finally, C5a-mediated inflammatory

response in situ has been shown to be an important pathological

response during cerebral malaria [9,10]. Hence, inhibition of C5a

activity is an attractive strategy to treat or prevent a number of

clinical conditions caused by excessive complement activation.

Candida albicans is an opportunistic pathogen that is part of the gut

flora of most healthy individuals [11]. In the immuno-compromised

host, C. albicans causes a wide spectrum of diseases ranging from

superficial infections of the mucosa to life threatening disseminated

disease [12]. Disseminated candidiasis, which is caused by

deficiencies in the innate immune system, is characterized by fungal

replication in vital organs such as the kidney, heart and brain, with

the kidney being the most permissive site. Genetic analysis in inbred

strains of mice has been used to investigate the major components of

innate defenses whose impairment results in disseminated C. albicans

infection [13,14]. We have previously shown that a deficiency in the

C5 component of complement is responsible for differential

susceptibility of A/J (C5-deficient, susceptible) and C57BL/6J

(C5-sufficient, resistant) mice to acute infection with C. albicans [14].

A/J mice have a 2-base pair deletion in the C5 gene as a result of

which their serum lacks reactivity with anti-C5 antibody and

consequently, any hemolytic activity [15]. Within 24 h of an

intravenous challenge with 36105 C. albicans blastospores, A/J mice

succumb to a dysregulated inflammatory response, necrotic damage
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of the heart, depressed cardiac metabolism and hypoglycemia. On

the other hand, C5-sufficient C57BL/6J (B6) mice, suffer from renal

insufficiency due to high fungal load and granulocyte infiltration of

the kidneys over a protracted period of 7–21 days [16,17]. The C.

albicans susceptibility phenotype of A/J was recapitulated in the

BcA17 mouse strain [18], a recombinant congenic line harboring

12% of the A/J genome (including the C5 mutation) fixed on a B6

resistant background [17].

Given the striking cardiac phenotype displayed by C. albicans-

infected C5-deficient mice, we herein investigated the role of C5a-

C5aR signaling in normal and stress-related cardiac gene

expression. Our studies revealed an unexpected effect of C5-

deficiency on cardiac physiology, including an altered gene

expression pattern indicative of hypertrophy, and inability to

respond appropriately to stress.

Materials and Methods

Mice
Eight to twelve week old, A/J, C57BL/6J, BALB/c and C5aR2/2

(C.129S4(B6)-C5aR1tm1Cge/J mice were purchased from The Jackson

Laboratories (Bar Harbor, ME). To generate the C5aR2/2 mice, ES

cells carrying the mutation were injected into C57BL/6 blastocysts,

the chimeras were crossed to C57BL/6 females and the resulting

heterozygote progeny were mated to C57BL/6 mice for 2

generations. At this point the mice were backcrossed 10 generations

to BALB/c before being made homozygous. Therefore the effect of

C5aR-deficiency has been evaluated by comparison of the C5aR2/2

phenotype with that of both B6 and BALB/c mice. The recombinant

congenic strain BcA17 was purchased from Emerillon Therapeutics

(Montreal, Québec, Canada). Mice were age and sex matched for all

experiments. Housing and all experimental procedures were approved

by the Biotechnology Research Institute Animal Care Committee,

operating under the guidelines of the Canadian Council of Animal

Care (Protocol numbers: 07-MAR-I-010, 08-MAR-I-010 and 09-

MAR-I-010). Mice were monitored at regular intervals once the first

clinical symptoms were observed to minimize their suffering by

ensuring that the end point described in the protocol was respected.

C. albicans infections
Candida albicans strain SC5314 was grown overnight in YPD

medium at 30uC and harvested by centrifugation. The blasto-

spores were washed twice in phosphate buffered saline (PBS) and

re-suspended in it at the required density. For experimental

infections, mice were injected via the tail vein with a 200 ml of

suspension of 36105 C. albicans blastospores in PBS. Mice were

closely monitored for clinical signs such as lethargy, loss of

appetite, hunched back and ruffled fur. Mice exhibiting extreme

lethargy were deemed moribund and were euthanized.

