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Abstract

Vertebrate embryos display a predominant head-to-tail body axis whose formation is associated with the progressive
development of post-cranial structures from a pool of caudal undifferentiated cells. This involves the maintenance of active
FGF signaling in this caudal region as a consequence of the restricted production of the secreted factor FGF8. FGF8 is
transcribed specifically in the caudal precursor region and is down-regulated as cells differentiate and the embryo extends
caudally. We are interested in understanding the progressive down-regulation of FGF8 and its coordination with the caudal
movement of cells which is also known to be FGF-signaling dependent. Our study is performed using mathematical
modeling and computer simulations. We use an individual-based hybrid model as well as a caricature continuous model for
the simulation of experimental observations (ours and those known from the literature) in order to examine possible
mechanisms that drive differentiation and cell movement during the axis elongation. Using these models we have identified
a possible gene regulatory network involving self-repression of a caudal morphogen coupled to directional domain
movement that may account for progressive down-regulation of FGF8 and conservation of the FGF8 domain of expression.
Furthermore, we have shown that chemotaxis driven by molecules, such as FGF8 secreted in the stem zone, could underlie
the migration of the caudal precursor zone and, therefore, embryonic axis extension. These mechanisms may also be at play
in other developmental processes displaying a similar mode of axis extension coupled to cell differentiation.
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Introduction

During embryonic development, generation of cell diversity

needs to be coordinated with tissue growth in order to achieve the

right size, cell number and shape of the different organs.

Depending on the developmental context this is implemented

differently. Several developmental systems with predominant

growth along one axis share a similar strategy: cells at one end

of the domain remain undifferentiated and give rise progressively

in time and space to cells that have a more restricted fate and can

differentiate further. This occurs for example during growth of

plant root meristemes, caudal extension of short germ band insects

and worms, extension of the vertebrate limb bud, growth of bones,

and caudal extension of the vertebrate body axis [1,2,3,4,5,6]. In

this paper we focus on the latter process, namely we are interested

in understanding how the migration and differentiation of cells

associated with the caudal extension are controlled at the

molecular and cellular level.

Vertebrate embryos display very important differences along

their rostro-caudal (head-to-tail) axis from very early stages of

development which are manifested, for example, by the orienta-

tion and movement of the primitive streak along the rostro-caudal

axis. This is a transient structure, composed of cells that form a

groove in the epiblast, through which cells ingress to form the

mesoderm and the endoderm. The primitive streak displays a

rostral tip (named Hensen’s node), which has an important pattern

organizing role on the cells that develop in its vicinity and

influences the primitive streak dynamics. Primitive streak devel-

opment goes through an initial phase of rostral elongation followed

by caudal regression.

Formation and rostral elongation of the primitive streak is

associated with cell movements that may have a lateral

intercalation component [7] or be of chemotactic nature [8,9].

Regression of the primitive streak is associated with the movement

of a group of cells surrounding and including Hensen’s node, that

behaves as a precursor region for postcranial mesoderm and

neural tube. Although some stem-like cells giving rise to several

lineages may reside in this caudal precursor region, different

populations have been discovered to give rise preferentially to

distinct lineages. The mesodermal layer of Hensen’s node gives

rise to the notocord while the rostral primitive streak gives rise to

somites. The ectodermal layer of Hensen’s node gives rise to the

floorplate of the neural tube while the ectoderm adjacent to the

primitive streak gives rise mainly to lateral (non-floorplate) neural

tube [10] and some somitic tissue [11,12,13,14]. Cells in this

region proliferate and their daughter cells can either continue to
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move caudally and remain in the caudal precursor region as the

streak regresses or can be left behind and consequently exit this

region (Figure 1).

In general, it is thought that cells either remain in the caudal

precursor region or transit to a more differentiated state depending

on the degree of activation of signaling pathways which in turn

depends on their exposure to specific morphogens produced by

particular cell populations. A precise molecular marker for this

precursor population has not been described, but in the epiblast

layer, according to fate maps, it may correspond to cells that

transcribe FGF8 as detected with the FGF8 intronic probe [15]. We

will refer to this population as the caudal neural precursor region

(CNPR) (which includes the caudal lateral epiblast [16], and the

epiblast layer of the node and gives rise primarily to neural tube

although it also contains mesoderm precursors). FGF8 is not just a

marker of the caudal precursor region but it is also a crucial player

in the regulation of cell maturation within its domain of influence.

Cells with active FGF signaling pathway remain undifferentiated,

both in the neural plate and in the mesoderm, while those with low

or no activation of FGF signaling can progress to a more

differentiated state (if the right signals are present) [17,18]. It is

therefore important to understand how this signaling pathway is

regulated and in particular how the production of FGF8 at both the

protein and mRNA levels is controlled.

Some aspects of the regulation of FGF8 expression are known.

FGF8 mRNA is characterized by high stability so that cells that

have stopped transcription of the gene can maintain its expression

for a considerable time interval resulting in a graded distribution of

the RNA in the extending axis [15]. Figure 1 illustrates that

although FGF8 transcription takes place in the CNPR, the area

where FGF8 mRNA is present extends further rostrally. FGF8 levels

can be down-regulated by retinoic acid (RA) that is secreted from

somites and this could in theory be sufficient for the progressive

down-regulation of FGF8 [17]. However, in the absence of RA,

FGF8 mRNA is still progressively down-regulated [17] although its

region of expression is expanded.

