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Abstract

Background: Previous studies have concluded that the development of polydipsia (PD, a daily water intake $21 ml) among
captive Danish bank voles, is associated with the development of a type 1 diabetes (T1D), based on findings of
hyperglycaemia, glucosuria, ketonuria/-emia, lipemia, destroyed beta cells, and presence of autoantibodies against GAD65,
IA-2, and insulin.

Aim and Methods: We retrospectively analysed data from two separate colonies of Danish bank voles in order to 1)
estimate survivorship after onset of PD, 2) evaluate whether the weight of PD voles differed from non-PD voles, and, 3),
evaluate a state of PD as a practical and non-invasive tool to screen for voles with a high probability of hypeglycaemia. In
addition, we discuss regional differences related to the development of diabetes in Scandinavian bank voles and the
relevance of the Ljungan virus as proposed etiological agent.

Results: We found that median survival after onset of PD is at least 91 days (lower/upper quartiles = 57/134 days) with a
maximum recording of at least 404 days survivorship. The development of PD did not influence the weight of Danish bank
voles. The measures of accuracy when using PD as predictor of hyperglycaemia, i.e. sensitivity, specificity, positive predictive
value, and negative predictive value, equalled 69%, 97%, 89%, and 89%, respectively.

Conclusion: The relatively long survival of Danish PD bank voles suggests potentials for this model in future studies of the
long-term complications of diabetes, of which some observations are mentioned. Data also indicates that diabetes in Danish
bank is not associated with a higher body weight. Finally, the method of using measurements of daily water intake to screen
for voles with a high probability of hyperglycaemia constitutes a considerable refinement when compared to the usual,
invasive, methods.
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Introduction

Diabetes has been recognized for millennia’s [1] and is

characterized by persistent hyperglycaemia due to defects in

either insulin secretion, insulin action, or a combination [2]. Its

classical symptoms includes polydipsia (PD), glucosuria, polyuria,

unexplained weight loss, and sometimes coma [3]. Diabetes can

damage any organs in the body [4], and even the most well-

controlled patients still experience serious long-term complications

[5]. The main complications of diabetes are caused by

development of retinopathy, nephropathy, neuropathy and

circulatory dysfunctions, leading to impaired vision/blindness,

renal failure, amputations, and cardiovascular diseases, respec-

tively [1,3,6,7]. Other complications could e.g. be various

rheumatic diseases [8], weakening of the skeletal muscles [9],

problems relating to intestinal microbial overgrowth [10,11],

gastrointestinal dysfunctions [12], susceptibility towards develop-

ment of cancer [13], infertility [14], and a notably decreased life-

expectancy [15–18].

Approximately 5–10% of the diabetic patients suffers from type

1 diabetes (T1D) [19], which show a peak incidence in childhood

[20] but can develop at any age [21,22]. The incidence of T1D

does not seem to show gender differences in the ages below 15, but

present a male/female ratio of 1.5–1.8 in adulthood [23,24].

Human T1D is associated with a chronic autoimmune process for

which the primary cause remains unknown [25,26], and this so-
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called insulitis slowly destroys the insulin-producing beta cells in

the islets of Langerhans and probably also results in a reduced

function of the remaining islets [25,27]. Besides insulitis, which has

been shown to be present in 70% of newly diagnosed T1D patients

[28], T1D has also for long been associated with presence of

autoantibodies against islet cells (ICA), insulin (IAA), the 65 kDa

isoform of glutamic acid decarboxylase (GAD65), and the two

tyrosine phosphatase proteins ICA512 (IA-2) and Phogrin [2].

Presence of autoantibodies can precede T1D by many years but so

far no evidence has been produced that they play an active role in

the pathogenesis of T1D [29]. Experiments will typically, and for

obvious reasons, have to make use of animal models, and several

spontaneous models are in fact available. The two most widely

used models of T1D are at present the nonobese diabetic (NOD)

mouse [30] and the BioBreeding diabetes-prone (BB-DP) rat [31].

The prevalence of T1D in NOD mice shows a marked sex-

difference (70–90% affected individuals among females; 20–65%

among males), with a typical onset between the age of 3–6 months

[32]. T1D is accompanied by the presence of autoantibodies

against GAD65, IAA, IA-2, but the true nature of these

autoantibodies has been questioned [33]. Also accompanying the

development of T1D in NOD mice is an insulitis of a different and

more aggressive type than what is observed in human T1D where

insulitis is mild [34,35,36]. Insulitis in NOD mice succeeds a long

period with benign peri-insulitis, which is seen in practically every

NOD mouse but not observed in human T1D [37–39].

In contrast to NOD mice, BB-DP rats do not show any sex bias

regarding proneness to develop T1D (prevalence: 50–80% in both

sexes [32]), and their accompanying insulitis appears similar to

what is observed in human T1D [40]. The development of T1D in

the BB-DP rat typically shows an abrupt onset at ages 60–120 days

[41] with a mean of 90 days in most publications; is accompanied

by autoantibodies against ICA, whereas presence of autoantibod-

ies against GAD and IAA is, however, controversial. [40]. Diabetic

BB-DP rats usually die within 2 weeks of ketoacidosis [42] unless

they are treated with insulin, whereas NOD mice are able to

survive for considerably longer without treatment (1–12 weeks

[39,43]).