Isoproterenol administration
Mice were injected sub-cutaneously with 10 ml/kg of a 10 mg/ml

solution, resulting in a final dose of 100 mg/kg daily for 5 consecutive

days. The injections were given at the same time (noon) each day and

animals were euthanized 24 h after the last injection.

Biochemical assays
The levels of creatine kinase (Pointe Scientific Inc., Canton, MI,

USA) in the circulation were measured using a commercially

available kit. To determine the levels of cytokines in the

circulation, 12.5 ml of serum was analyzed using the BDTM CBA

Flex sets according to the manufacturer’s instructions. Fluores-

cence levels were recorded using the BDTM LSRII flow cytometry

system (Becton-Dickinson Biosciences, CA, USA) using BD

FACSDivaÿ acquisition software and the data analysis was carried

out using the FCAP Array software.

Semi-quantitative RT-PCR
Transcript levels were measured by semi-quantitative RT-PCR

in a LightCycler (Roche Diagnostics, Laval, Québec) with the

DNA SYBR Green I reaction (Roche Diagnostics). cDNA was

synthesized from 1 mg of RNA with SuperscriptII reverse

transcriptase (Gibco-Invitrogen, Burlington, Ontario, Canada),

according to the instructions of the manufacturer. The sequences

of the primers used for PCR amplification are described in Table 1.

The S-29 gene was used as a reference gene in PCR experiments

[17]. As described in the Roche Applied Science Technical note

LC16/2005, quantitation of test gene expression was performed

by comparing the threshold cycle values. Thus comparative levels

of RNA-X in sample A with reference to sample B = (threshold

cycle for X in A/threshold cycle for S29 in A)/(threshold cycle for

X in B/threshold cycle for S29 in B).

Statistical analysis
The statistical significance of the difference observed for relative

RNA expression levels (Figs. 1, 2D, 2E, 3, 4 and 5), fungal load

(Fig. 2A), cytokine levels (Fig. 2B) and creatine kinase levels

Table 1. Sequence of primers for semi-quantitative RT-PCR.

Gene Forward Reverse

Nppb 59 GAG GTC ACT CCT ATC CTC TGG 39 59 CC ATT TCC TCC GAC TTT TCT C 39

Myh7 59 ACT GTC AAC ACT AAG AGG GTC A 39 59 TTG GAT GAT TTG ATC TTC CAG GG 39

Myh6 59 CAG AGG AGA AGG CTG GTG TC 39 59 CGA ACA TGT GGT GGT TGA AG 39

Nppa 59 TGA AAA GCA AAC TGA GGG CT 39 59 CAG AGT GGG AGA GGC AAG AC 39

Acta1 59 GCA TGC AGA AGG AGA TCA CA 39 59 ATT TCC TTT CCA CAG GGC TT 39

S29 59 GTC TGA TCC GCA AAT ACG GG 39 59 AGC CTA TGT CCT TCG CGT ACT 39

Rgs2 59 AGG ATT GGA AGA CCC GTT TGA GC 39 59 CAT CAA ATG CTT CTG CCC AGA GC 39

Calr 59 CCT GCC ATC TAT TTC AAA GAG CA 39 59 GCA TCT TGG CTT GTC TGC AA 39

Sepinh1 59 GCC GA 59 GCC GAG GTG AAG AAA CCC C 39 59 CAT CGC CTG ATA TAG GCT GAA G 39

Gadd45 59 GGG AAA GCA CTG CAC GAA CT 39 59 AGC ACG CAA AAG GTC ACA TTG 39

Nrp1 59 GAC AAA TGT GGC GGG ACC ATA 39 59 TGG ATT AGC CAT TCA CAC TTC TC 39

doi:10.1371/journal.pone.0022919.t001
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(Fig. 2C) between experimental and control samples was assessed

using a 2-tailed Students t-test assuming equal variance in the two

data sets.