Although mechanisms responsible for the control of FGF8

transcription remain unknown, it is clear that they must be

coupled to caudal extension of the embryonic axis, a crucial

process that takes place as FGF8 is down-regulated. Caudal

extension involves movements in all three embryonic layers that

rely on different cellular behaviors that are region and embryo

dependent. Many efforts have been made to understand the

mechanisms that regulate convergence and extension of the

mesodermal layer in fish and frogs where region-specific cellular

behavior such as directed migration towards the midline (due to

cellular intercalation) have been described [19]. More recently, a

random cell motility gradient has been observed in chick

presomitic mesoderm that contributes to axial elongation [20].

In addition, other phenomena such as stem-cell like mode of

growth [21] reviewed in [16] and active movement of cells towards

the caudal end [22] have been identified for neural plate and

notocord elongation respectively. Extension of the embryo

constitutes, therefore, a multi-factorial process where all these

aspects of cell behavior are coordinated [23].

In this paper we will focus on two main features of vertebrate

embryonic axis extension, namely progressive generation of cells

not producing FGF8 and migration of the caudal precursor zone.

We will use mathematical methods to analyze these processes.

Concentration dynamics of FGF8 and RA during caudal

extension in chick embryo have been modeled previously in [24].

It was shown there that the dynamics of the concentration profiles

of FGF8 and RA could, in theory, be explained by specific

interactions (mutual inhibition) between FGF8 and RA which can

be described by the system of nonlinear partial-differential

equations having a propagating front solution.

The ability of local self-enhancement and long-ranging

inhibition of morphogen gradients to give rise to a propagating

Figure 1. Progressive down-regulation of FGF8 at the caudal precursor zone. Schematic drawing showing expression of FGF8 (purple) in
embryos of 10 (A) and 14 (B) somites respectively. Transcription of FGF8 (red) only occurs at the primitive streak and adjacent epiblast but FGF8
mRNA extends into the presomitic mesoderm and adjacent neural tube due to maintenance of the transcript as the embryo extends. Cells which are
left behind the moving caudal neural precursor zone (blue dot) do not regress caudally and stop transcribing FGF8.
doi:10.1371/journal.pone.0022700.g001

Embryonic Axis Extension
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front-like behavior has also been addressed in [25], where it was

suggested that stationary patterns (Turing) form due to the growth

of the medium (tissue grow due to cell proliferation).

The main feature of our approach is that we take into account

the movement of the FGF8 production domain and consider its

effect on the dynamics of the FGF8 concentration profile, as well as

the effect of FGF8 concentration profile on the differentiation and

movement of cells. We perform our study using two distinct

models. First, we develop and consider different modifications of a

continuous one-dimensional model to check hypotheses concern-

ing dynamics of morphogens and mechanisms of cell motion.

Then we verify the obtained results by use of a multi-cell

simulation method (the Glazier-Graner Hogeweg model, the

GGHM, aka the Cellular Potts model or CPM) originally developed

by Glazier and Graner [26,27] and recently used to simulate and

analyze the migration of cells in various biological tissues [28]

including the formation of cell flows at the early stages of the chick

embryo gastrulation [8].

Furthermore, with new experimental observations, we analyze

modeling outcomes and further explore the mechanisms that

underlie progressive down-regulation of FGF8 and its role in the

caudal precursor zone migration. We focus on the events that

occur in the epiblast region that will give rise to the spinal cord (the

CNPR) as this is a tissue where the regulation of FGF8

transcription occurs but similar interactions may be relevant for

mesoderm maturation. Based on our modeling and experimental

results we suggest that the movement of the caudal precursor

region is essential for the observed dynamics of the concentration

patterns of involved morphogens, and that the interplay between

these morphogens and the cells producing them is responsible for

the progressive generation of differentiated cells as well as for the

migration of the CNPR. We also show that the integration of cell

proliferation, differentiation and movement allows the CNPR to

maintain a constant size and preconditions the constant speed of

its migration so that the moving stem zone regulates regression of

the primitive streak. Table S1 outlines the summary of our models.

The mechanisms of embryonic axis extension we propose here

may also be applicable to different systems where production of a

morphogen by a domain of moving cells is responsible for

progressive differentiation.

Results

Concentration profiles in the continuous one-
dimensional model

We posed the general theoretical problem of what simple

regulatory network could account for the restricted transcription of

a gene within a domain of constant size considering that cells that

transcribe the gene proliferate and move as the main axis of the

embryo extends. To address this problem we first developed a

continuous one-dimensional model (installation, templates for basic

simulations and source codes are available from the web site:

http://pcwww.liv.ac.uk/,mf0u4027/biochemsim.html). The sim-

plest version of the model includes two variables: one for dynamics

of hypothetical A-mRNA, transcribed exclusively in a fixed-sized

domain that moves (say to the right) with constant speed (c), and one

for the secreted protein it encodes (protein A). The basic model

therefore considers concentrations of the following two species:

1. mRNA (non-diffusible) which is maintained (produced) at a

constant level exclusively in a domain of constant size moving

with a constant speed. Further on we will refer to the domain of

mRNA transcription as to the DoT.

2. Protein A (diffusible) whose production rate is proportional to

the level of A-mRNA.

