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Abstract

Understanding animal movement and resource selection provides important information about the ecology of the animal,
but an animal’s movement and behavior are not typically constant in time. We present a velocity-based approach for
modeling animal movement in space and time that allows for temporal heterogeneity in an animal’s response to the
environment, allows for temporal irregularity in telemetry data, and accounts for the uncertainty in the location information.
Population-level inference on movement patterns and resource selection can then be made through cluster analysis of the
parameters related to movement and behavior. We illustrate this approach through a study of northern fur seal (Callorhinus
ursinus) movement in the Bering Sea, Alaska, USA. Results show sex differentiation, with female northern fur seals exhibiting
stronger response to environmental variables.
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Introduction

The analysis of animal movement data can provide insight into

the relationship between animal behavior and the heterogeneous

environment they inhabit [1–3]. Recent advances in technology

have made animal telemetry data easier to collect at finer temporal

resolutions than previously possible [4], but there are significant

challenges in linking telemetry data to animal movement and

resource selection. Some challenges arise in the use of telemetry

data, which are typically irregular in time, have measurement

error that is varying in severity, and may exhibit temporal

autocorrelation [4,5]. Other challenges arise from modeling

something as complex as animal movement, which typically

exhibits changing behavior over time [2,6–11] and may be driven

by a mix of external (environmental) and internal (biotic) factors.

Still other challenges involve making population-level inference

based on telemetry data from multiple animals [12,13].

Jonsen et al. [14] deal with temporal irregularity in telemetry

data by explicitly building it into the likelihood portion of a

Markovian state-space movement model. Johnson et al. [15] build

on this idea in a continuous-time setting where directional

persistence and velocity are modeled by an Ornstein-Uhlenbeck

process. These continuous-time correlated random walk

(CTCRW) models can then be used to make inference on velocity

and movement parameters, as well as to characterize the posterior

predictive distribution of the path of the animal. In the same spirit,

Tremblay et al. [16] utilize a forward particle filtering method to

create an ensemble of possible movement paths with regular

temporal intervals, and Sumner et al. [17] utilize Bayesian

methods to incorporate multiple data sources and prior informa-

tion to obtain a posterior distribution of the animal’s path [18].

Methods such as these are especially appealing because they

provide information about the individual’s location at any given

time as well as the innate uncertainty associated with our

knowledge of it.

State-space models are used extensively to model changing

movement behavior over time [2,6–11,19]. Without accounting

for heterogeneity in animal behavior over time, important drivers

of movement could appear to be insignificant, due to the

temporally changing nature of the animal’s response. Consider,

for example, a northern fur seal (Callorhinus ursinus). Northern fur

seals are central place foragers during the summer months [20]

and a typical summer movement path might exhibit loops in

which the animal first travels away from the central location and

then returns [16,20]. If we did not consider the animal’s changing

behavior over time, and fit a statistical model to a movement path

containing such loops, we might find no statistical relationship

between the animal’s movement and it’s rookery, as the animal

would spend large amounts of time moving both towards and

away from the rookery. These contrasting behaviors (moving

towards and away from the rookery) could effectively cancel each

other out. If we instead fit a statistical model to a smaller segment

of the movement path, containing only movement away from the

rookery (or towards the rookery), the animal’s directed movement

behavior could be revealed.

Gurarie et al. [2] address this issue by utilizing a behavioral

change point model to identify structural changes in an animal’s

movement. Their approach allows for the number and location of
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change points to be inferred from the telemetry data, but their

model does not incorporate environmental effects; the inference

on behavioral changes is based solely on the telemetry data.

Polansky et al. [11] utilize Fourier and wavelet analysis to examine

periodicity in movement behavior. Morales et al. [6] propose a

model based on a mixture of random walks, though their analysis

requires specification of the number of movement states an animal

can exhibit, which may not be known beforehand. McClintock et

al. [19] propose a method for incorporating an unknown number

of random walks.

Telemetry data for different animals in a population often differ

in length and occur on different spatial and temporal domains, but

must be combined for population-level inference. Subsets of the

population (e.g., genders or age classifications) may exhibit diverse

movement patterns and responses to environmental drivers, but

methods of testing for such differences are not well developed.

Additionally, the relative ease with which telemetry data can now

be collected makes the computational efficiency of an approach

important as the number of movement paths grows and the

temporal resolution of those paths increases. Hooten et al. [21]

utilize a CTCRW model as the basis for an agent-based approach

linking telemetry data to resource selection within a dynamic

occupancy framework. The agent-based nature of this approach

yields a framework for testing hypotheses related to animal

movement and resource selection, but at a high computational

cost, making population-level inference or inference about

heterogeneous responses to the environment impractical.

Hooten et al [21] consider two classifications of environmental

and biotic drivers of movement and resource selection: static

drivers, which relate the absolute level of a covariate to movement

behavior, and potential drivers, which relate local differences in

the level of a covariate to movement behavior. Throughout this

paper, we will use the term ‘‘potential’’ in this sense. Thus a

‘‘potential driver of movement’’ is a driver of movement based on

the change of a covariate, and not a ‘‘hypothesized driver of

movement’’. To illustrate the distinction between static and

potential drivers of movement, and the assumptions associated

with each, consider a continuous covariate like elevation.

Modeling movement behavior as a function of elevation (static

driver) assumes that animals move differently at lower elevations

than they would at higher elevations. On the other hand, modeling

movement behavior as a function of the change in elevation

(potential driver) assumes that animal movement is related to the

gradient, or directional derivative, of elevation.

As another example, consider the movement of a marine animal

in relation to sea surface temperature (SST). Modeling the

gradient of SST as a potential driver of animal movement could

provide inference about whether the animal is moving predom-

inantly toward colder (or warmer) waters. If, instead, we modeled

SST as a static driver of movement, we would be investigating

whether an animal moves differently in colder water than it does in

warmer water.

We propose an approach to linking telemetry data to potential

drivers of animal movement. This approach utilizes the CTCRW

model of Johnson et al. [15] to stochastically interpolate

temporally-irregular telemetry data to regular time points on a

scale comparable with environmental covariate effects. A velocity-

vector-based model allows for inference to be made about

potential drivers of movement within a framework that is intuitive

and computationally efficient. A change point model allows for

temporal heterogeneity in these velocity-based drivers of move-

ment, and an unknown (random) number of change points can be

accommodated through use of birth-death Markov chain Monte

Carlo (BDMCMC) methods [22]. This approach allows for

familiar methods of model comparison and selection. Finally,

cluster analysis of movement parameters allows for inference to be

made on heterogeneous and complex population-level movement

patterns.

In what follows, we first present the statistical framework

underlying our approach, then illustrate the approach by

analyzing the movement paths of 45 northern fur seals, and

present results of this study. We conclude with a discussion of the

velocity-based framework for animal movement and resource

selection.