Results

Cardiac hypertrophic gene expression in C5-sufficient
and deficient mice

In previous studies, transcript profiling experiments using heart

RNA showed that, in addition to a large set of genes whose

expression was altered in response to C. albicans infection, a subset

of genes was differentially expressed in a C5-dependent fashion,

and this, prior to infection [17] (NCBI GEO accession number

GSE3381). Notable amongst these was Nppb (B-type natriuretic

peptide; BNP), a member of the fetal gene program and marker of

pathological hypertrophy [19], and Rgs2 (Regulators of G-protein

Signaling; RGS) an inhibitor of hypertrophy [20], suggesting that

C5 deficiency may have intrinsic consequences on cardiac

structure and function.

We therefore decided to extend our studies to other elements of

the fetal gene program associated with maladaptive hypertrophy.

In addition, as a first step towards elucidating the mechanism of

the C5-effect, we examined the effect of deleting the major

receptor for C5a, (C5aR), on the hypertrophic expression profile.

Semi-quantitative RT-PCR was used to compare the cardiac

expression levels of the fetal gene program [a-myosin heavy chain

(Myh6), ß-myosin heavy chain (Myh7), the Myh6/Myh7 ratio, A-

type natriuretic peptide (Nppa), alpha skeletal actin (Acta), B-type

natriuretic peptide (Nppb)] in BcA17, A/J, and C5aR2/2 with

expression levels in C5-sufficient B6 and BALB/c mice (Fig. 1 A

and B). In support of the idea of cardiac stress in the absence of

functional C5, regardless of whether it was due to C5 (BcA17:

Fig. 1A) or C5aR (C5aR2/2 : Fig. 1B) deletion, the levels of Myh7,

and Nppb were higher (p,0.001) and the Myh6/Myh7 ratio was

lower (p,0.001 (BcA17 vs B6, C5aR2/2 vs B6) and p,0.05

(C5aR2/2 vs BALB/c) in the absence of C5a activity. Acta1

expression was also similarly affected by the absence of functional

C5 (BcA17 vs B6 p,0.001 and C5aR2/2 vs B6 p,0.001 and

p = 0.0501 for the C5aR2/2- BALB/c comparison). It is notable

that BcA17 shared the hypertrophic gene expression pattern with

A/J, its C5-deficient parental strain and that C5aR deletion results

in similar effects on cardiac gene expression, despite being on a

distinct C5-sufficient background, that of BALB/c (B6 vs BALB/c

p,0.001 for Nppb, Acta1, Myh7 and the Myh6/Myh7 ratio and

p,0.05 for Nppa). Equally relevant to cardiac hypertrophy was the

reduced expression of Rgs2 in un-infected BcA17 when compared

to the C5-sufficient B6 hearts (Fig. 1C p,0.01). Deleting C5aR

also had an impact on cardiac Rgs2 expression, since the levels in

C5aR2/2 mice are significantly different from both B6 and

BALB/c parental strains, being lower than B6 (p,0.01), but

higher than BALB/c (p,0.01). Taken together, our data

suggested a link between C5-deficiency and cardiac hypertrophy

and hence merited further investigation.

Response of C5aR2/2 mice to C. albicans infection
To determine whether the changes in cardiac gene expression in

C5aR2/2 mice were also associated with the differential

susceptibility phenotype of A/J and BcA17 vs. B6 to C. albicans

infection, we investigated the response of the C5aR2/2 mice to

Candida infection. Therefore, A/J, BcA17, C5aR2/2, BALB/c and

B6 mice were administered 36105 C. albicans intravenously. As

described in Mullick et al. [17], twenty-four hours post-infection,

the C5-deficient A/J and BcA17 mice were moribund whereas the

B6 and BALB/c mice showed no clinical symptoms. At this point

Figure 1. Effect of C5-deficiency on the hypertrophic gene
expression program. Semi-quantitative RT-PCR was used to deter-
mine the levels of the indicated genes in heart RNA from C57Bl/6J (B6
n = 13), BcA17 (n = 13), A/J (n = 12) (A), B6 (n = 9), C5aR2/2 (n = 9) and
BALB/c (n = 6) (B), and B6 (n = 11), BcA17 (n = 8), and C5aR2/2 (n = 6),
BALB/c (n = 6) and A/J (n = 17) (C). In all panels transcript levels are
presented as relative amounts with respect to those in control B6 RNA.
The figure represents data from at least two independent experiments.
The error bars indicate the standard errors of the means. Statistically
significant differences with control B6 (A and C), C5aR2/2 (B) or BALB/c
(C: boxed) values, are indicated by asterisks (* p,0.05, **p,0.01 and
*** p,0.001).
doi:10.1371/journal.pone.0022919.g001
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C5aR2/2 mice also displayed severe symptoms of disease

progression (lethargy, ruffled fur and hunched back). All C.