Obviously, both NOD and BB-DP models have their particular

limitations, and the same can be said about other recognized

models, e.g. the Long-Evans Tokushima Lean (LETL) rat [44], the

Komeda diabetes-prone (KDP) rat [45], and the LEW.1AR1/

Ztm-iddm (LEW) rat [46,47]. It should also be noted that there is

no clear line separating animal models for T1D from animal

models for type 2 diabetes [42].

The use of captive bank voles (Myodes glareolus) has only

recently been proposed as a suitable model for diabetes research.

Observations of PD among a large fraction of captive Danish bank

voles were first published in 1986 [48]. PD was at the time believed

to be some sort of maladjusted response to captivity, and PD was

further found to be associated with highly increased mortalities. PD

is also, as mentioned above, one of the classical signs of diabetes,

since a state of hyperglycaemia will transgress the renal threshold

(approx. 10 mM in humans; not determined in voles), leading to

glucosuria, polyuria, and dehydration, which in the end triggers an

impulse to drink excessively, i.e. PD [49,50]. Observations made by

the authors in the late nineties likewise associated the frequent

development of PD among Danish bank voles with highly increased

mortalities, in addition to the development of supposed lumps/

tumours, eye problems, fluffy fur, occasional loss of fur in the groin

area, changes in gait (walking on heels as opposed to normal toe-

walk), weight losses, lack of diurnal rhythm in activity, reduced

fertility, and, in some cases, development of large volumes of

intestinal gas. In addition, PD voles were tested positive for

glucosuria, hyperglycaemia, and lipemia, thus demonstrating their

potential uses as a new animal model for diabetes [51,52]. Onset is

early (approx. two months) and males develop PD roughly three

times as often as females when housed in isolation without

additional stressors (30–34% vs. 11–13%; [51]). However, exposure

to pre-weaning stress increased or decreased the incidence of PD in

both genders to 53% and 13%, respectively, dependant on the

method used [52]. A follow-up study associated PD in captive

Danish bank voles with the presence of ketonuria, ketonemia,

hyperlipidemia, a major loss of insulin-positive beta cells, and

autoantibodies against the same three markers (GAD65, IA-2, IAA)

commonly used to predict human T1D. The study concluded that

captive Danish bank voles could develop a diabetes consistent with a

diagnose of T1D [53]. Insulitis was, however, rarely observed in

T1D Danish bank voles which presents a striking difference to other

T1D models, such as NOD mice [54], BB-DP rats [55], KDP rats

[45], and LETL rats [44].

The development of diabetes in bank voles has only been

subject to a very few studies compared to the e.g. approx. 3000

papers describing diabetes in NOD and BB-DP models. Three

papers address Danish bank voles [51–53] and five papers address

Swedish bank voles [56–60], but nevertheless, available evidence

suggests that the development of diabetes in Scandinavian bank

voles are subject to regional differences regarding aspects such as

predominant type, incidence, and proneness to develop capture-

induced hyperglycaemia (see discussion).

The aim of this study was to provide an actual quantification of

the relatively long survival after onset of PD in Danish bank voles

(as briefly mentioned in reference [52]). Second, we intend to use

available data to analyse whether established PDs present a weight

loss compared to non-PDs (as briefly mentioned in reference [53]),

and thirdly, we intend to evaluate the accuracy of an easy and

non-invasive method to screen for voles with a high probability of

also being diabetic. The method consists of measuring average

daily water intake (DWI) to establish a state of PD, which in turn is

one of the consequences of a state of hyperglycaemia, i.e. diabetes.

Materials and Methods

General approach
This study is based on a retrospective analysis of data from two

separate colonies of Danish bank voles, founded and housed at the

University of Copenhagen in 1995–1997 and 2000–2003. Animal

care and animal use conformed to institutional policies and

guidelines and were in accordance with the International Guiding

Principles for Biomedical Research Involving Animals (1985) and

the ethical guidelines proposed by ISAE Ethics Committee (2002).

Animals, housing, and weaning
The founders of the two colonies were caught on the Danish

island Zealand in 1995 and 2000 using live traps (‘‘Ugglan special

No1’’ made by the Swedish company Grahnab AB: http://www.

grahnab.se). Capture index (number of animals caught during 100

‘‘trap-nights’’) for the first colony was not recorded while it was

6.78 (189 bank voles caught using 2789 trap-nights) for the second

colony, from which some of the wild caught bank voles were used

in the Niklasson et al. study [53]. The first colony (P-F2: N = 613)

was maintained in captivity for 200 days (median) and the second

colony (P-F3: N = 596) was maintained for a median of 223 days

(Z = 1.034, P = 0.3011). Voles from both colonies were kept under

12 h artificial light conditions (0800–2000 h) and the temperature

was 1963 degrees Celsius.

Single mating pairs were established in large (‘‘enriched’’) cages

following an initial observation period (to make sure the females
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were not already pregnant). These cages were made of transparent

plastic (14.5621.5637.5 cm), supplied with pine shavings (Bro-

gaarden, Gentofte, Denmark) and a wire lid with feed hopper, and

a water bottle. Adding 7–8 sheets of toilet paper and two paper

rolls provided enrichments. In order to prevent injuries to the

pups, all breeding males were immediately removed and returned

to single housing (see below) following the delivery of a litter.

Breeding females were not disturbed by cage cleaning during the

weaning period, unless they were PDs, in which case it could be

necessary to change the cages once during the weaning period.

Pups from the first colony were weaned between ages 18–52 days

and all second colony pups were weaned at the age of 21 days.