Figure 2 shows the stationary concentration profiles of both

species with the assumption that the decay rates are given by linear

functional terms (see the description of 1D model in the Materials

and Methods Section). The transition process from the initial

conditions (when both concentrations are zero everywhere except

for the DoT where the concentration of A-mRNA is one) to the

Figure 2. Stationary concentration profiles of A-mRNA and its corresponding protein in one-dimensional model of a migrating DoT.
The solid red line denotes the concentration of A-mRNA along the embryo’s axis while the dashed red line denotes the concentration of protein A. A-
mRNA is produced in the DoT, i.e. in the red hatched area which has a preset size and moves to the right (the x-coordinate points to the posterior
side) with speed c. Production of protein A is proportional to the level of A-mRNA. The schematic gene regulatory network diagram explaining the
underlying molecular model is also presented. The detailed description of the model is given in the Materials and Methods Section. Here we presume
that the DoT is located in the segment (420, 455) of the medium of total size 600 (space units) and moves with speed c = 0.015 to the right. Other
parameters: k1 = 0.0003, k2 = 0.00025, k3 = 0.0005, D2 = 0.5.
doi:10.1371/journal.pone.0022700.g002
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stationary solution is shown in Movie S1. Also, since the DoT is

moving, the concentration profiles of A-mRNA and protein A do

not form symmetric pattern with respect to each other: A-mRNA

decays gradually behind the DoT and the maximum in protein A

profile lags behind (shifted to the left in the graph) the midpoint of

the DoT. This shift becomes more pronounced with the increase

of the DoT speed, c, and depends on the kinetic rates of A-mRNA

and protein A (see equation 6, Matherial and Methods). Due to

this shift the maximum in concentration of the protein can lie

outside the DoT (see Figure 2, also Figure 3B). The condition for

this is given by inequality 7 in the Materials and Methods Section.

Self-regulation of the size of the DoT via negative
feedback

So far in our model the size of the DoT (which reflects the

number of cells transcribing A-mRNA) has been fixed. Now we

would like to take into account that the cells forming the DoT

proliferate and differentiate (i.e. can stop transcribing A-mRNA

under the appropriate conditions). When proliferation is taken into

account the DoT size should gradually increase over time unless a

regulative mechanism ensures this does not occur. The shape of

the concentration profile of protein A in Figure 2 gives an idea of a

possible and simple mechanism for regulating the size of the DoT

that would not involve any component external to the system. If

we assume that cells stop transcription of A-mRNA when the level

of protein A rises above some threshold, TA, (see the diagram on

Figure 3A), this would define the position of the left side border of

the DoT (as a coordinate of the point where the level of protein A

gets above TA) while the position of the right side border is

predefined and given as a coordinate of a point moving to the right

with speed c (see Figure 3B). Now the size of the DoT is defined by

the negative feedback loop where protein A inhibits the

transcription of A-mRNA.

In this version of the model the size of the DoT is defined by the

value of the threshold TA: when the concentration of the protein

gets above TA, transcription of the A-mRNA stops and this

Figure 3. The model with cell differentiation. The basic model (Figure 2) is extended by imposing the condition that production of A-mRNA
stops when the concentration of protein A reaches the threshold value TA (TA = 0.85 in all presented simulations). This defines the location of back
(left) side of the moving DoT and therefore provides the mechanism controlling its size. A: The schematic gene regulatory network diagram
explaining the used version of the model, for further details see the Materials and Methods Section. B: Concentration profiles of A-mRNA (solid red)
and protein A (dashed red) with respect to the moving DoT (red hatched). Parameter values are the same as in Figure 2. C: The DoT size versus the
DoT speed in simulations (blue markers) and in analytics (solid red line, given by the equation 9 in the Materials and Methods Section). D: Domains
corresponding to the stationary and oscillating dynamics of the DoT size on the parameter plane ‘‘k2 versus c’’ in simulations (blue markers) and in
analytics (red line). c is the velocity of the DoT migration and k2 is the kinetics rate (1/k2 is a relaxation time) of protein A (here and everywhere else
k3 = 2k2).
doi:10.1371/journal.pone.0022700.g003
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eventually defines the DoT size. This mechanism of the DoT size

regulation works if the value of parameter TA is below the

maximum possible value of protein A concentration (which is k3/

k2, see equations 2 and 4 in the Materials and Methods section).

Obviously, the size of the DoT is small for low values of TA and

increases with TA. Simulations and analysis of the model show that

the size of the DoT is generally an increasing function of the

DoT’s speed (see Figure 3C). Simulations also indicate that this

size is not necessarily a constant and can oscillate over time

(compare Movies S2 and S3 showing formation of a DoT of

stationary and oscillating sizes). Oscillations are observed when the

kinetics rate of A-mRNA (k1) or protein A (note that for simplicity

we presume that k3 = 2k2 in all simulations, i.e. the rates of protein

A production and decay are varied in a proportional manner) are

too small with the transition (bifurcation) value depending on the

speed of migration of the active transcription domain (Figure 3D).

Comparison of the numerical and analytical results indicates that

the domain in the model parameter space, where oscillations are

observed numerically, strongly correlates when no stationary

solution exists according to analytics (compare dashed blue and

solid red lines in Figure 3D and see inequality (10) in the Materials

and Methods Section).

Size regulation of the FGF8 domain of transcription
So far, we have kept our model general and have not named the

molecules that would be represented as morphogen A. Going back

to the CNPR, we are interested in understanding the mechanisms

that regulate the size of the FGF8 transcription domain and

therefore the CNPR. The simplest possibility would be that FGF8

corresponds to morphogen A. In this case, based on the results

presented in Figure 3, we could suggest that high FGF8 levels stop

transcription of its own gene and thus regulates the size of its

domain of transcription.

Previous reports suggest that FGF8 may be able to promote the

stability of its own mRNA transcript [15], but no experimental

evidence for its influence on the rate of its own transcription has

been found. In order to examine the dependence of FGF8

transcription on FGFR signaling, we treated chick embryos with

the FGFR antagonist PD173074 for 4 h [29]. This treatment did

not change significantly the domain of FGF8 transcription

(compare panels A and B in Figure 4) (n = 6). In addition, the

treatment of cultures of the caudal precursor zone with FGF4

(which activates FGF receptors more efficiently than FGF8 [30])

for 9 h did not alter FGF8 transcription (n = 3, Figure 4 panels D

and E). These results in the chick embryo are consistent with the

phenotype of FGFR1 mutant mouse embryos where the expression

of FGF8 in the caudal precursor region is not altered [31].