Methods

Continuous Statistical Model for Telemetry Data
Assume that we have telemetry location data for an individual

animal at times Tobs~ft1,t2, . . . ,tMg. Let S~fst : t[Tobsg be the

set of observed locations associated with the animal at all

observation time. Often, these measurements do not come at

regular temporal intervals, as missing data are common. Johnson

et al. [15] provide a means for making inference about the

continuous-time movement path of the animal, given such

telemetry data. In practice, this approach allows for inference

about the location and directional velocity of the animal at an

arbitrarily fine temporal resolution at regular temporal intervals.

In particular, Johnson et al. [18] provide a means for finding the

posterior distribution ½ ~SSjS�, where ~SS~fst : t[Tctsg is the quasi-

continuous path of the animal at an arbitrarily fine temporal

resolution fTctsg, and the bracket notation ‘½:�’ denotes a

probability distribution.

There are advantages to conditioning on ~SS, as opposed to S
directly, to make inference about movement and resource

selection. The locations in S are typically temporally irregular,

since telemetry data are typically collected at irregular intervals.

Lagrangian (individual-based) models of movement often use the

movement step lengths between locations fvt~st{st{1g instead

of the actual telemetry locations fstg [23], but the movement steps

between successive observations that are close temporally are likely

to be quite different than the movement steps between successive

observations that are distant temporally. By conditioning on the

continuous path ~SS, we can obtain values of ~SS at temporally regular

intervals, providing equal weights to all movement steps. At the

same time, the distribution of ~SS accounts for the uncertainty in the

location and directional velocity at any given time. Thus, times in
~SS that are close to times for which we have telemetry observations

in S will have less uncertainty in the distribution of location and

velocity than will times that are temporally distant from any

telemetry observations (Figure 1). The ability to sample realiza-

tions from ~SS at arbitrary temporal resolution also allows us to use a

temporal resolution that matches the resolution of available

environmental covariates.

Our strategy is to utilize realizations from the continuous

posterior path distribution ½ ~SSjS� to make inference about

environmental and biotic drivers of animal movement and

resource selection. In effect, this amounts to a model-based

augmentation of the telemetry data S. This approach is similar

to that of multiple imputation [24,25], in which missing values

are imputed by multiple draws from the posterior predictive

distribution of the missing data, and inference is made by

averaging over the results obtained by each of these draws. The

approach that we take here, which was first described in the

movement context by Hooten et al. [21], is to make inference

about a set of parameters h related to drivers of movement by

first proposing a statistical model (i.e., likelihood) for the

relationship between the movement path and the environmental

Velocity-Based Movement Modeling
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drivers of movement:

½ ~SSjh�: ð1Þ

Specifying prior distributions for h allows us to find the posterior

distribution:

½hj ~SS�!½ ~SSjh�½h� ð2Þ

and inference about h, conditioned only on S, can be

accomplished by integrating over the distribution of ~SS:

½hjS�~
ð

~SS
½hj ~SS�½ ~SSjS� d ~SS: ð3Þ

Within a Bayesian hierarchical modeling (BHM) framework, we

can easily accomplish this integration through composition

sampling.

Hooten et al. [21] employed a dynamic occupancy model

within an agent-based framework for ½ ~SSjh�. This framework is

flexible and intuitive, but computationally demanding. At this

time, the computational costs of this agent-based approach

preclude more complicated modeling considerations, such as

multiple animals or multiple movement profiles in one path. We

thus propose an alternative approach for linking potential drivers

of movement to ~SS that is similar in spirit, but based on velocity

rather than occupancy.

Velocity-Based Movement Model
Let ~SS be a continuous representation of an animal’s true, but

unknown, continuous movement path. A simple transformation,

Y~
L
Lt

~SS, yields the animal’s continuous time-varying velocity

vector, which specifies the animal’s speed and direction at any

time. Given a starting location ~ss0, this transformation is invertible

and preserves all information present in the movement path ~SS. In

practice we will not have a truly continuous movement path, but

instead a quasi-continuous set of location information ~SS at

temporally regular intervals Treg~ft : t~t1zn:Dt, n~0,1,2,

. . . ,Tg. Thus, ~SS would take the form of a T|2 matrix of

locations at temporally regular intervals along an animal’s

movement path, with ~sst~(~sst,1,~sst,2)’, and yt~~sstz1{~sst yields the

animal’s velocity vector at times 1,2, . . . ,T{1, which can be

collected in a (T{1)|2 matrix Y~(y1,y2, . . . ,yT{1)’. Thus the

t-th row of Y contains the x and y coordinate of the animal’s

velocity vector specifying the animal’s speed and direction at time

t. The computationally discrete form for the transformation from

location to velocity is essentially a first-differencing, as is common

in the analysis of time series data [26] and animal movement [23].

As the temporal resolution Dt of the discrete form Y approaches

zero, the limit is the continuous velocity vector Y.

We now propose a statistical model for Y, conditioned on

parameters (h) related to potential drivers of movement and the

movement path (~SS). Environmental data are commonly available

in gridded form (e.g., pixels). As our response variable, Y, is in

velocity vector form, we propose to utilize the gradient of

environmental variables as covariates in a statistical model

[21,27]. The gradient of a spatially-referenced covariate is a

vector field that points in the direction of the greatest rate of

increase in the covariate. If there are p environmental or biotic

drivers of movement of interest, let Qt,p~(qt,p,1,qt,p,2)’ be the

vectorized gradient of the p-th environmental variable at the

location ~sst, and let Qt~½Qt,1
0,Qt,2

0, . . . ,Qt,p
0�. If b is a p-vector of

regression coefficients related to the p environmental (and other)

covariates whose gradients are in Qt, then we could then specify a

multivariate regression model for the relationship between the

velocity vector yt and the environmental and biotic covariates in

Qt:

yt(
~SS)*N(Qtb,S) , t~1,2, . . . ,T{1: ð4Þ

Here yt(
~SS) is normally-distributed with mean Qtb (matrix

multiplication) and variance
P

.

Modeling the relationship between velocity and covariate

gradients in this way attempts to capture an animal’s response to

changes in the covariates (potential drivers of movement in [21]),

as opposed to the animal’s response to a static level of the

covariates (static drivers of movement in [21]). For example, a

Figure 1. Overview of velocity-based movement modeling framework. Animal telemetry data (a) are collected at temporally irregular
intervals. A continuous time correlated random walk model (b) is used to create a posterior predictive distribution of paths at temporally regular
intervals with high temporal resolution. Path realizations from the posterior predictive distribution are transformed to velocity vectors at temporally
regular intervals (c). These velocity vectors allow for efficient modeling of environmental and biotic drivers of animal movement.
doi:10.1371/journal.pone.0022795.g001
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positive b in (4) related to elevation would indicate that the animal

moves generally in the direction of increasing elevation, perhaps

indicating a migration to higher elevations, a negative b would

indicate that the animal is moving to lower elevations, and a b
near zero would indicate that the animal’s movement is not

correlated with increasing or decreasing elevation.