When not mated in pairs, the voles were housed singly in

smaller (‘‘barren’’) cages (13.5616.0622.5 cm) supplied only with

pine shavings, a wire lid with feed hopper and a water bottle, as

described in [51]. Standard pelleted rodent chow containing

19.0% crude protein, 7.0% crude ash, 6.0% crude fibres, and

4.0% crude fat (‘‘Altromin 1324’’ from Altromin GmbH & Co,

Lage, Germany) and water were available ad libitum. A small

portion of a grain mixture containing 38.9% wheat, 22.2% maize,

22.2% peas, 11.1% red Dari (Milo) seeds and 5.6% vetch seeds

(‘‘Duefoder EX’’ from Brogaarden, Gentofte, Denmark) was given

when the cages were cleaned (typically every two weeks, or when

necessary).

Criteria for classifying voles
According to a previous definition, voles were classified as PD if

their DWI exceeded 21 ml for a minimum of one continuous

month [51,52] and onset of PD was defined as the first day the

DWI exceeded 21 ml. This particular cut-off value for PD in voles

stems from early work with the first colony and was originally

defined by Schønecker as three times the estimated DWIs of

healthy voles showing a stable DWI. Captive bank voles also

frequently develop stereotypical behaviours (so-called stereotypies)

in captivity, which is a type of repetitive behaviours that would

probably appear strikingly abnormal and purposeless to any casual

observer if exhibited in their natural habitats (for reviews of

stereotypies, see e.g. [61,62]). Approximately 30–37% of singly

housed Danish bank voles are so-called stereotypers, i.e. they

develop stereotypies such as backward somersaults, high-speed

jumping, pacing following a fixed route or ‘‘wind screen wiper

movements’’, and such stereotypies will be typically exhibited in

bouts, and for many hours/day [51]. Voles which neither

exhibited stereotypies nor PD were classified as NN (Non-

polydipsic and Non-stereotypic).

Observations and data
DWI was calculated for all singly housed voles from weaning

and until they left the colonies due to either ‘‘natural death’’ or

‘‘exit’’. The term ‘‘natural death’’ is used to designate any

unexplained death with no prior signs of moribundity, and ‘‘exit’’

from the colonies could be due to e.g. culling, transfer to other

research projects, or participation in terminal experiments. The

procedure involved weighing the water bottles each time a used

bottle was exchanged with a new one. Data of weights and the

exact time for the exchange were then entered into a database

(FileMaker Pro v. 2.1 for Mac) to calculate the average 24-h water

intake (DWI) in the period between replacements. Changing

bottles typically took place between 1000–1200 h and DWI was

calculated at least twice a week for severely PD voles and about

once a week for non-PD voles. Measurements of DWI from 159

adult male PD voles showed that their average mean DWI was

46.3611.2 ml/day, while their average maximal DWI was

63.4619.0 ml/day (data expressed as mean/max6SD; range of

valid observations/vole equals 2–72; Schønecker, unpublished

data). A previous study showed that neither DWI nor onset age of

PD differed between PD males and females [51].

The database also included common information such as ages

at natural death/exit (and factual or presumed causes), onset ages/

duration of PD and/or stereotypical behaviours, sex, periods of

single/pair-wise housings, identity of partners and parents,

variables related to fecundity measures, general remarks, etc. All

second colony voles were weighed when weaned, and one cohort

(all F1) was in addition weighed once a week until they were

approx. 180 days old.

Humane endpoints
Each vole was routinely inspected on a daily basis for signs of

distress, pain, and disease. Development of what seemed to be a

relatively few cases of tumours in connection to the lymphatic

system (13 cases among 184 PDs) and eye problems (13 cases

among 184 PDs; 2 cases among 426 non-PDs; Fischer exact

P,0.0001) were closely followed. If it seemed as if the condition

was causing pain and suffering, the vole was immediately

anaesthetized by a 3:5 CO2/O2 mixture and euthanized by

cervical dislocation. The same applied to any vole showing a

moribund appearance (e.g. tozzled and dull fur combined with

lustreless eyes, lethargic movements, and significantly decreased

attention to the surroundings). Early observations of diabetic voles

showed that some would decrease their DWI considerably (e.g.

from 60–70 ml to 15–25 ml) the last couple of weeks prior to their

death. Accordingly, it became standard procedure to euthanize

any such voles when it was clear that their water consumption

showed a steady decline. Such voles would typically show

additional changes in behaviour and appearance, indicating

moribundity.

Selection of data
Since not a single vole was ever kept in captivity with the

prospective intention to analyse the survival following onset of PD,

it was necessary to select data according to strict a priori criteria

with the purpose of excluding known/suspected biases. In

particular, two biases deserve to be mentioned: Development of

stereotypies and housing effects.

The onset of PD has previously been shown to be delayed

among stereotypers, as compared to non-stereotypers [51].

Furthermore, available data indicate that stereotypers experience

roughly half the risk of developing PD compared to non-

stereotypers, and that the risk of subsequent development of PD

is roughly twice as high among pups descending from two

stereotypers when compared to the risk among pups descending

from two NNs (Schønecker, unpublished data).

Data from these colonies also support the observation, as first

noted by Mogens Bildsøe, University of Copenhagen, that housing

conditions (single vs. pair-wise housing) interact profoundly with

the development of PD since both males and females, when

housed in pairs, showed a markedly reduced risk of developing PD

as well as a delayed onset (Schønecker, unpublished data). Housing

in pairs also significantly increased survival both among

stereotypers and NNs [63], and among PDs (Schønecker,

unpublished data).