Therefore we conclude that FGF8 is not self- repressing.

In terms of our model this means that FGF8 dynamics could be

regulated by the caudal self-repressing morphogen A. We have

explored several possible relationships between this self-repressing

morphogen (protein A) and FGF8. If FGF8 transcription was

activated by protein A then the profile of FGF8 transcription (and

therefore the extent of the CNPR) would lag behind the domain of

the A-mRNA transcription (Figure 5A–B). Alternatively, if the

transcription of A-mRNA and FGF8 is initiated in a similar caudal

domain and protein A is repressing simultaneously the transcrip-

tion of both, then the DoT of FGF8 would coincide with (or at least

will not significantly differ from) the DoT of A-mRNA (Figure 5

C–D). Both possibilities are feasible in principle but for simplicity,

in the following sections, we will consider the latter option, where

the domains and concentration profiles of morphogen A and FGF8

are equivalent.

Figure 4. FGF8 transcription is not altered by FGF signaling. A–
B: FGF8 transcription at the caudal precursor zone in control (A) and
FGFR antagonist treated (B) chick embryos. No changes in FGF8
transcription are observed following a blockade of FGF signaling. C:
Schematic drawing showing the origin of the explants shown in D–E.
D–E: FGF8 transcription in caudal precursor zone chick explants
following culture in the presence of control (D) and FGF4 containing
media (E).
doi:10.1371/journal.pone.0022700.g004
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Maintenance of the migrating DoT size in GGHM
We have explored some features of the migrating DoT by

means of a continuous 1D model. However this model does not

provide the most appropriate framework to model cells that are

proliferating and moving and therefore we have extended our

study by developing and using an individual-cell based model

represented by Glazier-Graner-Hogeweg Model (GGHM) [28].

This modeling approach allows us to test more carefully the

phenomena emerging from the individual cell behaviors.

The epiblast caudal precursor region in the chick embryo

consists of a unicellular layer of cells and therefore we can use the

2D version of the GGHM to capture events taking place over the

CNPR (here we are not dealing with the influence of external

signals coming, for example, from the mesoderm). Installation of

the program and templates for reproduction of our simulations are

available from http://pcwww.liv.ac.uk/,mf0u4027/biocellsim.

html.

The version of the GGHM, which corresponds to the 1D model

used above (see Figure 3), includes two cell types only (Figures 6A–

B): cells transcribing A-mRNA (red) and cells which do not

transcribe it (green). The dynamics of A-mRNA and protein A are

defined the same way as in the 1D model except for: (a) equations

1 and 2 (see Materials and Methods Section) are written for the

laboratory frame of reference (c = 0) and (b) diffusion term in

equation 2 is extended into 2D. To be in line with the

differentiation mechanism suggested for 1D model we assume

that the red cells proliferate and convert into green cells when the

level of protein A reaches the threshold value, TA. We also

attribute motility properties to cells, namely, we presume that red

cells move actively while green cells do not and can only follow red

cells due to adhesive contacts.

We start the simulation with a group of red cells (the DoT)

moving in a particular direction (to the right in Figure 6B) under the

influence of a preset force. This force is given by the extra term

Ef = 2bf (x?i) (where x - shift of red cell’s interface and i – the unit

vector pointing to the right) in the definition of the energy which

counts for the work done by the horizontal force applied to moving

cells. This permits us to leave the study of the mechanisms of cell

motion for later (see below). While moving and proliferating, cells in

the DoT transcribe A-mRNA which in turn allows the production of

protein A (see Figures 6C and D). In places where the level of

protein A reaches its threshold level, TA, red cells differentiate into

green. Simulations show that, while moving and proliferating, red

cells (forming the DoT) leave a trail of differentiated green daughter

cells (Figure 6B and Movie S4) very similar to what happens in the

embryo where the CNPR gives rise to more mature tissue

progressively. The size of the DoT (number of red cells) is regulated

by the kinetics of both A-RNA and protein A: increasing either

kinetics constant k1 or k2 (assuming for the latter that k3 = 2k2)

decreases the size (area) of the DoT (see Figure 6E).

Promotion of cell migration by a caudal morphogen
The simulations presented in Figures 2, 3, 5 and 6 were

performed under the assumption that the ability of cells to move

Figure 5. Possible mechanisms of the involvement of FGF8 in the caudal gene regulatory network. A–B: the rate of FGF8 transcription is
proportional to the level of protein A (see the Materials and Methods Section for details). Note that the FGF8 DoT extends behind the A-mRNA DoT.
C–D: the transcription of FGF8 and A-mRNA are launched independently in (roughly) the same group of cells while both down-regulated by the same
signal provided by protein A. Note, that the concentration profiles for FGF8 DoT and A-mRNA DoT in this case basically coincide. Values of parameters
(in equations 1 and 2) are the same as in Figure 2. For extra parameters (equations 11 and 12): D4 = 0.5, k31 = k41 = 0.0003, k32 = k42 = 2k31.
doi:10.1371/journal.pone.0022700.g005
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correlates strongly with their ability to transcribe the A-mRNA

gene so that the high level of protein A switches off both abilities of

a cell. However other mechanisms that relate motility of cells to

morphogen concentration may fit better to experimental results

and known signaling molecules produced in the caudal precursor

zone, in particular FGF8. Our 2D (GGHM) model can be used to

check some of these mechanisms.