albicans-infected mice and un-infected controls were euthanized

and kidneys were harvested to evaluate fungal growth in vivo, since

they provide the most permissive site for C. albicans replication.

Hearts and blood samples were collected for biochemical analysis.

Figure 2 shows that, in terms of kidney fungal load (p,0.001), the

inflammatory response (IL6 p,0.001, KC p,0.001 and MCP-1

p,0.001 (C5aR2/2 vs BALB/c) and p,0.05 (C5aR2/2 vs B6))

and necrotic damage to the heart (p,0.001) C. albicans-infected

C5aR2/2 mice were significantly different from their C5-sufficient

counterparts (B6 and BALB/c), indicating that the C5-deficiency

phenotype is a consequence of a lack of C5a-C5aR signaling.

Finally, given that our previous studies indicated that Candida-

infected C5-deficient mice suffer from altered cardiac metabolism

in comparison to the C5-sufficient B6 mice, we measured cardiac

RNA levels of Glut1 (Fig. 2D) and Pdk4 (Fig. 2E). Consistent with

our earlier reports, levels of Glut1 and Pdk4 are higher in C.

albicans-infected C5aR2/2 hearts than in similarly infected B6

(Glut1 p,0.01, Pdk4 p,0.001) and BALB/c (Glut1 p,0.001, Pdk4

p,0.05) hearts respectively. Our data clearly demonstrate that

fungal load, the dysregulated inflammatory response, necrotic

damage to the heart and changes in cardiac glucose oxidation

upon C. albicans infection, are indeed linked to the C5 status and

C5aR mediates the effect.

Changes in cardiac fetal gene expression upon
C. albicans infection

Given that the reactivation of the fetal gene program is

indicative of cardiac pathology, we wanted to determine whether it

was further modulated by C. albicans infection in a C5-dependent

manner. Therefore semi-quantitative RT-PCR was carried out

using heart RNA of control and infected mice (24 hrs post-

infection). Fig. 3 shows the level of expression of the different genes

after infection, relative to that in control B6 hearts. As shown in

the figure, Myh7 is induced significantly only in B6 and BALB/c

mice (Figs. 2A and 3A: Myh7 induced 12-fold in B6 p,0.001;

while there was no change in BcA17; Figs. 2B and 3B: Myh7

increased 6.22-fold in B6 p,0.001 and 1.77-fold in BALB/c

p,0.01, but reduced 3.84-fold in C5aR2/2 p,0.001) resulting in

higher induced levels of Myh7 in Candida-infected B6 and BALB/c

hearts compared to similarly infected BcA17 and C5aR2/2 hearts

(Fig 3A and B). Also, as a consequence of changes in Myh7 levels,

the Myh6/Myh7 ratio changed from being higher in the uninfected

state to lower in the infected C5-sufficient hearts (Fig 3A and B). In

contrast to the expression of Myh7, which is more efficiently

increased in response to infection in the C5-sufficient state, the

expression of Nppb was not only higher in the un-infected state

(Fig 1), but was induced more strongly upon infection, in the

absence of functional C5 (Fig. 3A: 5-fold in BcA17 vs. 3-fold in B6

p,0.001 and Fig. 3B: 6.6-fold in C5aR2/2 vs 2.75-fold in B6

p,0.001 and 1.33-fold in BALB/c p,0.001), resulting in further

exacerbation of the C5-dependent differences in Nppb expression.

Although it is not clear why some genes are up-regulated and

others down-regulated, our results indicate that the manner in

which their expression will change is largely dependent on the C5-

status, highlighting the importance of C5 in the response of the

heart to an insult such as infection by C. albicans.