The following three groups (A–C) described below have been

selected for further analysis and the total number of voles in these

three groups amounts to 588. However, since some voles satisfied

the criteria for inclusion in two, or three groups (n males/

females = 38/35 and 17/11, respectively), the actual number of

voles used in these three groups amounts to 459.

Danish Bank Voles as Model for Type 1 Diabetes
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Group A: Animals used to analyse survival after onset of
PD

Criteria for inclusion: Born in captivity; fully outbred; singly

housed from weaning until death/exit; no observed stereotypies.

Data from 333 voles (155 PD: n male/female = 123/32 and 178

NN: n male/female = 73/105) were subsequently selected and

analysed. The voles came from both the first and the second

colony (n male/female = 128/98 and 68/39, respectively) and the

survivorship of NN voles is only included for comparative reasons.

Fifty-three males and 42 females from this group also satisfied

criteria for use in one, or both, of the following groups.

Group B: Animals used to analyse weight of PDs and NNs
Criteria for inclusion: Born in captivity, fully outbred, weaned at

age 21 days, singly housed during all weight measurements, and

no observed stereotypies during this survey. Data from 68 voles (n

male/female = 38/30) were included in this survey, and their

weights were measured for a maximum of 23 times. At the end of

these measurements, 24 of these voles had been classified as PD (n

male/female = 18/6) and 44 had been classified as NN (n male/

female = 20/24). The first measurements were performed at

weaning, and the following measurements (2–23) were performed

once a week, and always on the same day of the week. The voles

consequently differed with respect to age when weighed a given

week, starting at their second measurement, where the range in

age was 23–28 days (range 170–177 days at their final

measurements). Voles eventually classified as PD and NN did

not differ in median age when measured at the second time (25.5

vs. 27 days, respectively; Z = 1.603, P = 0.1089). Nineteen males

and 15 females from these 68 voles were also included in the

following group.

Group C: Animals used to obtain blood glucose values
Twenty sera samples from PD voles and 40 samples from non-

PD voles had been randomly drawn in 1997 from a collection of

138 available sera samples obtained in 1996–1997 from non-

fasting first colony voles using cardiac puncture (equal number of

male/female samples in each cohort). The samples had been

analysed for blood glucose in connection with a preliminary

experiment in 1997. One of the PD samples was later discharged

due to uncertainty regarding the exact identity and the results

from the analyses of the remaining 19 PD samples are used in this

study. Two of these 19 randomly drawn samples turned out to be

from PD voles, which had started to decrease their DWI shortly

before sampled to a point where they were no longer showing PD.

All samples came from an F2 generation (N = 59). The age

(median) and weight (mean 6 SD) of these 59 voles was 193 days

(25/75 percentiles = 181/212 days) and 22.93464.077 g when the

sera samples were obtained. The 19 PDs had been classified as

PDs for a median of 107 days (25/75 percentiles = 82.25/141) at

the time of sampling, and there were no difference in age or weight

between PDs and non-PDs (Z#0.925, P$0.3548 in both cases).

Other blood samples were obtained from non-fasting second

colony voles in 2000 using orbital bleedings and immediately

thereafter analysed for blood glucose (N = 128, of which 19 were

classified as PD and two (classified as NN) showed transient PD on

the day of sampling). The samples came from both wild caught

adult voles (N = 67; n males/females = 29/38) and their captive

born offspring (all F1; N = 61; n males/females = 34/27). Age and

weight for the wild caught voles were not known with certainty at

the time of the orbital bleeding procedure, whereas age and weight

of their offspring was 37 days (median; 25/75 percentiles = 33/45

days) and 19.24963.077 g (mean 6 SD). The 19 PDs had at that

time been classified as PD for a median of 88 days (25/75

percentiles = 38.75/101.5 days). The 59 F2 voles from the first

colony were significantly older and heavier when sampled than the

61 F1 voles from the second colony (Z$4.759; P,0.0001 in both

cases).

We used the following data from each vole: DWI on the day of

blood sampling, blood glucose value, status (PD or NN), DWI, sex,

number of days since onset of PD (if PD), and finally age and

weight when sampled. One single data/variable/vole was used in

the subsequent calculations relating to the analysis of group C.

Procedures for blood samplings
Blood samples were obtained from voles under 3:5 CO2/O2

anaesthesia by cardiac puncture. Before sampling, full anaesthesia

was carefully ensured by the absence of normal withdrawal

reflexes. The procedure lasted less than two minutes after which

the vole was euthanized by cervical dislocation while still under

anaesthesia. After 15 min, blood samples were centrifuged for 30

minutes at 5300 rpm and stored at 230uC until analysis. Sub-

samples of 20 ml plasma were analysed (Biochemistry Analyser YSI

2700 Select), unless initial glucose levels exceeded 30 mM, in

which case the analysis were repeated with 1:4 isotonic saline

solutions of sub-samples.

Other samples were obtained from un-anaesthetized voles by

orbital bleeding and immediately after that analysed for blood

glucose using a standard glucometer (Glucometer Elite, Bayer).

Should bleeding occur after the procedure, gentle pressure was

applied using a clean gauze pad against the eyeball after closure of

the eyelids. All voles were monitored regularly after the procedure.

According to the literature [58,59], a casual blood glucose level

exceeding 11 mM (200 mg/dl) in non-starving rodents represents

clinical diabetes, just as in humans [2].

Statistics
Data did not satisfy requirements for parametric tests.