In our model we were dealing with a hypothetical protein A rather

than FGF8, but as we have previously explained, if protein A down-

regulates the transcription of both A-mRNA and FGF8, the

concentration profile of protein A is equivalent to that of FGF8. The

signaling pathways that regulate the movement of cells in the caudal

precursor zone are not well established, although it is known that FGF

signaling controls the ability of spinal cord precursor cells to move [32].

Down-regulation of FGFR signaling in one cell promotes its exit from

the CNPR which suggests that FGF signaling keeps cells moving and

allows them to accompany the regressing Hensen’s node [32].

To incorporate this feature into our model we decouple the

ability of cells to transcribe A-mRNA from their ability to move

and we introduce an intermediate cell type: cells that do not

transcribe A-mRNA but can move (blue cells in Figure 7).

Therefore differentiation of red cells into green cells takes place in

two steps. Step 1: we assume that transcription of A-mRNA is

down-regulated by protein A, i.e. production is stopped when the

level of protein A achieves some threshold level TA (analogous to

1D model represented in Figures 3A and 5C). Step 2: all cells

transcribing A-mRNA move and those that do not transcribe A-

mRNA keep moving until the level of protein A gets below another

threshold TM (TM,TA). The shape of tissue formed by cells

forming the DoT and their descendants (all daughter cells) is given

on Figure 7B (see also Movie S5). Comparing Figure 6B and

Figure 7B we can see that both modifications of the model allow

regulation (stabilization) of the DoT size.

Chemotactic mechanism for the DoT migration
Up to now we were presuming that the DoT is moving and that

the speed of its motion is given by the preset parameter c.

Examination of Figure 3 reveals a possible mechanism of this

motion. Assume that the cells forming the DoT are chemotactic to a

morphogen they produce. For example, we can assume that the

speed of the DoT migration is proportional to the gradient of A:

c~c0
LA

Lx
. The gradient can be taken at some specific point, for

example at the right border of the DoT, or we could use an average

gradient over the entire DoT, i.e. the difference between concentra-

tions of the protein A on two borders of the DoT divided by the size of

the DoT. Computer simulations show that both these assumptions

can cause the DoT migration with constant speed and therefore the

motion of the CNPR can have a chemotactic nature. Simulations

with the first assumption, i.e. the speed of the DoT is defined by the

gradient of A on one particular side, show that starting from a wide

range of initial conditions (and also for a wide range of values of c0),

we obtain (after some transition period) a DoT migrating moving

with constant speed (see Movie S6). Simulations with the second

assumption, i.e. that the speed is defined by the average gradient of

Figure 6. The DoT migration in the GGHM. A: Schematic diagram of the used model (identical to the diagram in Figure 3). B: Three consecutive
images from the simulation of primitive streak regression. Initially there is a group of 25 red cells (the DoT) forming a square tissue. The level of A-RNA
is high and constant in all red cells. Red cells move (to the right), proliferate and differentiate, i.e. red cell transforms into the green cell when the level
of protein A at any point inside the red cell gets above the threshold value TA = 0.8. Green cells do not move nor produce A-mRNA, for simplicity we
have also assumed that they do not proliferate. Cell differentiation is regulated by the level of morphogen A (as in Figure 3). Parameters: k1 = 0.001,
k2 = 0.003, b = 4.5. C, D: Concentrations of A-mRNA (C) and protein A (D) are shown in shades of red. The border line between red and green zones is
along an isoline in the concentration field of protein A corresponding to the threshold value TA = 0.8. E: Increase in the rate of A kinetics, k2, (assuming
that k3 = 2k2) reduces the size of the DoT (or number of cells forming the DoT) exponentially.
doi:10.1371/journal.pone.0022700.g006
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morphogen A over the DoT, also show the desired behavior, but we

need to apply special initial conditions: for example, we force the

DoT to move for some initial time and then switch this force off and

chemotaxis on (see Movie S7).

Thus the migration of the DoT can be due, in theory, to chemo-

repulsion of its constituent cells by protein A. This mechanism of

migration is very similar to that of so called ‘‘ballistic’’ motion of a

point which is a source of its own chemo-repellent [33]. In our

case this ‘‘ballistic’’ effect is even more profound: the chemo-

repellent is produced not only inside the DoT but also behind it

(where the concentration of A-mRNA is nonzero) and this adds to

the difference between concentrations of the chemo-repellent at

the front and back sides of the DoT. Simulations as well as

analytical studies of the model show that the migration (with

constant speed) of a self-repelled DoT is only possible when the

parameter c0, defining the strength of chemotaxis, is above a

certain threshold (see Figure 8A, where this threshold is roughly

0.6). The concentration profiles of A-mRNA and protein A, as well

as the size of the DoT, depend on the parameter c0 similar to their

dependences on the parameter c in the non-chemotactic version of

Figure 7. The DoT migration in the GGHM with 3 cell types. A: Schematic diagram of the used model. B: Snapshots from the simulation: red
cells – move and produce A-mRNA, blue cells move but don’t produce A-mRNA and green cells do not move and do not produce A-mRNA. Red cells
transform into blue when the level of protein A rises above TA = 0.75, blue cells – to green when the level of protein A drops below TM = 0.6. Only red
cells proliferate. Parameters: k1 = 1023, k2 = 5?1024, b = 3.8. C, D: concentration profiles of A-mRNA (C) and protein A (D) after 20500 time steps of
simulation.
doi:10.1371/journal.pone.0022700.g007