Changes in cardiac stress response upon C. albicans
infection

Comparison of cardiac gene expression profiles of C. albicans-

infected BcA17 vs B6 mice [17] suggested a deleterious effect of

C5-deficiency on the stress response of the heart. Therefore we

chose 5 of the differentially expressed genes with a role in the

response to injury, and examined their expression during C.

albicans infection in A/J, BcA17, C5aR2/2, B6 and BALB/c mice.

Fig. 4 shows that Candida-infected B6 and BALB/c hearts up-

regulate the Calr (B6: p,0.05; BALB/c: p,0.001), Hspa5 (B6:

p,0.01; BALB/c: p,0.01) and Serpinh1 (B6: p = 0.057; BALB/c:

p,0.01) expression upon infection, whereas the C5aR2/2 and

C5-deficient strains do not. Although all strains up-regulate

GADD45 the fold change in A/J, BcA17 (19-fold p,0.001) and

C5aR2/2 (17-fold p,0.001) mice is significantly higher than that

in B6 (2- fold p,0.01) and BALB/c (2.3-fold) (B6 vs BcA17

p,0.01; B6 vs C5aR2/2 p,0.001; BALB/c vs C5aR2/2

p,0.001). Similarly although all strains down-regulate Nrp1, the

fold change is higher in the BcA17 (3.97-fold p,0.001) and

C5aR2/2 (2.87-fold p,0.05) vs 1.44-fold in B6 (p,0.05) and

BALB/c (p,0.001)(B6 vs BcA17 p,0.05; B6 vs C5aR2/2

p,0.05; BALB/c vs C5aR2/2 p,0.001). Therefore our data

reveals a fundamental alteration in the response of the heart to

stress in the absence of functional C5.

Response to isoproterenol
To determine whether the deleterious effect of C5-deficiency

applies to other forms of cardiac injury, and to minimize the

complications inherent to an infectious process, we tested the

response of the A/J, BcA17, C5aR2/2, BALB/c and B6 mice to a

sub cutaneous injection of 100 mg/kg isoproterenol for 5

consecutive days. 6 out of 8 A/J and 1 out of 8 BALB/c mice

succumbed to isoproterenol treatment on days 4 and 5 of

treatment. However, BcA17 and C5aR2/2 mice did not exhibit

clinical symptoms. In addition, other changes observed upon C.

albicans infection, such as inflammatory activity, creatine kinase

levels and cardiac glucose metabolism were not significantly

affected by isoproterenol administration (data not shown).

To further examine the response to isoproterenol, we measured the

changes in Nppa, a known response to this treatment [21]. Figure 5

shows that isoproterenol-treated hearts of BcA17 and C5aR2/2 mice

express significantly higher levels of Nppa than the hearts of similarly

treated B6 (BcA17 vs B6 p,0.001; C5aR2/2 vs B6 p,0.001) and

BALB/c mice (C5aR2/2 vs BALB/c p,0.01), amplifying the

difference already present in the control hearts (Fig. 1). Therefore

the exquisite cardiac sensitivity of C5-deficient hearts is not limited to C.

albicans infection and includes adrenergic stimuli such as isoproterenol.

Discussion

Our previous studies had suggested that C5-deficiency might

predispose mice to cardiac dysfunction since they suffer from

depressed cardiac metabolism within 24 h of infection with C.

Figure 2. C. albicans infection in C5aR2/2 mice. Control and C. albicans-infected B6, A/J, BcA17, C5aR2/2 and BALB/c mice were euthanized 24 h
post-infection. Kidneys were used for fungal load determination (A). Blood was collected to measure the inflammatory response (B) and creatine
kinase (C). Semi-quantitative RT-PCR was used to determine the relative level of expression of Glut1 (D) and Pdk4 (E). The figure represents data from
at least two independent experiments. The numbers in brackets correspond to the number of mice used to generate the figure. The error bars
indicate the standard errors of the means. Statistically significant differences with Candida-infected B6 or BALB/c (boxed) values are indicated by
asterisks (* p,0.05, **p,0.01 and *** p,0.001).
doi:10.1371/journal.pone.0022919.g002
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albicans blastospores [17]. Analysis of cardiac gene expression