Consequently, non-parametric tests were used and data for weight

and age are expressed with medians and 25/75 percentiles. The

Kaplan-Meier method was used in the survival analyses followed

by the Breslow-Gehan-Wilcoxon test for pair-wise differences

between groups. A series of Mann-Whitney U-tests were used to

analyse for weight differences between established PDs and NNs,

and the Mann-Whitney U-test was also used in other pair-wise

tests, when appropriate (e.g. comparing onset of PD among males

and females, or lengths of captivity between the two colonies).

Spearman Rank-order correlation coefficient was used to 1)

correlate blood glucose values with DWI, and, 2) correlate

measurements of age/weight obtained at the day of blood

sampling with actual DWI. Fisher Exact was used to test for any

method dependent differences in sensitivity, specificity, positive-

and negative predictive values. StatView 5.0 for Macintosh was

used to perform the tests, which were two-tailed, unless otherwise

indicated, and corrected for continuity and ties, if necessary. Alpha

was a priori set at 0.05.

Results

Survival after onset of polydipsia
Onset of PD did not differ significantly among males and

females from group A (Z = 1.484, P = 0.1378) and the median age

at onset was 60 days (25/75 percentiles = 47/90.75 days). In order

to have an unbiased reference for illustrative purposes, the

survivorship of NN voles has consequently been analysed after

the age of 60 days. There were no sex-related differences in

survival in either PD or NN voles (Chi#1.065; df = 1; P$0.3020
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in both cases), so the groups can be directly compared. If only PD

voles found dead in their cages without obvious cause are

considered (i.e. so-called ‘‘natural death’’; n = 90), they survived

their PD for a median of 67 days (25/75 percentiles = 48/101

days; maximum recording = 158 days). If the analysis is expanded

to also include PDs exiting the survey for other reasons than

‘‘natural death’’ (i.e. so-called ‘‘Exit’’; n = 65), the median survival

following onset of PD was 91 days (25/75 percentiles = 57/134

days; maximum recording = 404 days). As evident in Figure 1, the

data show a marked difference in survivorship between PD and

NN voles (Chi = 118.297; df = 1; P,0.0001).

Weight of PDs and NNs
Overall, males weighed significantly more than same-aged

females after approx. one month of age, with a few exceptions

(Z$2.152, P#0.0314 in all cases, except in the intervals 1, 2, 6, 9

and 10 where P.0.05). Consequently it would be most proper to

analyse the weights of PDs and NNs using data from males and

females separately.

We find that PDs and NNs do not differ significantly in weight

when compared within any of the 23 intervals (males: Z#1.878,

P$0.0604 in all cases; females: Z#1.639, P$0.1012 in all cases).

Figure 2 shows the weight of PDs and NNs through these 23

sessions, and we find no significant weight differences between PDs

and NNs (Z#1.924, P$0.0543 in all cases).

Evaluation of polydipsia as a screening tool for
hyperglycaemic voles

Both cardiac puncture (N = 59) and orbital bleeding (N = 128)

were used to sample the blood for glucose determination (group C,

see Table 1). When using a 21-ml/day cut-off value to diagnose

PD, the sensitivities (probability of PD among voles with

established hyperglycaemia) were 73% (16/(16+6); cardiac

puncture) and 64% (18/(18+10); orbital bleeding). Corresponding
values for the specificities (probability of non-PD among

normoglycaemic voles) were 97% (36/(36+1)) and 97% (97/

(97+3)), respectively. Since measures of sensitivities and specificities

did not differ significantly between these methods (P = 0.5589 and

P.0.9999, respectively), data could be pooled and the resultant

sensitivity and specificity equalled 68% and 97% ((16+18)/

(16+6+18+10) and (36+97)/(36+1+97+3), respectively).

The positive predictive values (probability that a vole is

hyperglycaemic given it is PD) of the method were 94% (Cardiac

puncture: 16/(16+1)) and 86% (Orbital bleedings: 18/(18+3)) and

the corresponding negative predictive values (probability that a

vole is normoglycaemic given it is non-PD) were 86% (Cardiac

puncture: 36/(36+6)) and 91% (Orbital bleedings: 97/(97+10)).

Again, data could be pooled due to the lack of inter-group

differences (P = 0.6131 and P = 0.3881, respectively) and the

resultant positive and negative predictive values both equalled

Figure 1. Survival following onset of polydipsia (PD). The
survival of PD voles (line with open circles; n = 155) are compared with
the survival of NN voles (line with filled circles; n = 178) after age 60
days. Each circle signifies an event of ‘‘natural death’’ (90 among PD; 13
among NN). The abscissa denotes ages in days and the ordinate
denotes the fraction of survivors.
doi:10.1371/journal.pone.0022893.g001

Figure 2. Weight of polydipsic (PD) and normodipsic (NN)
voles. Weights of male and female PDs (closed circles) and NNs (open
circles) through 23 weekly weight measurements at ages 21 days
(session ‘‘1’’) to 170–177 days (session ‘‘23’’). The number of NNs
through sessions 1–23 equals 68, 68, 68, 66, 62, 52, 49*, 49, 46, 46, 45,
45, 42, 39, 39, 39, 38, 36, 34, 32, 30, 29, and 29 (* one female was not
weighed because of an error). The corresponding number of PDs equals
0, 0, 0, 2, 4, 14, 16, 17, 20, 20, 18, 15, 17, 15, 9, 7, 6, 4, 2, 2, 2, 2, and 2. The
ordinate denotes weight (g) and the abscissa denotes the sessions.
doi:10.1371/journal.pone.0022893.g002

Table 1. Presence/absence (+/2) of polydipsia (PD) and
corresponding levels of blood glucose (BG).