Environmental data often come in categorical form, which can

be incorporated into models as static drivers of movement with the

assumption that animal movement and behavior differs between

categories. However, the velocity-based framework (4) incorpo-

rates potential drivers of movement (gradients) and not static

drivers. To illustrate one approach for utilizing a categorical

variable in the existing velocity-based framework, consider a

categorical variable consisting of J land cover types. For each

cover type j, a new spatial variable could be created consisting of

the shortest distance from each spatial location to the j-th cover

type. The gradients of these J new variables would point in the

direction of the shortest direct path to each cover type, allowing

inference to be made in the velocity-based framework about cover

types that animals are drawn to, or away from.

Temporal Heterogeneity in Drivers of Movement
It is often unreasonable to assume that the animal’s response to

the environment remains homogeneous over the temporal domain

of S. We propose an approach for modeling heterogeneity in

response to potential drivers of movement that is based on

partitioning the temporal domain of the movement path into K

regions in which the animal’s response is homogeneous. This

allows the effect of an environmental driver of movement to vary

over time, and also allows inference on the degree of heterogeneity

in the animal’s response to the environment. The number of

change points, K , can be either fixed a priori or random and

unknown, as explained below.

Let t~(1,t2,t3, . . . ,tK ) be a K-vector with each entry

tk[f1,2, . . . ,T{1g being the change point between two partitions

in which the animal exhibits distinct movement profiles. Then we

can write (4) as:

yt(
~
S)*N(QtBt,S) , Bt~

B1 , t[½1,t2{1�
B2 , t[½t2,t3{1�

..

. ..
.

BK , t[½tK ,T{1�

8>>>><
>>>>:

: ð5Þ

In (5), we model changing patterns of movement and resource

selection as coming from a bivariate normal distribution with a

mean function Qtbt that is piece-wise linear. Each partition of the

movement path represents a contiguous segment of time in which

the animal’s pattern of movement and selection is homogeneous.

Thus bt, the response to the drivers of movement represented by

covariate gradients in Qt is allowed to vary over time, taking

different values at each partition of the movement path

t[½tk,tkz1). We will present an approach that allows inference

to be made on the number of partitions K in an observed

movement path, their temporal locations t~(1,t2,t3, . . . ,tK ), and

the response to drivers of movement associated with each partition

fbg~(b1,b2, . . . ,bK ). Allowing the length, location, and number

of the partitions to change results in a highly flexible model of

heterogeneous response to the environment. In this way, we can

make inference about changing behavior over time in individual

animal movement and selection.

Univariate Formulation
The velocity-based model of animal movement and selection we

have presented (5) is bivariate. The dependent variable is the

vector-valued velocity yt~(yt,1,yt,2) of the animal at time t, where

yt,1 and yt,2 are the components of the vector-valued velocity in

two orthogonal directions (e.g., Easting and Northing). The

independent variables are also vector-valued:

Qt~
q0t,1
q0t,2

" #
~

qt,1,1, . . . ,qt,p,1

qt,1,2, . . . ,qt,p,2

� �
,

where q0t,1 and q0t,2 are the components of the p covariate gradients

in the same two orthogonal directions.

In a movement setting, it is reasonable to assume that yt,1 and

yt,2 are uncorrelated, conditional on bt. If this were not true, and

yt,1 and yt,2 were correlated, the animal would prefer moving in

northeast or southwest directions (in the case of positive

correlation) or southeast or northwest directions (in the case of

negative correlation) over other directions. Drift behavior of this

form, if present, could be modeled in the first-order effects Qtbt.

The assumption of independence of yt,1 and yt,2 allows us to

formulate the bivariate model (5) in an equivalent univariate

regression form:

yt, j(
~
S)*N(qt, jBt,s

2) , j~1,2 , Bt~

B1 , t[½1,t2{1�
B2 , t[½t2,t3{1�

..

. ..
.

BK , t[½tK ,T{1�

8>>>><
>>>>:

: ð6Þ

This model (6) specifies the relationship between the components

of an animal’s velocity vector over time y~(yt,1,yt,2) and the

parameters related to drivers of movement h~(fbtg,s2) in a

linear framework that is extensible, allows for easily interpretable

results, and is computationally efficient.

Prior Distributions for Model Parameters
We will fit this model using a Bayesian hierarchical modeling

(BHM) framework [28] and thus specify prior distributions for all

model parameters. For the regression coefficients fbkg, we specify

a Gaussian prior distribution with mean mb and variance-

covariance matrix Sb.

bk*N(mb,Sb) , k~1,2, . . . ,K ð7Þ

In practice, setting mb~0 and Sb~106I gives a diffuse prior that

allows inference to be driven in large part by the data.

For the variance component in the regression model (5), we

specify an inverse-gamma prior distribution with shape parameter

r and scale parameter q:

s2*IG(r,q): ð8Þ

In our analysis, we have set r and q in such a way that the prior

mean of s2 is 10 and the prior variance is 100, giving a diffuse

prior distribution.

For the locations of the change points t, we specify a discrete

uniform prior distribution, with change points equally likely to

occur at any point in the observation window f1,2, . . . ,Tg:

Velocity-Based Movement Modeling
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tk*DiscUnif (1,T) , k~2,3, . . . ,K ð9Þ

subject to the constraints that t1~1 and tivtj for each ivj.

If we have fixed K a priori, then (6)–(9) is a fully specified BHM.

If we allow for an unspecified number of change points, and thus

movement partitions, we allow K to be random as well, and

assume a Poisson prior distribution:

K*Pois(l): ð10Þ

The choice of l, the prior mean number of behavioral partitions

of the movement path, should be made based on existing

knowledge of the animal, the length of the observation period,

and the time scale at which inference on changing behavior

patterns is desired.

Model Implementation
Having specified a statistical model, we now outline the

procedure used to fit this model to telemetry data. Markov chain

Monte Carlo (MCMC) methods are used extensively to fit BHMs

such as we have specified in (6)–(10) by sampling from the

posterior distribution of the parameters [29]. In this case, full-

conditional distributions can be found for fbkg and for s2,

allowing use of the robust Gibbs sampler within an MCMC

framework [29]. Updates to t are accomplished through

Metropolis-Hastings steps in the algorithm.

Allowing K to vary results in a parameter space that varies as

samples are drawn from the posterior distribution with varying

numbers of change points, and thus varying the dimensionality of

model parameters fbk,tkg. That is, we do not specify beforehand

how to partition the movement path into contiguous segments in

which the animal’s pattern of movement and response to the

environment is homogeneous. Rather, we have specified a BHM

(6)–(10) so that location data can be used to infer the number and

location of these partitions. MCMC methods employ random

walks through parameter space to sample correlated realizations

from the distribution of interest. In the case of fbk,tkg, the

MCMC approach will lead to different iterations having different

numbers of partitions K . As each of the K partitions has a distinct

pattern bk of response to environmental and biotic covariates,

changing the number of partitions results in adding or deleting the

set of parameters fbk,tkg describing that partition from the model.