profiles had indicated an inability of the BcA17 mice to mount an

appropriate stress response in comparison to B6, the C5-sufficient

parental strain. Moreover, even in the normal uninfected state, the

C5-deficient heart expressed higher levels of Nppb, signifying a

deviation from normal cardiac physiology. We now report that the

expression of other elements of the so-called fetal gene program

(Myh, Nppa and Acta1), is also affected by C5-deficiency. Although,

Figure 3. The effect of C5-deficiency on expression of hypertrophic gene expression program in response to C. albicans infection.
Semi-quantitative RT-PCR was used to determine the levels of the indicated genes in heart RNA from C. albicans-infected B6, BcA17, A/J, C5aR2/2 and
BALB/c mice (B6 inf, BcA17 inf, A/J inf (A) and B6 inf, C5aR2/2 inf, and BALB/c inf (B). Transcript levels in the infected (A: B6 n = 10, BcA17 n = 11, A/J
n = 12; B: B6 n = 11, C5aR2/2 n = 11, BALB/c n = 12) hearts were calculated relative to those in un-infected B6. The figure represents data from at least
two independent experiments. The error bars indicate the standard errors of the means. Statistically significant differences with Candida-infected B6
(A) or C5aR2/2 (B) hearts are indicated by asterisks (* p,0.05, **p,0.01 and *** p,0.001). P-values for the change in gene expression upon infection
in a given strain (Strain Inf vs Strain) or between strains (Strain 1 chg vs Strain 2 chg) is tabulated with statistically significant changes in bold.
doi:10.1371/journal.pone.0022919.g003
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it is not always possible to make a direct correlation between the

expression of the so-called ‘‘fetal gene program’’ and cardiac

dysfunction, it is clear that the reactivation of these fetal genes is a

sign of cardiac stress/pathology, since physiological hypertrophy

does not induce their expression. Indeed, ANP and BNP may be

more reliable as markers for cardiac stress/pathology rather than

for hypertrophy [19]. In support of this view, a comparison of gene

expression patterns in adult, fetal and failing hearts reveals a

striking similarity in the pathways activated in fetal and failing

hearts [22]. Moreover physiological hypertrophy does not induce

such a reactivation [23]. Another revelation of the microarray

analysis was the lower levels of the transcript for RGS2, a negative

regulator of Gaq signaling in BcA17 hearts compared to B6 hearts

[20]. A decrease in RGS2 levels is of special interest to this study

since it has been shown that such a decrease can result in an

exaggerated response to the stress of pressure overload, charac-

terized by hypertrophy and heart failure, in comparison to wild-

type controls [24]. In addition Rgs2, but not Rgs3–5 are down-

regulated in murine models of hypertrophy [25]. However, it is

important to note that, in contrast to the fetal gene program,

RGS2 is not a general marker for hypertrophy. In the heart, it’s

expression is increased only upon G protein-mediated hypertro-

phic signaling [21]. We have shown that C5a-deficiency on a B6

background (BcA17) results in a decrease in Rgs2 expression.

Curiously, A/J, the C5-deficient parent of BcA17 mice does not

display this decrease, suggesting that this phenotype is not

inherited from this parent. The Rgs2 locus maps to chromosome

1 at 67 cM and in BcA17 mice, this chromosomal region is

derived from the B6 parent according to the mapping of

microsatellite markers: BcA17 (described as BcA70 in [18])

genomic DNA carries B6 alleles for 17 markers between

D1Mit386 (59.5 cM) to D1Mit425 (81.60 cM) including

D1Mit218 at 67 cM. Thus changes in Rgs2 expression in BcA17

with respect to the parental B6, have probably developed as an

adaptation of C5-deficiency on the B6 background. At this point it

is unclear whether RGS2 function is normal in the A/J mice, since

we have only examined transcript levels. However, it has been

reported that A/J mice also suffer from aberrant regulation of

GPCR signaling, since, in contrast to B6 mice, they failed to

desensitize ß-adrenergic receptors and down-regulate adenylyl

cyclase activity upon isoproterenol administration [26]. Further

studies will be required to determine the association of deviant ß-

AR signaling in A/J mice with C5-deficiency.