Figure 8. The DoT migration due to chemotaxis in 1D model. The speed of the DoT migration is defined by the formula c = c0(Al2Ar) where Al

and Ar are concentrations of protein A on the left and right borders of the DOT. A: The version of the model where the DoT size is fixed (chemotaxis
without A-RNA self-repressive production control). The domain in the parameter plane ‘‘a versus c0’’ where the travelling DoT should definitely exist
according to the analysis of the model is on the right side of the solid red line (this line represents the border of the domain defined by inequality 16
in the Materials and Methods section. Transition points (between existence and nonexistence) of migrating DoTs in simulations are given by blue
markers, dished blue line connecting these markers gives the numerically obtained border. B: The version of the model where the DoT size is
controlled by the protein A (chemotaxis with A-mRNA self-repressive production control). The size of the DoT depends on the parameter c0. The
difference Al2Ar depends on c0 and saturates when c0R‘ giving a linear asymptotic (red) for the dependence of the DoT size on c0.
doi:10.1371/journal.pone.0022700.g008
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the model (equations 8–10) with fixed speed of the DoT migration

(compare Figure 3C with Figure 8B).

The role of chemotaxis in the migration of caudal precursor

zone has not yet been addressed experimentally, but it is known

that FGF8 can act as a chemo-repellent upon mesenchyme cells

during gastrulation in the chick embryo [9], and that down-

regulation of FGF signaling does not allow the caudal movement

of cells following node regression [32]. Although, in our model, we

consider the self-repressing morphogen A as the chemo-repellent

for cells forming the DoT, the same result would be obtained if we

consider that the actual repellent is FGF8 whose dynamics

coincides with that of protein A (as discussed above).

Chemorepulsion in GGHM
As we have noted in the previous section, the migration of the

DoT can have a chemotactic nature and, in addition, there is strong

evidence that FGF8 can act as a chemorepellent in several contexts

[34]. Using GGHM we can analyze this problem to a much greater

extent than was possible in the framework of the 1D model.

Let us first consider a simplified problem by ignoring cell

proliferation and differentiation. Assume that the DoT is

represented by a group of (non-proliferating) cells which produce

some chemotactic agent (protein A or FGF8, in our case), such

that the cells are repelled by this agent. Is it possible that this group

of cells will migrate (move along a straight line) due to this

repulsion and thus reproduce migration of the DoT? Our

simulations show that the group of cells repelled by a chemical

they produce can exhibit three types of behavior (Figure 9). Cells

can stay as a compact group and move randomly or meander with

little net relocation (Figure 9B, Movies S8) or exhibit oriented

motion, as in the case of the CNPR (Figure 9C, Movie S9).

Movement of cells can deform the shape of the DoT (Figure 9D,

Movie S10) or even break it so that they form a few smaller groups

of cells each moving independently. The type of observed behavior

is defined by model parameters and can be altered by varying the

number of cells, their adhesiveness (defined by the adhesion matrix

J), kinetics rates of protein A (production k3 and decay k2), A-

mRNA (decay k1) and chemotactic forcing, b, (see Materials and

Methods Section). Generally, the model’s parameter space can be

represented as a collection of domains corresponding to each type

of observed dynamic behavior. Figure 9E shows the location of

these domains on a parametric plane corresponding to two key

parameters (responsible for the type of dynamics exhibited by self-

repelling group of cells), namely chemotactic force as defined by

parameter b and protein A decay rate, k2 (see Materials and

Methods Section). When the chemotactic forcing is weak (b is less

than some threshold value, and this threshold depends on k2) the

group of cells meanders and shows no net migration. The

Figure 9. Migration of the DoT due to chemotaxis in GGHM. A–E: Simulation of the movement of a group of cells transcribing A-mRNA (DoT)
that are repelled by a protein A they produce. Three types of behavior can be found in GGHM. Here we assume that cells forming the DoT do not
grow, proliferate or differentiate. A: Initial shape of the DoT. The DoT was ‘‘forced’’ to move to the right (see about a preset motion of the DoT in
Figure 7) for the first 2000 time steps to provide initial conditions for chemotactic motion. ‘‘Self-repelled’’ DoT can: B: meander (k2 = 0.0005). C: move
along straight line (migrate) (k2 = 0.0025). D: move and elongate (deform into ‘‘umbrella’’-shaped tissue) (k2 = 0.0055). E: domains on a parameter
plane (k2 versus b) corresponding to each kind of behavior. Blue dots in B, C and D show location of the DoT’s center of mass every 200 time steps.
Parameters: k1 = 0.001, b = 120. F: Simulation of the movement of a group of red cells transcribing A-mRNA (DoT) that are chemotactically repelled by
a protein A they produce and that, in addition, grow, proliferate and differentiate into green non-actively moving cells (as it was in the case of
Figure 6). Initially the DoT is represented by a group of 25 cells. These cells are ‘‘forced’’ to move to the right for the first 2000 time step computations
to provide the direction for further chemotactic movement. After T = 2000, red cells are repelled by protein A, and (as directed by the initial
conditions) they move to the right leaving the trail of differentiated daughter cells (green).
doi:10.1371/journal.pone.0022700.g009
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meandering behavior is intrinsic to GGHM (corresponds to

thermal fluctuations when T.0) and it is a counterpart of the

resting DoT in continuous 1D model: as we saw previously the

DoT in 1D model does not migrate (or no traveling solutions exist)

when c0 is below than some threshold value (see inequality (16))

and this threshold depends on the DoT size (see Figure 8A). A

meandering group of cells starts to move along a straight line when

we increase the chemotactic forcing (by increasing the parameter

b) or the protein A decay rate, k2. This type of behavior is also in a

line with our observations on 1D model where the DoT starts to

migrate when chemotactic forcing c0 is above some threshold value

(Figure 8A). On the other hand further increase in either of these

parameters results in deformation of moving tissue so that rounded

tissue transforms into an umbrella-like shape. There is no 1D

counterpart for this kind of behavior.