Cardiac puncture Orbital bleedings

+PD 2PD N Total +PD 2PD N Total

BG$200 mg/dl 16 6 22 18 10 28

BG,200 mg/dl 1 36 37 3 97 100

N Total 17 42 59 21 107 128

Blood samples were obtained from 1st colony voles by cardiac puncture (N = 59)
and from 2nd colony voles by orbital bleedings (N = 128).
doi:10.1371/journal.pone.0022893.t001
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89% ((16+18)/(16+1+18+3) and (36+97)/(36+6+97+10), respec-

tively).

It was possible to continue monitoring all voles subjected to

orbital bleedings for subsequent developments in DWI. Thirteen

voles in particular (see Table 1) did not show a positive association

between a state of PD and a state of hyperglycaemia when

sampled. Ten voles tested non-PD and hyperglycaemic, and of

these, nine developed PD within 5–21 days following the sampling

(25/50/75 percentiles = 9.3/12.0/21.0 days), whereas one indi-

vidual (classified as PD seven days prior to the sampling) showed a

transient decline in DWI (down to 20.9 ml/day). Three normo-

glycaemic voles tested PD, and of these, two showed transient PD

on the day of sampling, whereas the last vole was classified as PD

on the actual day of sampling due to a DWI value of 22.3 ml,

increasing to 50.5 ml after a month. If both these ten non-PD

hyperglycaemic voles, and the two normoglycaemic voles with

transient PD, were excluded from the calculations, the resultant

measures of sensitivity, specificity, positive- and negative predictive

values would equal 100% (18/(18+0)), 99% (97/(97+1)), 95% (18/

(18+1)) and 100% (97/(97+0)), respectively.

There was a positive and highly significant correlation between

DWI on the day of sampling and blood glucose levels, both when

all voles are considered (Figure 3: N = 187: Z = 8.645;

Rho = 0.634; P,0.0001) and when PD voles (Figure 4: n = 38:

Z = 2.964; Rho = 0.487; P = 0.0030) and non-PD voles (Figure 5:

n = 149; Z = 4.49; Rho = 0.369; P,0.0001) are analysed separate-

ly. In addition, there was a significant positive correlation between

blood glucose levels and time from onset of PD (Figure 6: n = 36;

Z = 3.298; Rho = 0.557; P = 0.001). DWI also showed a positive

correlation with both age (n = 101; Z = 2.376; Rho = 0.238;

P = 0.0175) and weight (n = 101; Z = 2.645; Rho = 0.264;

P = 0.0082) within the non-PD cohort but not in the PD cohort

(n = 19; Z = 0.763; Rho = 0.180; P = 0.4453 (age); n = 19;

Z = 1.173; Rho = 0.277; P = 0.2407 (weight)). Lastly, we found

no sex-related differences in DWI either among the PDs (n males/

females = 24/14), the non-PDs (n males/females = 68/81) or when

combined (n males/females = 92/95) (Z#1.275; P$0.2024 in all

cases).

Discussion

Our present study shows that Danish bank voles have the

capacity to survive for a median time of at least three months after

onset of polydipsia and that survivorship for the 25% most

Figure 3. Daily water intake (DWI) correlated with levels of
blood glucose (BG) – all voles. Scattergram of DWI (ml - abscissa)
correlated with levels of BG (mg/dl - ordinate). Data from both
polydipsic (PD) and normodipsic (NN) voles are used. N = 187.
doi:10.1371/journal.pone.0022893.g003

Figure 4. Daily water intake (DWI) correlated with levels of
blood glucose (BG) – only polydipsic (PD) voles. Scattergram of
DWI (ml - abscissa) correlated with levels of BG (mg/dl - ordinate).
N = 38.
doi:10.1371/journal.pone.0022893.g004

Figure 5. Daily water intake (DWI) correlated with levels of
blood glucose (BG) – only normodipsic (NN) voles. Scattergram
of DWI (ml - abscissa) correlated with levels of BG (mg/dl - ordinate).
N = 149.
doi:10.1371/journal.pone.0022893.g005
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enduring voles exceeded four and a half months with a maximum

recording of 404 days. Furthermore, we have demonstrated that

voles with polydipsia do not differ in weight from controls without

polydipsia. Finally, we found that measurement of daily water

intake to establish a state of polydipsia can be used as a tool to

screen for hyperglycaemic, i.e. T1D [53], in Danish bank voles

with a sensitivity and specificity of 68% and 97%, respectively, and

positive/negative predictive values of both 89%.

The recorded life expectancy in diabetic Danish bank voles

matches at least that of LEW.1AR1/Ztm-iddm rats which are able

to survive somewhere between 4 weeks and ‘‘months’’ after

diabetes onset [32,46]. Bank vole survival by far exceeds the

estimated two weeks survival of untreated BB-DP rats [64], the

one month survival of untreated LETL rats [44], and the 1–12

weeks survival of untreated NOD mice [39,43]. However, it must

be stressed that our lowest estimate of survival following polydipsia

(a median of 67 days) is solely based on the survivorship of 90

polydipsic voles, which all happened to die a ‘‘natural death’’

during the survey. Our highest estimate (a median survival of 91

days) includes the survivorship of a further 65 polydipsic voles

which left the survey for other reasons than ‘‘natural death’’. Apart

from a few voles, which were killed by accidents (n = 7) or for

humane reasons (n = 4), the remaining polydipsic voles would have

continued to increase our estimate of possible survival, had

logistical restraints or lack of scientific purpose at the time not

made it necessary to terminate their stay in the colonies.