Similarly, our observation that Rgs2 expression in BALB/c

hearts was significantly lower (32%) than in the hearts of the other

C5-sufficient strain, B6, was surprising and indicated that one or

more C5-independent factor(s) were impinging upon cardiac

function in BALB/c mice. Indeed, BALB/c mice are known to

succumb to spontaneous heart failure as a result of dystrophic

cardiac calcinosis (DCC), a degenerative condition characterized

by abnormal calcium deposition and necrotic foci in the heart

[27,28]. Although biochemical changes underlying this phenotype

have not been extensively investigated in BALB/c mice them-

selves, a similar condition has been studied in mice expressing a

mutant form of desmoglein 2 (lacking the extracellular adhesive

domain), that develop cardiac fibrosis and calcinosis [29]. In these

mice cardiac levels of Myh7 and Nppa were higher in mutant versus

wild-type mice, wherein wild-type mice have a mixed genetic

background, including that of B6. Our data has also revealed

higher levels of these cardiac stress markers in BALB/c hearts

compared to B6 hearts (Fig. 1B Myh7: BALB/c vs B6 6.27-fold

p,0.001; Nppa: BALB/c vs B6 1.84-fold p,0.05). Moreover, the

desmoglein 2 mutant mice express lower levels of Rgs2 than their

wild-type counterparts, by 8 weeks of age. Therefore it is likely that

the low Rgs2 (Fig. 1C) levels and the relatively severe reaction of

BALB/c mice to isoproterenol administration (1 out of 8 mice did

not survive) are a consequence of the DCC phenotype. It is of note

that the C5aR2/2 mice express significantly higher levels of Rgs2

and their response to isoproterenol was distinct from that of

BALB/c mice, despite sharing most elements of their genetic

background with this parent. However since the levels are lower

than that in B6 hearts (Fig. 1C), one possible explanation is that,

early in the breeding scheme, when the mutation was on a B6

background, Rgs2 expression was reduced as an adaptation to

C5aR-deficiency on a B6 background.

Our observation that the C5aR2/2 mice recapitulate the

cardiac phenotype characterized by reactivation of the fetal gene

expression, Rgs2 down-regulation and sensitivity to Candida

infection and isoproterenol administration, reveals the first step

in the mechanism of the C5 effect. Although C5 is cleaved to

give rise to two peptides, C5a and C5b, our data signifies the

importance of C5a in this phenotype. Moreover C5a can mediate

its effect via C5aR or C5L2 [2], but we have shown that the

Figure 4. The effect of C5-deficiency on expression of stress response genes in response to C. albicans infection. Semi-quantitative RT-
PCR was used to determine the levels of the indicated genes in heart RNA from control and C. albicans-infected B6, A/J, BcA17, C5aR2/2 and BALB/c
mice. Transcript levels in the control and infected hearts were calculated relative to those in un-infected B6. The numbers in bracket refer to the
number of mice used to generate the figure. The figure represents data from at least two independent experiments. The error bars indicate the
standard errors of the means. Statistically significant differences in infected hearts with respect to their controls are indicated by asterisks (* p,0.05,
**p,0.01 and *** p,0.001).
doi:10.1371/journal.pone.0022919.g004

Figure 5. The role of C5-deficiency on the response to
isoproterenol administration. Semi-quantitative RT-PCR was used
to determine the levels of Nppa in heart RNA from control and
isoproterenol-treated B6, A/J, BcA17, C5aR2/2 and BALB/c mice.
Transcript levels in the treated hearts were calculated relative to those
in un-treated B6. The figure represents data from at least two
independent experiments. The error bars indicate the standard errors
of the means. Statistically significant differences with isoproterenol-
treated B6 or BALB/c (boxed) hearts are indicated by asterisks
(* p,0.05, **p,0.01 and *** p,0.001).
doi:10.1371/journal.pone.0022919.g005
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majority of the effects are recapitulated by C5aR deletion and

therefore, if C5L2 plays a role, it is relatively minor or redundant.