Reversible jump Markov chain Monte Carlo (RJMCMC)

methods are one popular approach for sampling from the

appropriate stationary distribution in a situation where the

parameter space varies [30], but the rate of convergence in the

algorithm is highly dependent on the choice of proposal

distribution. Birth-death Markov chain Monte Carlo methods

(BDMCMC) are continuous-time MCMC methods that are

closely related to RJMCMC [22,31]. One particular advantage

of BDMCMC is the ease with which multiple proposal

distributions (e.g., birth distributions) can be implemented [22].

In the BDMCMC approach, the parameter space of the change-

point model (6)–(10) is viewed as a point process in Rpz1 in which

each point is a vector: (bk’,tk)’ containing model parameters for

one movement partition. New movement partitions are added to

the model space in a manner specified by a birth distribution,

½b,t�birth. Each existing movement partition is allowed to die (be

removed from the point process and thus the model) at a Poisson

rate specified in such a way that the BDMCMC process is

guaranteed to converge to the appropriate stationary distribution

[22,31]. Success of the BDMCMC procedure is dependent on

finding a birth distribution that allows for good mixing and thus

rapid convergence to the appropriate stationary posterior

distribution. In general, BDMCMC is merely an efficient

algorithm for implementing the change point model (7). We

provide further discussion of the BDMCMC process in the

supporting information (Text S1).

The hierarchical model in (6)–(10) is also conditioned on the

true quasi-continuous movement path ~SS. ~SS is unknown, and to

make inference on ½fbk,tkg,s2jS�, as opposed to ½fbk,tkg,s2j~SS�,
we need to integrate over the distribution of ~SS. This is

accomplished through composition sampling; BDMCMC updates

of K , fbkg , and t are drawn iteratively with Gibbs updates of s2,

fbkg , and t to improve mixing. In brief, the algorithm for

drawing samples from the posterior distribution ½fbkg,t,s2jS� in

the case where K is treated as random and unknown is as follows:

1. Specify a beginning model state with K partitions.

2. Sample ~SS from ½~SSjS�.
3. Update Kj~SS and fbk,tkgj~SS using the BDMCMC procedure.

4. Sample s2 from its full-conditional distribution.

5. Sample b1, . . . ,bK from their full-conditional distributions.

6. Update t2, . . . ,tK using Metropolis-Hastings steps.

7. Repeat steps 2–6 until convergence is reached and a sufficient

number of samples are obtained.

The algorithm for the fixed-K case is identical to the variable-K

case, except that step 3 is omitted.

It should be noted that steps 5–6 in the algorithm are not strictly

necessary for convergence to the appropriate posterior distribution

as the BDMCMC process updates fbkg and t in step 3. However,

including steps 5–6 greatly improves the mixing and thus

computational efficiency of this iterative sampling process.

The supporting information contains example code (Text S1)

for implementing this approach and a simulation study (Text S2)

illustrating the implementation of this individual-level model of

animal movement on simulated data.

Model Comparison and Selection
In regression models, such as (6), parsimony in covariates is

often desirable. Multiple methods for comparing models with

different sets of regression covariates exist, including the Akaike

information criterion (AIC) [32]. For Bayesian models, the

Bayesian information criterion (BIC) [33], and the deviance

information criterion (DIC) [34] are commonly used. Celeux et al.

[35] present eight methods for calculating DIC for models with

missing data. These methods are easily applied to the model-based

data augmentation approach which we present here. Celeux et al.

[35] suggest that the most reliable of the eight methods they

present is

DIC4~2E~SS log½~SSjĥh�
� �

{4Eh,~SS {2 log½~SSjh�
� �

, ð11Þ

where h~(K ,fbk,s2,tkg), the full set of parameters in (6)–(10),

and ĥh is the posterior mean of these parameters.

This criterion can be used to compare models with different

subsets of covariates, which may aid inference on the relative

importance of individual environmental covariates to animal

movement. This criterion could also be used for multi-model

inference [36].

Velocity-Based Movement Modeling
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Population-Level Inference
Telemetry data for different animals in a population often differ

in length and occur on different spatial and temporal domains.

The differences in observation windows among animals can make

scaling up inference to a population level difficult. One significant

advantage of the continuous movement model for animal

movement we propose is that a uniform temporal discretization

of the movement path can be obtained for all animals. Population-

level inference can then be made by aggregating inference from

different animals in covariate effect space.

State-switching models of animal movement commonly assume

that a population’s movement can be described by a fixed number

of population-level movement regimes [6,14], each representing a

distinct form of movement. For example, one regime could

represent directed, migration-like movement, another regime

could represent a movement state of strong response to certain

environmental factors, and another regime could represent a state

of little movement.

In our individual approach to modeling animal movement, we

allowed for temporal heterogeneity in the response to environ-

mental and biotic drivers of movement through a change point

model (6)–(10). At a population level, we also adopt a framework

that allows for different states of movement and behavior, with the

following assumptions:

1. At the population level, patterns of animal movement and

response to the environment can be partitioned into a fixed

number of regimes, each of which can be represented by a

distinct pattern of correlation to gradients of environmental or

biotic covariates (bt in our individual-level model).

2. Sub-groups of the population may have different propensities

for each of these movement regimes, manifested by differences

in the proportion of use of the regimes across subgroups.

3. Individual animals may have varying propensities for each of

the movement regimes as well, manifested by differences in the

proportion of use of the regimes across individuals.

4. Individual animal movement in an observation period can be

modeled by breaking the path into an unknown (random)

number of partitions, as specified in our individual-level

approach (6)–(10). In each of these partitions, animal

movement and resource selection follows one of the popula-

tion-level regimes.

One approach to making population-level inference together

with individual-level inference would be to add another level to the

hierarchical model (6)–(10). The prior on bk (8) could be replaced

with a hierarchical prior, such as a mixture of normal distri-

butions, with each mixture component representing one popula-

tion-level movement regime. However, such an approach is

currently precluded by computational barriers. Inference in such a

unified hierarchical model would require jointly making inference

on an individual-level model for each animal in the population,

and tuning such a model to ensure efficient mixing of the MCMC

algorithm could be infeasible. Instead, we propose an approach for

making population-level inference about movement and resource

selection based on a post-hoc analysis of the inference made on

individual movement paths from all members of the population.

We have outlined this approach graphically in Figure 2.