Thus, the migration of the A-mRNA DoT can be explained by the

chemotactic response of its constituent cells to protein A (i.e. the FGF8

DoT migrates due to repulsion by FGF8). Now we can put

proliferation and differentiation of cells back into this model and

adjust model parameters so that we observe oriented motion of tightly

packed red cells leaving the trail of differentiated daughter cells

(Figure 9F, see also Movie S11). The result from this simulation

mimics the regression of the CNPR indicating that the interactions

we have considered are sufficient to account for the observed

maintenance of a compact group of cells that proliferate, migrate and

differentiate during vertebrate embryonic axis extension.

Experimental study of regulative properties of the FGF8
DoT

In order to challenge the ability of the model to reproduce

experimental results, we have performed an experiment where the

FGF8 DoT (which in our model is equivalent to the A-mRNA

DoT) was split into two and the changes in the expression of FGF8

were analyzed after 20 h culture (Figure 10A, B). In the rostral

moiety, FGF8 was maintained caudally suggesting that FGF8 does

not require signals from the caudal-most region of the embryo for

its maintenance. In addition, this experiment also shows that the

capacity of FGF8 to progressively down-regulate is also intrinsic to

the caudal moiety (Figure 10B).

Using our complete model, we have performed simulations

where we split the DoT into two (Movie S12) and follow the

behavior of the two moieties. As shown in Figure 10C we find the

maintenance of a caudal population of red cells (those producing

A-RNA or the equivalent FGF8-RNA) in the rostral moiety and

the progressive generation of a green population (that have

stopped producing A-RNA) in the caudal moiety, very similar to

what is observed in experiments (Figures 10A, B).

This result suggest that our model captures essential features of

the biological network regulating FGF8 expression and encourage

the search for a morphogen A with both the ability to self-repress

transcription of its encoding RNA and of FGF8. In addition, it

posses the possibility that chemotaxis may play a role in caudal

elongation of the embryo.

Discussion

The aim of this work is to explore possible mechanisms of

progressive differentiation and regression of the caudal neural

precursor region (CNPR, as defined by the region where cells

transcribe FGF8 mRNA) in the chick embryo. We have focused on

essential features of regression of this region such as progressive

differentiation and the conservation of its size and speed of

Figure 10. Regulative properties of the FGF8 DoT. FGF8 expression can be maintained in the absence of caudal-most signals and can be
progressively down-regulated in the absence of rostral signals. A: Schematic diagram showing the experimental separation of the rostral and caudal
parts of the FGF8 DoT (cutting experiment). B: FGF8 expression following the experimental separation of the caudal precursor zone into two. White
arrows show how FGF8 is maintained at both the rostral and caudal moieties and black arrow shows the progressive down-regulation of FGF8 in the
caudal moiety. C: Simulation of cutting experiment: the chemotactically moving DoT is cut into two pieces (see images at T = 0 and T = 650). We allow
the piece corresponding to the caudal moiety to move while the movement in the rostral moiety is arrested by the cut. The concentration of A-mRNA
(shown by shades) which is associated with the location of the DoT reproduces the corresponding pattern for FGF8 shown in B. Parameters:
k1 = 5?1024, k2 = 2.5?1025, b = 1950.
doi:10.1371/journal.pone.0022700.g010
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migration. These features were incorporated into two distinct

modeling approaches which we used to evaluate a set of

hypotheses concerning the mechanisms of differentiation and

motion of cells in the CNPR. Our results are summarized in the

Table S1.

The regulation of FGF8 dynamics during the regression of the

caudal precursor zone was previously addressed using a mathe-

matical model [24] where it was suggested that a mechanism

involving FGF8 self activation could, in theory, account for the

progressive down-regulation of FGF8 provided a high FGF8

degradation rate was considered. According to this model the

dynamics of FGF8 can be described as a propagating concentra-

tion wave, which is one of the patterns that form in nonlinear

reaction-diffusion systems [35].

In the present work we have also addressed the regulation of

FGF8 dynamics but we consider both intracellular (mRNA) and

diffusing (protein) species of FGF8 and most importantly we take

into account the movement of the domain of FGF8 transcription.

Cells in the precursor region proliferate and differentiate in such

a way that the size of the region (identified by FGF8 transcription)

does not change significantly over time. The size of a growing

tissue usually involves control of proliferation such that when the

tissue reaches a certain size, cells stop dividing. This may involve a

mechanism which is able to measure population size as has been

described in bacteria quorum sensing in Dictyostelium population,

the Drosophila imaginal disc [36] or for the mesoderm community

effect [37]. It is generally hypothesized that the concentration of

signaling factors change as the size of the tissue increases until they

reach a threshold value that dictates an arrest in cell proliferation.

In our scenario, maintenance of a population with constant size is

not due to an arrest of proliferation but to the balance of

proliferation versus differentiation that is spatially controlled such

that only cells at the rostral end of the domain differentiate (i.e.

stop transcribing FGF8). This involves a mechanism where the

strength of the signal regulating cell differentiation correlates with

the size of the cell population, i.e. the signal is provided by a

morphogen whose overall production is related to the size of the

zone. In terms of our model this could be morphogen A produced

from A-mRNA which in turn is produced exclusively in the

precursor region. This is reflected by our model assumption that

cell differentiation takes place when the level of morphogen A rises

above some threshold, TA. This assumption allows the control of

the DoT size, although (depending on parameter values) the size

can be stationary or oscillating (see Figure 3). An interesting

problem is whether the DoT size is stationary or oscillating in

experimental conditions.