Thus the first important finding of our study is that in the absence

of C5a-C5aR signaling, the heart displays signs of maladaptive

hypertrophy or stress. Moreover, given the wide range of cell types

that express these receptors [5], it is likely that the role of C5 in

normal physiology is more significant than earlier appreciated.

Having observed an effect of C5-deficiency in the normal state,

we examined the consequences of cardiac injury in the absence of

functional C5a-C5aR signaling. Our microarray data had

revealed fewer cardioprotective pathways being modulated in C.

albicans-infected BcA17 hearts in comparison to similarly infected

B6 hearts [17], suggesting a compromised reaction to the inflicted

injury. We therefore identified 5 genes that have been implicated

in the response to stress and whose expression was higher in C.

albicans-infected B6 than similarly infected BcA17 hearts and

examined their expression in C. albicans-infected C5aR2/2 mice.

These include Nrp1, the transcript for neuropilin 1, a non-tyrosine

kinase transmembrane molecule, which functions as a co-receptor

for VEGFR2. The activation of VEGFR2 signal transduction

pathways is crucial for the response to ischemic cardiac injury [30]

and Nrp2/2 mice are much more susceptible to stress overload

than their wild-type littermates [31]. Also important for recovery

from pressure overload is calreticulin, since it inhibits the

reactivation of the fetal gene program via src down-regulation

[32]. Being a Ca2+-buffering protein in the endoplasmic reticulum,

calreticulin regulation is crucial for cardiac function. Hspa5 [33]

and Serpinh [34] are two other transcripts that are inefficiently

induced in C. albicans infected C5-deficient hearts. The corre-

sponding proteins, HSPA5 (also known as 78 kDa, BiP, GRP78)

and HSP47 are also key players in the cardiac response to stress.

Indeed, XBP1, a transcription factor induced in response to

unfolded protein response (UPR) stress, activates the expression of

both HSPA5 and BNP [35]. Overexpression of HSPA5 attenuates

GADD45 expression and cardiomyocyte apoptosis caused by

proteasome inhibitors [36] and down-regulation of GADD45 is a

known survival mechanism [37]. B6 and BALB/c hearts up-

regulate Hspa5 more efficiently than C5-deficient A/J, BcA17 and

C5aR2/2, and are thus able to prevent the remarkable Gadd45

increase seen in the absence of functional C5a, supporting the idea

of sub optimal stress response in these mouse strains. Finally this

phenotype is not restricted to C. albicans infection, since C5-

deficient A/J, BcA17 and C5aR2/2 hearts were also more

sensitive to isoproterenol administration as evidenced by higher

levels of Nppa than C5-sufficient B6 and BALB/c hearts. Our

results implicating C5a in cardioprotective responses are consistent

with the reported role of C5a in triggering cell survival signaling

[38] in the liver and priming quiescent hepatocytes to re-enter the

cell cycle during liver regeneration [39,40], thus raising the

exciting possibility that C5 may be a key factor in inducing a

similar cell survival stimulus in the heart. These results are also

consistent with those of Faulx et al. [26] who reported that the A/J

heart was more seriously damaged than the B6 heart upon

administration of isoproterenol, a trigger of cardiac hypertrophy

and apoptosis [41], and b), Hoit et al. [42] who reported that the

B6 heart was more ‘‘athletic’’ than the A/J heart, displaying

physiologic hypertrophy, lower heart rate and greater exercise

endurance. Thus the second important conclusion of our study is

that in the absence of C5a function, cardiac stress response is

compromised. The BcA17 and C5aR2/2 mice provide ideal

models to identify cardioprotective pathways specific for various

forms of cardiac injury.

In conclusion, we have demonstrated that C5-deficiency has a

profound effect on cardiac function. Although the normal

physiological role of C5 in the context of response to infection

has been well established, our results suggest a novel role for C5 in

normal cardiac signaling. Our results also suggest that the

pharmacological modulation of C5 activity in certain pathological

conditions in humans must be approached with caution.
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