Our individual-level model, (6)–(10), results in inference about

the time-varying response of the animal to different environmental

and ecological drivers, bt, where t indexes time. If we apply the

approach to multiple animals in a population, then the results for

the i-th animal are bi,t (Figure 2a), where i indexes animals and t
indexes time. Aggregating the values of bi,t for all animals and

times in parameter space (Figure 2b) can reveal population-level

responses to drivers of movement. Cluster analysis [37] can be

used to reveal these profiles, which represent population-level

movement states. As clustering is an unsupervised form of

learning, interpreting the differences between different movement

clusters can be done by examining the marginal distribution of the

response to each driver of movement (Figure 2c). For example, a

migration to lower elevations would manifest itself as a cluster of

bi,t with negative values for the element of bi,t associated with

elevation. Foraging behavior, in which an animal’s movement is

not driven by environmental factors, could manifest itself as a

cluster of bi,t near 0, while a state of high speed movement would

manifest itself as a cluster with extreme absolute values of the bi,t.

After clustering the bi,t in parameter space, differences in

movement between subsets of the population would manifest as

differences in the proportion of time spent in each of the clusters

by members of different subsets (Figure 2d). In this way, location

data from multiple animals can be combined to make population-

level inference about movement and resource selection.

Our simulation study (Text S2) illustrates this population-level

approach based on simulated individual-level movement.

Application: Northern Fur Seal Movement
We apply our approach for individual and population-level

inference to a study of northern fur seal (NFS) movement and

resource selection. Approval for the field research described below

was granted by permission of the National Marine Fisheries

Service, permit number 782–1455.

Northern fur seals are pelagic foragers found in the North

Pacific Ocean and Bering Sea. During the winter months, NFS are

migratory, while during the summer months, a large percentage of

the NFS population congregate at the Pribilof Islands (St. Paul and

St. George Islands, Alaska, USA) to breed [38,39]. Female NFS,

after giving birth to a pup, nurse their dependent offspring for

around 4 months by alternating trips to sea to feed with time on

shore to nurse. Male NFS, on the other hand, do not participate in

pup rearing.

During the 1999 and 2000 breeding seasons, 45 northern fur

seals were captured at two haul-out sites and two rookeries on St.

Paul Island. In 1999, thirteen juvenile male NFS were captured,

and in 2000, fifteen juvenile male NFS and seventeen lactating

female NFS were captured. These animals were fitted with satellite

transmitters, and location information on foraging trips was

obtained using the Argos system (Argos website (accessed 2011)

https://www.argos-system.org/manual/). During the summer

months, in which our study was conducted, NFS are central place

foragers. Figure 3 shows a compilation of the movement paths

from these animals. Sea surface temperatures were colder in 1999

than in 2000, and this may lead to different NFS movement

patterns in these two years.

We were most interested in at-sea behavior of NFS, and so we

separated the full location record for each animal in the study into

separate at-sea trips by removing locations at times when the NFS

was hauled out one one of the Pribilof islands. For 34 of the NFS,

this involved trimming hauled-out telemetry locations from the

beginning and end of the observation window, resulting in one at-

sea trip for each animal. For the remaining 11 NFS, we split the

full location record into two or more at-sea trips beginning (and

ending for complete trips) with a single on-land location. All told,

the telemetry locations for the 45 NFS were split into 64 at-sea

trips. The number of at-sea trips for each animal is shown in the

supplemental material (Text S3).

We used three ocean environmental covariates for this study:

sea surface temperature (SST), Chlorophyll a level (CHA), and net
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primary production (NPP). Each of these covariates were

measured monthly at a 9 km resolution across the Bering Sea.

For each at-sea trip, the mean observation time of the path was

found, and the measured covariates from the month before and

the month after the mean observation time were averaged, with

weights inversely proportional to the time between the mean

observation time and the monthly covariate observation times.

This resulted in a spatially referenced set of covariates for each at-

Figure 2. Overview of population-level inference based on a cluster analysis in the parameter space. We show here an overview, using
simulated data, of the approach for making population-level inference based on the results of individual-level response to covariates over time.
Inference is made about the time-varying response bi,t of multiple animals to environmental drivers (a), with each animal being analyzed individually.
In (b), the mean values of b(t) for all members of the population and all times are combined. Inference about population-level drivers of movement
can be made using cluster analysis. Examination of the marginal distributions of each multivariate cluster (c) can aid understanding of the movement
profile defined by each cluster. Differences between subsets of the population can be inferred from differences in the proportion of time each subset
spends in each movement cluster (d).
doi:10.1371/journal.pone.0022795.g002
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sea path. Missing values in the covariate data were interpolated

using thin plate splines [40] as implemented in the fields package

[41] in the R statistical computing environment [42]. For each

covariate, the gradient (directional derivative) was calculated and

used as a potential driver of movement.

Female NFS are central-place foragers during the summer

months, often making trips of 4–10 days at a time to travel to

foraging locations. As they provide the only source of nourishment

for their pups, the length of a foraging trip is constrained by the

amount of time their pups can survive without food [20]. In an

attempt to include this potential driver of movement in our study,

we include the gradient of the distance to the seal’s rookery in the

set of model covariates. This is done for both male and female

NFS.

We use the velocity-based approach described in the preceding

sections to examine telemetry data from each of the 64 at-sea trips

made by these NFS. We then make population-level inference

based on the individual-level results for bi,t for all animals. The

aim of our study is to characterize individual seal response to

environmental drivers of movement and make inference about

potential differences between subsets of the population. In

particular, our population-level study focuses on two questions.

We first compare movement patterns in male NFS tagged in 1999

to movement patterns of male NFS tagged in 2000. We then

examine potential differences between juvenile male NFS and

lactating female NFS movement and response to environmental

factors.

Individual-Level Methods
A preliminary model fit with a fixed number of change-points

(K~5) was conducted on each animal to provide reasonable birth

distributions. Following [22], we utilize a birth distribution based

on the posterior distribution of fbkg from these preliminary

models. In the full models, in which K is allowed to vary, when a

new partition fbnew,tnewg is added to the parameter space via the

BDMCMC process, it is drawn from the following birth

distribution: we first draw tnew, the change-point for the new

partition, uniformly from all times at which there is not currently a

change-point:

tnew*DiscUnif ½(1,T)\ft1,t2, . . . ,tKg�:

We then draw model parameters for the new partition from a

Gaussian distribution:

bi,newjtnew*N(�bbi,tnew
,c:s2

i,tnew
) , i~1, . . . ,p, ð12Þ

where �bbi,tnew
is the posterior mean value at time tnew for bi from

the preliminary fixed-K model fit, s2
i,tnew

is the posterior variance

at time tnew of bi in the fixed-K model fit at time tnew, and c is a

tuning parameter which can be modified to improve mixing. We

note that a birth distribution in BDMCMC is similar to a proposal

distribution in a Metropolis-Hastings update in that the posterior

distribution is invariant to the choice of proposal (or birth)

distribution, though the rate of convergence can vary widely for

different proposal (or birth) distributions. Our use of the data to

inform a birth distribution only facilitates mixing in the MCMC

process, and does not influence the resulting posterior distribution

(see [22] for further discussion). The supporting information (Text

S1) contains more details of the BDMCMC algorithm.