Consequently both estimates must be considered conservative to

a certain degree.

Polydipsia has to our knowledge only been described in studies

using Danish or Swedish bank voles [48,51–53,59,65]. However,

this is more likely a matter of failing to notice what goes on in the

cages rather than suggesting that the development of polydipsia

among captive bank voles is an exclusively Scandinavian

phenomenon. Other aspects of bank vole responses to captivity,

e.g. a pronounced tendency for captive born bank voles to develop

stereotypic behaviours, are indeed described among voles

originating both from Denmark, Belgium, and England

[48,66,67].

To evaluate measurements of daily water intake as a screening

tool for hyperglycaemic voles, we used orbital bleeding. We cannot

recommend this method to test bank voles in future experiments

since bank voles have relatively small eyes compared to rats and

laboratory mice and thus 8/128 of our voles experienced eye

problems of varying severity subsequent to the orbital bleedings

(four voles with a closed eye; one vole with a ‘‘reddish’’ eye; two

voles with white colouration in the centre of an eye and one vole

with an apparent tumour in the eye). Undesirable side effects of

the method (discomfort, lesions, pain, necessity to perform

euthanasia) have previously been shown to be highly dependant

on the skill of the technician in studies using rats [68] and can

affect subsequent behaviour [69]. Furthermore, a study using

C57BL mice recently showed how samples obtained by using

orbital bleedings can result in 3.5 mM higher values of blood

glucose than samples obtained by using the methods of

amputation of the tail tip, lateral tail incision, and puncture of

the tail tip [70].

The other sampling methodology used in this study was cardiac

puncture under 3:5 CO2/O2 anaesthesia and this method has its

drawbacks too. A previous study showed that humans would

experience an increased feeling of anxiety, associated with

increased levels of serum cortisol and ACTH (i.e. indicative of

an activation of the hypothalamic–pituitary–adrenal axis), follow-

ing a 15 minutes inhalation of a 35:65 CO2/O2 mixture [71]. In

partial support of this finding, a following study demonstrated

significant increases in blood glucose in rats, which were fed ad lib

and anesthetized by inhalation of 100% CO2 for a minute [72]. It

is therefore conceivable that a similar mechanism could affect

glycaemic measures in bank voles, and for these reasons, future

researchers focussing on HPA axis activity might consider using

isoflurane or sevoflurane rather than CO2. Especially sevoflurane

has virtually no impact on blood glucose levels [73]. It might also

be relevant to note that we used two different tools to analyse levels

of blood glucose (the Biochemistry Analyser YSI 2700 Select and

the Glucometer Elite), and whereas the YSI 2700 system has a

coefficient of variation (CV) ,2% [74], the Glucometer Elite has a

CV of 3.7%, albeit still within the 5% CV considered acceptable

for laboratory instruments [75]. However, as our results showed,

we found no method-related differences in either the sensitivity,

the specificity, or the positive/negative predictive values when

using a state of polydipsia as a screening tool for hyperglycaemic

voles.

The major advantage of using measurements of daily water

intake instead of the commonly used alternatives, e.g. orbital

bleeding, is that it is a quick, easy, and reasonable accurate method

to provide an estimate of glycaemic status. Since the method is

non-invasive and since changing water bottles is one of the

standard routines in animal facilities, any subsequent effect on

behaviour is not to be expected. We found the method to have a

positive and negative predictive value of both 89% whereas it in

theory would be expected to be closer to 100% since a state of

prolonged hyperglycaemia leads to polydipsia [49,50]). However,

as mentioned in the Materials and Methods section, severely

polydipsic and moribund voles would show a decrease in water

intake a couple of weeks prior to death whereas some non-

polydipsic voles might be in an early stage of diabetes when

actually tested. It was indeed possible to increase all measures of

accuracy to 95–100% by excluding data from voles which showed

only transient polydipsia or became polydipsic within a month

after the orbital bleedings, but considering the method is intended

to function as a practical tool to select those individuals most likely

Figure 6. Levels of blood glucose (BG) correlated with days
from onset of polydipsia (PD). Scattergram of levels of BG (mg/dl -
ordinate) and days from onset of PD (abscissa). Only data from
polydipsic (PD) voles are used. N = 36.
doi:10.1371/journal.pone.0022893.g006
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to be hyperglycaemic, such retrospective considerations are only of

academic interest.

In addition, we found a clear positive correlation between daily

water intake and levels of blood glucose, and also between daily

water intake and the elapsed time from onset of polydipsia. The

first finding basically illustrates the physiological basis for the

method to use DWI as a screening tool to pin-point voles with a

high probability of also being hyperglycaemic, and the second

finding indicate that an untreated T1D in voles will, just as in

humans [18], worsen as time progress. Lastly, we found that

whereas young non-polydipsic voles increase their daily water

intake as they grow older and heavier we found no such positive

correlations among polydipsic voles. The most parsimonious

interpretation would be that whereas the physiological need for

water increase with body size in healthy animals, the need for

water in a diabetic animal is more influenced by the severity of its

diabetes than of its actual age and weight. It should be noted that a

relatively high daily water intake simply indicates a state of

hyperglycaemia, and cannot be used to differentiate between

different types of diabetes.