We analyzed each of the 64 at-sea paths from the 45 NFS using

the individual velocity-based movement approach. The algorithm

for fitting the continuous-time correlated random walk model [15]

did not converge for five seal paths (see Text S3 for details). For

each of the remaining 59 at-sea paths we used a preliminary model

with a fixed number of change-points to generate a birth

distribution. The birth distribution was then used in the

variable-K model. The variable-K algorithm was used to generate

11,000 MCMC iterations, with the first 1,000 being discarded as

burn-in. Convergence of the Markov chain for each animal was

assessed visually by examining the chains for proper mixing.

Figure 3. Movement paths for northern fur seals in the Pacific Ocean. In 1999 and 2000, 45 northern fur seals on the Pribilof Islands were
fitted with satellite transmitters. Movement paths for all 45 northern fur seals are shown.
doi:10.1371/journal.pone.0022795.g003
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Example trace plots are shown in the supporting information (Text

S3). For animals whose Markov chains showed lack of conver-

gence, an additional 100,000 iterations were generated. MCMC

algorithms for five NFS paths did not converge after this longer

run, and these paths were discarded from the analysis, leaving 54

at-sea paths from 41 animals in the study (see Text S3 for details).

Our population-level study is based on the individual results from

these 41 animals.

We also conducted an in-depth individual-level study on two

NFS, one male (animal 1) and one female (animal 2) to illustrate

model comparison procedures. For each of these animals, a set of

models with all possible subsets of the four covariates were applied

to the data. The MCMC procedure was used twice with unique

starting values to produce 11,000 iterations of the composition

sampler for each model and animal, and the first 1,000 iterations

were discarded as burn-in. Convergence was assessed visually (see

Text S3 for additional details). The two chains for each model

were combined, resulting in 20,000 iterations for each model and

animal. The DIC4 for each model was computed, using the 20,000

iterations.

Population-Level Methods
Our population-level inference is based on clustering the time-

varying coefficients bi,t for the 41 animals in the individual-level

study. To remove the temporal autocorrelation in the response to

the drivers of movement, and to make the cluster analysis more

tractable, we thinned the bi,t for each path, keeping only 1/100 of

the time points. The resulting values of bi,t from all animals were

combined, and a Gaussian mixture model clustering algorithm

was fit using the MCLUST R-package [43]. Models with one to

eight mixture components were compared using BIC, and the best

model was used for inference on population-level drivers of NFS

movement.

Differences in movement by subsets of the NFS population were

assessed by examining differences in the time spent by animals in

the different subsets (e.g., male and female NFS) in each of the

resulting movement states. As the location data vary in length

across animals, we examined differences in the proportion of time

each animal spent in each movement cluster. If an animal’s

telemetry location data were split into multiple at-sea trips, all trips

were aggregated by animal and the proportion of time spent in

each movement cluster for the animal was the proportion of all at-

sea time. In this way we can examine differences in the

proportional use of the different movement clusters between

individuals and subgroups of the population.

To test for differences between male and female NFS movement

patterns, we applied a classification tree [44] to the proportion

data with sex as a response variable. A classification tree was also

used to test for differences between movement patterns of males

tagged in 1999 and males tagged in 2000.

Results

The computed DIC values for each of the fifteen models for

animal 1 and animal 2 are shown in Table 1. Figure 4 shows the

posterior distributions of the bi,t over time in the full model (model

1) for animal 1 (Figure 4a) and animal 2 (Figure 4b). Similar plots

for the 39 other animals in the study are shown in the supporting

information (Text S3).

The combined effect of all covariates can be thought of as an

irregular flow surface on which the animal tends to travel in the

direction of steepest descent. This flow surface changes over time,

and Figure 5a shows snapshots in time of the net gradient field of

the four drivers of movement on animal 1. Figure 5b shows

corresponding gradient fields for animal 2.

For population-level inference, the aggregated multivariate

responses to drivers of movement bi,t were clustered in models

with 1–8 mixture components, with the 7-component model

having the best BIC. Violin plots of the marginal distributions of

bi,t for these clusters, labeled 1–7 in order of decreasing

prevalence, are shown in Figure 6. The proportion of time each

animal spent in each movement cluster is shown in Figure 7a, and

Figure 7b shows the movement paths of the example animals 1

and 2 with time spent in each movement cluster. Similar plots for

the 39 other animals are shown in the supporting information

(Text S3).

Table 1. Comparison of models for animal 1, a juvenile male northern fur seal, and animal 2, a female northern fur seal, using DIC4.

Model Index Distance to Rookery Chlorophyll A Sea Surface Temperature Primary Production DIC4 Animal 1 DIC4 - Animal 2

1 X X X X 269752 28836

2 X X X 269471 28852

3 X X X 269860 28855

4 X X X 269794 28867

5 X X X 269825 28862

6 X X 269538 28869

7 X X 269397 28877

8 X X 269788 28883

9 X X 269539 28877

10 X X 269950 28874

11 X X 269775 28889

12 X 269487 28885

13 X 269565 28879

14 X 269496 28892

15 X 269961 28897

An ‘‘X’’ shows that the covariate is included in the model.
doi:10.1371/journal.pone.0022795.t001
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The classification tree with sex as the response variable and

proportion of time spent by each animal in each of the seven

movement clusters is shown in Figure 8. This classification tree

correctly identifies northern fur seal sex 78% of the time, and

shows that female NFS spend proportionately more time in cluster

4 and less time in cluster 5 than do males.

Figure 4. Time-varying response to the environment. The time-varying posterior mean (solid black line) and 95% credible interval (dashed line)
for b for (a) animal 1, a male northern fur seal, and (b) animal 2, a female northern fur seal are shown. The change-point model used allows for
heterogeneous response to environmental and biotic drivers of movement.
doi:10.1371/journal.pone.0022795.g004
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Figure 5. Gradient field of combined drivers of movement over time. The effect of environmental and biotic drivers of movement can be
thought of as a bumpy flow surface on which the animal tends to move in the direction of greatest local descent. The gradient fields for (a) animal 1,
a male fur seal, and (b) animal 2, a female fur seal, exhibit significant change over time.
doi:10.1371/journal.pone.0022795.g005
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The best classification tree for male NFS with year tagged as the

response variable had no splits, indicating that male NFS tagged in

1999 do not spend significantly different proportions of time in any

movement cluster than do male NFS tagged in 2000.

Discussion

Northern Fur Seal Discussion
For both animal 1 and animal 2, the model with the best DIC

includes only the distance to rookery covariate, indicating that

these animals were not strongly influenced by the environmental

factors represented by the other covariates (Table 1).

The results concerning b for animal 1, shown in Figure 4a and

Figure 5a, confirm that the distance to rookery covariate does have

a significant effect which changes over time. At the beginning of

the seal’s trip, the positive effect of this covariate indicates a desire

to move away from the rookery, possibly towards memorized

foraging locations. During the middle of the trip, the lack of any

significant covariates indicates that movement is not being driven

by the covariates in our study, but by some other drivers. Potential

drivers of movement not examined in this study include subsurface

temperatures and behavioral drivers (e.g., prey and predator

locations). At around hour 475, the effect of the distance to

rookery covariate becomes negative, driving the male to return to

the rookery.

The results for animal 2 (Figure 4b and Figure 5b) show that this

female NFS is first pulled away from the rookery (hours 3–10),

then is not driven by any of the covariates in this study for a period

of time (hours 19–38). After approximately 38 hours, the animal

begins to return to the rookery, though the return is quite different

than that of animal 1. The second half of the female’s trip (after

approximately 50 hours) is dominated by little response to any of

the covariates in the study. The female appears to be foraging on

the return trip, and forages close to the rookery between hours 66

and 83. In contrast, the path of animal 1 shows a relatively long

period in which the animal is drawn out away from the rookery,

followed by a fairly abrupt change in response to the distance to

rookery driver (around hour 475), and a short time in which the

animal returns to the rookery with little distraction. This juvenile

male NFS appears to have a fairly distinct turnaround time, in

which it decides to cease foraging and return quickly to the

rookery.

A comparison of the scale of b in Figure 4 shows that the

female’s absolute response to all covariate gradients is larger in

magnitude than the male’s response. This indicates that the female

traveled at a higher swim velocity than the male in these example

trips. The female’s trip is also much shorter than that of animal 1.

This is typical of the NFS studied here (see Text S3).

One possible explanation for these differences may be tied to the

different roles male and female northern fur seals play in rearing

Figure 6. Population-level movement clusters. Violin plots of values of b for each cluster of NFS movement. Male NFS spend proportionately
more time in cluster 5, a movement state of low response to environmental drivers, than do female NFS. Female NFS spend proportionately more
time in cluster 4, a movement state of high absolute speed and response to environmental drivers.
doi:10.1371/journal.pone.0022795.g006
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Figure 7. Cluster Analysis Results. In (a), the barplot shows the proportion of trip time each seal spends in each of the eight movement clusters.
In (b), two example paths are shown. Animal 1, a male NFS, spends a significant proportion of its trip in clusters 1 and 2, while animal 2, a female NFS,
spends a significant amount of time in clusters 1, 2 and 4.
doi:10.1371/journal.pone.0022795.g007
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pups. The female northern fur seals are the primary providers for

unweaned pups, and may be more constrained in their foraging, as

they must return to feed their pups. Male northern fur seals, like

animal 1, may be able to forage in a less-constrained manner, and

thus are less driven to return within a certain time interval, leading

to a slower swim speed and longer duration of foraging trips.

Additional individual-level results are in the supplemental material

(Text S3).

In our population-level study, the movement of all NFS studied

was clustered into seven mixture components, representing seven

distinct movement profiles for this population (Figure 6). Cluster 1

is the most prevalent cluster of NFS response to the four drivers of

movement, and contains values of bi,t that are fairly representative

for all covariates. Cluster 2 differs from cluster 1 primarily in its

responses to CHA, SST, and NPP, which are all more closely

distributed around zero than in cluster 1, indicating a state of

movement where influence of environmental factors is minimal.

Cluster 4 is characterized by extreme response (both positive and

negative) to all covariates, indicating a state of fast absolute speed,

as extreme responses to any covariate correspond to high velocity

in the animal’s movement. Cluster 5 is characterized by small

(near zero) response to all covariates, indicating a state of slow

absolute speed. extreme response to NPP.

The clustering algorithm used for this population-level study of

NFS movement patterns is based solely on the aggregated

responses to drivers of movement bi,t, and does not take into

account the animal or the time in the trip. However, the bi,t arise

from our individual-based change point model of animal

movement, which assumes a partition of the movement path into

contiguous regions in which the response to the environment is

similar. Thus it is not surprising to see that the animal movement

paths in Figure 7b and the supporting information (Text S3) show

both animals tend to remain in one movement cluster for a time

and then switch to another cluster.

Cluster 5, which is a movement state of low absolute response to

the environment, is a predominantly male response to the

environment (Figure 8). Cluster 4, which is a predominantly

female movement state (Figure 8), is characterized by larger

absolute response to covariates. This cluster is a state of faster

absolute movement and stronger response to the environment

than is found in the predominantly male cluster 5. This may

indicate that female NFS are more intense foragers than males, as

the length of their foraging trips are constrained by the amount of

time their pups can survive between feedings. Males, on the other

hand, have no such constraints, and may be able to forage in a

more relaxed fashion.

The results from the male-only comparison of movement

between seals tagged in 1999 and 2000 show no significant

differences in response to the drivers of movement used in this

study. The velocity-based approach we have used for modeling

animal movement is based on gradients of covariates, and

responses to these gradients were similar for males tagged in both

years. Sea surface temperatures were colder in 1999 than in 2000,

but male NFS movement patterns were not greatly affected by this

change in temperature.

Modeling Approach
We have presented an approach for modeling animal

movement based on random walks (CTCRW) that allows for

inference on changing movement profiles exhibited by the animal

throughout the time for which we have location information. This

approach for linking animal telemetry data to environmental and

biotic drivers of movement is flexible, computationally efficient,

and yields easily interpretable results. A general overview of our

approach to individual and population-level inference could be

summarized as follows.

1. Obtain time-referenced location data S for multiple animals in

a population.

2. For each animal, utilize the CTCRW model [15], or some

comparable method, to obtain realizations from the posterior

predictive path distribution ½~SSjS�, with locations at regular time

intervals.

Figure 8. Gender differences in proportion of time spent in movement clusters. A classification tree with sex as the response variable and
proportion of time spent in each of the seven movement clusters as the predictor variables reveals that female NFS spend proportionately more time
in cluster 4, a movement state of higher absolute speed and response to Chlorophyll a, sea surface temperature, and net primary production than do
male NFS.
doi:10.1371/journal.pone.0022795.g008
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3. Obtain spatially-referenced covariates that are hypothesized

drivers of movement, and calculate their gradients.

4. Make inference about drivers of movement for each individual

animal using the velocity-based movement approach (6)–(10).

This approach accounts for the uncertainty in the movement

path distribution and allows for temporal heterogeneity in the

drivers of movement.

5. Aggregate values of bi,t for all animals and at all times and

cluster these aggregated effects in parameter space. Insight into

the interpretation of each cluster’s movement profile can be

obtained by comparison of the marginal distributions of the

effects in each cluster.

6. Make inference about differences in how population subsets

respond to drivers of movement by using the proportion of time

spent by individual animals in each movement cluster as

predictor variables. This could be done using parametric (e.g.,

logistic regression) or nonparametric (e.g., classification trees)

statistical methods.