Any hypothesis proposing an infectious background for diabetes

appears to have a certain innate heuristic value, and such a

hypothesis has in fact been proposed, based on correlations

between fluctuations in populations of wild bank voles and

subsequent changes in the number of people diagnosed with T1D

[76]. A virus, later named the Ljungan virus (LV), was

subsequently found in saliva/lung homogenate and faeces (albeit

not in the pancreas) from Swedish bank voles [77]. The study,

which demonstrated T1D among wild caught Danish bank voles,

also found that islets from diabetic voles stained positive for LV,

suggestive of an etiological role of this member of the

Picornaviridae family in combination with captivity-induced stress

[53,78]. The following study using wild caught Swedish bank voles

found that the pancreas from a T1D diabetic voles stained positive

for LV and clusters of picornavirus-like particles were also detected

in the islets. The pancreas from an asymptomatic bank vole,

however, stained negative for LV and showed no such clusters

[59]. These two studies have until now been the only to

demonstrate an association between LV and diabetes in bank

voles, and it has often later been stated, or taken for granted, that

‘‘LV causes diabetes in voles’’ [79–84]. However, since it is not

possible to determine with accuracy whether a vole is infected with

the LV, it follows that its possible role as an etiological agent

responsible for diabetes in bank voles remains to be proven [60].

Also the hypothesis that LV could be a zoonose relevant for

human diabetes [53,78] have found no support in subsequent

independent studies [85–87].

Another aspect, which so far has been ignored in previous

papers, is the apparent regional differences concerning the develop-

ment of diabetes in Scandinavian bank voles. When 67 wild

caught Danish bank voles were analysed after one month of

captivity, 22 (33%) had developed T1D, characterized by a major

loss of beta cells [53]. Also wild caught Swedish bank voles can

develop a T1D, complete with a total destruction of islet cells,

albeit in what appears to be a much lower fraction, since ‘‘End-

stage diabetes with totally destroyed vacuolized islets was only seen

in some individuals in the group kept for 8 weeks [in captivity]’’,

[59]. What could be a source of confusing is that some selected

asymptomatic wild caught Swedish bank voles (i.e. voles which did

not show signs of either polydipsia, glucosuria, hyperglycaemia or

ketosis) [59], as well as 20–21% of their captive born descendants

[57] would return diabetic 2-h plasma glucose values in response

to a glucose tolerance test. Despite findings of islets with a

‘‘markedly changed structure containing balloon-like cells and a

severe reduction in the number of endocrine cells’’, the authors

interpreted their results as a type 2 diabetes-like condition, or

perhaps a condition resembling latent autoimmune diabetes in

adults (LADA) [57]. However, it should be noted that the

accompanying pictures of islets from a young diabetic Swedish

bank vole (see fig. 2, middle and right panel in reference [57])

show remarkably similar features to those from an adult T1D

Danish bank voles (see figs. 1c and 1d in reference [53]).

The fraction of Swedish bank voles developing overt diabetes in

captivity therefore appears significantly lower than what is

observed among Danish bank voles. Also the predominant type

of diabetes would seem to differ, too, which might be related to a

significant degree of inbreeding among the Swedish bank voles (all

Danish voles studied so far have been fully outbred). The

observation that a much higher fraction of Swedish wild caught

bank voles tested positive for hyperglycaemia immediately after

capture (21% [58] and 49% [59]), in contrast to only 4% of the

Danish bank voles [53], lend further support to the notion of such

apparent regional differences. Increased social stress during peak

densities and declines in cyclic vole populations has been proposed

to explain this particular regional difference in (presumably

capture-induced) hyperglycaemia [58,59], but given that the voles

used in the Danish study [53] were caught from a population twice

as dense as those reported in the Swedish studies (capture

index = 6.78 vs. 3.49), other factors might be more relevant to

explain the observed differences. One such factor could be simple

genetic drift since Danish and Swedish bank voles have been

effectively separated since the end of the last ice-age by a 4–28 km

wide strait (Øresund). Recent genetic analyses have in fact also

shown that Danish bank voles belong to a different phylogenetic

clade than Swedish bank voles [88], so genetic differences of

importance for the development of diabetes would seem to exist

between Scandinavian bank voles. The rapid development of next-

generation sequencing technology should make it possible to

analyse the genetic background for such regional differences, even

in the absence of an already fully sequenced reference genome.

The principle has recently been demonstrated by Babik et al., who

sequenced and de novo assembled the heart transcriptome from

Polish bank voles in order to analyse the genetic basis for (a

selection-driven) changes in metabolism [89].

In conclusion, the present study demonstrates that polydipsic

Danish bank voles are capable of surviving considerable longer

without insulin treatment than other T1D animal models. The

majority of these polydipsic Danish bank voles are diabetic, and,

according to the only relevant previous study [53], in all likelihood

suffering from a T1D. This finding of exceptional ability to

survive, combined with the presence of supposed diabetic long-

term complications mentioned in the introduction, suggest that

diabetic Danish bank voles could be useful in research addressing

diabetic long-term complications in humans. The finding that

polydipsic and non-polydipsic Danish bank voles weigh the same

strongly suggests that they are to be considered a lean model of

diabetes, more specifically of T1D. Finally, we have demonstrated

an easily conducted and non-invasive method which can be used

to screen for hyperglycaemic voles and could be further validated,

and implemented for practical use, in other rodent models of

diabetes. The development of diabetes in Scandinavian bank voles

has only been the subject of a few studies and the major first

obstacle to overcome will be to produce specific pathogen-free

strains for laboratory use.
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