Care should be taken when making conclusions based on the

posterior number of partitions K , as this parameter can be

sensitive to model departures [22]. The change point model we

have used assumes that an animal’s response to a covariate is

constant on each of K partitions of the observation period. This

model can approximate much more complicated time-varying

behavior, as shown in our simulation study (Text S2), but if the

true response to a covariate is not piece-wise constant, then the

location data will likely drive K to be a large number to best

approximate the changing behavior over time. For example, the

distance to rookery covariate seems to vary smoothly over time for

animal 1 in our application, while our model assumes a finite

number of break points in which the animal changes behavior. If

the covariate does vary smoothly, the model would tend to favor a

large number of partitions in an effort to best capture the animal’s

true response to the driver of movement. Stephens [22] also notes

that inference on K can be influenced by choice of prior

distribution and birth distribution. We have found this to be true,

though inference on bi,t, the focus of our study, is quite resilient to

these variations.

A similar, but alternative approach to our change-point model

would be a temporally varying coefficient model [45–47], which

could be used to obtain similar inference about environmental

drivers of movement within the velocity-based framework we have

described here.

Utilizing the velocity-based model with an unknown number of

change points requires tuning the birth distribution by adjusting c
in (14). An alternative that would require less human input would

be to fit multiple fixed change point models with different numbers

of change points (K ) and rank models using standard model

selection criteria [36]. For example, Steele and Raftery [48] have

found that BIC can outperform other Bayesian selection criteria

(including DIC) in choosing the number of mixture components

(K) in a model. In the data augmentation case, BIC can be

formulated as

BIC(K)~2E~SS log½~SSjĥh�
� �

{d(K) log(n), ð13Þ

where d(K) is the total number of free parameters in the model

with K movement states and n~2(T{1) is the number of

observations. In the fixed-K case, this formulation of BIC can be

used to compare models with differing numbers of change points.

Our individual-level model allows for heterogeneous behavior

over time, as implemented with a change point model. In its

current form, we estimate bk for each partition (6) independent of

all other partitions. This allows animal movement behavior in

each partition, as characterized by the animal’s response to the

potential drivers of movement, to be different from behavior in all

other partitions. It may be more realistic to assume that there are a

fixed (or random and unknown) number of movement states that

an animal can exhibit, and the observed path can be partitioned in

such a way that movement behavior in each temporal partition

follows one of the fixed (or random) movement states. For

example, we might expect animals to act similarly at specific times

of the day each day (e.g., dormant behavior during the day for

nocturnal animals), resulting in partitions each day with similar

movement behavior. Our simulation study (Text S2) shows that

our individual-level approach can make inference on recurring

behavior of this form, but explicitly incorporating this into our

model, perhaps through a hierarchical prior on the bk that is

shared by the population, could make our approach more robust.

The main difficulties here are computational, as tuning the nested

birth-death processes for individual and population-level hetero-

geneity may be infeasible.

In our approach to modeling individual and population-level

movement, we have assumed that each animal moves indepen-

dently of all other animals. While this is not likely to be true in all

situations, jointly modeling the relationship between movement

patterns of conspecifics is challenging. One major difficulty is that

only a sample of a population is typically monitored, leading to

little overlap between the animal movement paths in space and

time. One way the relationship between conspecific movement

patterns could be incorporated into the current framework (5)–(6)

would be to jointly model all movement steps yi,t from all animals

and specify a covariance structure based on the spatial and

temporal separation between the movement steps of different

animals. For example, the correlation between yi,t1
and yj,t2

, two

movement steps from different animals at possibly different times,

could be modeled with an exponentially-decaying structure:

corr(yi,t1
,yj,t2

)~expf{atjt2{t1j{asjsi,t1
{sj,t2

jg, where at and

as are range parameters for correlation between movement in time

and space, respectively. In this way, animals that are close together

in time and space could exhibit correlated movement and response

to the environment.

In the estimation of resource selection functions, a distribution

of available habitat is typically specified [15,49]. The definition of

available habitat can be set by the study area [9,50] or by an

underlying movement model [12,21,51]. Inference on use versus

availability of resources can vary as the scale of what is defined as

available changes [9,50,52]. Our approach to modeling animal

movement and resource selection could be seen as defining

availability of resources at two scales. Our velocity-based model

with covariate gradients assumes that animals are motivated only

by what is in their immediate neighborhood, thus our availability

distribution amounts to the adjacent habitat at the scale of the

environmental covariates (e.g., the adjacent pixels of land cover

types). Jointly with this fine-scale definition of availability, we

employ a stochastic CTCRW model of animal movement to

stochastically integrate over our uncertainty in the animal’s path

between location fixes. Thus, in our approach, availability of

resources is defined by local environmental gradients of the

posterior distribution of movement paths in the CTCRW model.

In this study, we have modeled environmental drivers of

movement as local covariate gradients fixed in time, but the

integration of environmental factors in various formats could

facilitate inference on effects not easily addressed in the current

framework. Three possible extensions to the existing framework

are the inclusion of temporally-varying environmental covariates,
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known barriers to animal movement, and larger scale gradients.

We consider each of these in turn.

The approach we have presented allows the effect of

environmental factors (e.g., bi,t) to vary over time, but the

environmental factors themselves (e.g., SST) are held constant in

time. This may not always be the case, especially in a marine

environment. Currents are constantly shifting, and the ocean is

always in flux. The use of potential environmental covariates in the

existing framework for making inference about drivers of animal

movement will allow for more realistic inference.

Our approach does not currently take into account potential

barriers to animal movement, such as land masses for marine

animals or cliffs for land animals. Such barriers could be included

through rejection sampling of ½~SSjS� in the data augmentation step

(3), accepting a continuous path realization ~SS(k) only if it does not

cross the known movement barrier.

Our approach to expressing environmental drivers as gradients

currently considers only local gradients, though animal movement

may be motivated by memory of desirable destinations at a greater

distance. A possible extension to our current approach could be to

use larger scale (coarser resolution) gradients simultaneously with

local environmental gradients. This could provide insight into

when an animal’s movement is being motivated by local

environmental factors, as opposed to distant attractions. This

could allow for models that predict animal movement through less

desirable landscape features to destinations that are highly

desirable. Our velocity-based approach for animal movement

modeling is flexible and extensible, and its computational

efficiency enables modeling significant complexity in an animal’s

response to the environment.

Supporting Information

Text S1 BDMCMC Algorithm. This supplement consists of a

description of the BDMCMC algorithm used in our study. We

describe the particulars of the birth distribution used, and outline

the steps for implementing the BDMCMC process.

(PDF)

Text S2 Simulation Study. This supplement contains a

simulation study illustrating our approach to individual and

population-level inference on animal movement.

(PDF)

Text S3 Individual-Level Results. This supplement contains

plots of individual-level results for all animals.

(PDF)
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