Another important problem is what morphogen is actually

under self-repression control and can be involved in the regulation

of the DoT size. One possibility would be that FGF8 is actually

able to repress transcription of FGF8 mRNA, however this is not

supported by our experimental evidence as manipulations of the

level of FGFR activation in experimental conditions do not seem to

affect the size of the area where FGF8 mRNA is expressed. This

brings us to an alternative assumption that, for example, another

morphogen is responsible for the regulation of FGF8 transcription.

Two possibilities have been considered: morphogen A activates

FGF8 transcription or it represses FGF8 transcription (see Figure 5).

Both are able to maintain a domain of FGF8 transcription of

constant size; however the latter network would account more

easily for the maintenance of FGF8 expression in the rostral

fragment following the splitting of its domain of expression.

Several secreted proteins are present in the caudal zone that

could correspond to A-mRNA such as WNTs (WNT3A, WNT8C)

and BMPs (BMP7, BMP4). They could participate in the

mechanisms presented in Figure 5. Independently of the particular

mechanism that regulates production of FGF8 in our models, the

relevant feature of the regulatory networks that allows the

maintenance of a constant size of the domain transcribing A-

mRNA is the presence of a negative feed-back loop involving

protein A.

It is known that retinoid acid signaling from the somites is

involved in down-regulation of FGF8: in the absence of RA the

domain of FGF8 is expanded. However, down-regulation of FGF8

still occurs in RA-deficient embryos and our experiments of

embryo sectioning show that progressive down-regulation can

occur in the absence of rostral signals. In our model we did not

take into account the influence of the rostro/caudal gradient of

RA in shaping the FGF8 pattern. Future work will be required to

incorporate into the models more elements concerning the gene

regulatory network involved in FGF8 regulation such as the

influence of RA, which is itself influenced by FGF signaling and

Wnt8C, which is regulated by RA and FGF8 [6,38].

Our models assume the existence of concentration thresholds of

morphogen A that determine whether A-RNA (or FGF8) is

transcribed or not. Several molecular mechanism underlying such

an all-or-nothing response of cells could be relevant in this context,

such as nonlinear saturating autocatalytic feedback of a gene

product [39] or mutual inhibition [25]. It has been suggested that

mutual inhibition of FGF8 and RA gradients may be involved in

setting a bistability switch of FGFR versus Retinoic acid receptor

activation. However so far, no experimental evidence indicates

that such a switch could be involved in controlling whether FGF8

is transcribed or not [40].

Coordination of differentiation and axis extension can be found

during growth of plant meristemes and in vertebrate limb bud

development. In these cases, however, the mechanism involved

must be different to caudal extension as differentiation coupled to

axis extension relies on an external cell population that secretes a

morphogen that regulates proliferation and maintains neighboring

cells in an undifferentiated state. In the case of the root meristeme

this is the quiescent center, in the case of the apical shoot

meristeme it is the organizing center [3,4] and in the case of the

limb it is the apical ectodermal ridge that secretes FGFs [5].

The other feature that we have explored using our models is the

mechanism of domain migration. Several cellular behaviors have

been shown to contribute to regression of the primitive streak-node

and extension of the embryo. Convergence (at the midline) and

extension seem to be at play in mesoderm. Besides, stem-cell like

mode of growth and caudal movement of cells have also been

observed in the neural tube and axial mesoderm [32,41]. At the

caudal neural plate, FGF signaling is required for cells to

accompany the regressing primitive streak and precocious down-

regulation of the pathway results in cells exiting the node-streak

region. The version of the GGHM with differentiation (incorpo-

rating the influence of FGF8 on FGF8 transcription and cell

motility) shows that such a mechanism is able to maintain a

cohesive group of cells moving at constant speed (Figure 6).

Further extension of the model with the assumption that the

reason why cells move caudally is related to FGF8 concentration

(FGF8 acts as a chemorrepelent) allows us to simulate the correct

behavior of cells that can move coherently in one direction

provided there is an initial cause for the migration. A stationary

group of cells producing a chemotactic agent maintains a

symmetric condition with respect to the agent’s concentration

profile and will not move unless other events (such as noise) are

involved. Indeed, Hensen’s node (which we considered here as a

part of stem zone) changes direction of its motion when the

progression of primitive streak is replaced by its regression. We
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don’t know what is responsible for reversing the motion of

Hensen’s node but most likely it is due to some external signals,

while the repulsion by morphogen A in our model is rather an

internal process as the production of this morphogen is closely

associated with the processes in the caudal precursor region itself.

In summary, we have used mathematical models to explore

possible mechanisms for the progressive differentiation of the

caudal stem zone coordinated with the embryonic rostro-caudal

extension. We have found that the self-repression of a caudal

morphogen could be involved in driving progressive differentiation

of the caudal stem zone and that chemo-repulsion here may be

part of the mechanism responsible for the axis extension. Further

experimental evidence is required to assess the role of FGF in

regulating motility of ectodermal cells and to find out the signaling

pathways that may be at the core of these mechanisms.

Materials and Methods

In this section we describe the mathematical models as well as

the experimental techniques used for obtaining the results

presented in this work. For our study we have developed two

models: continuous (1D) and cell-based (2D, Glazier-Graner

Hogeweg model also known as Cellular Potts model). Dynamics

of morphogens was modeled in the same way in both models while

the migration of the DoT - using different techniques. In the 2D

model we have considered a tissue consisting of a single layered

group of cells. Each cell can produce and/or degrade genes and

proteins and, in addition, move in response to the forces (adhesive,

chemotactic) acting upon it. Also, the 2D model incorporates the

ability of cells to grow and proliferate.

One-dimensional continuous model
1D simulations were performed in a medium of fixed size in a

frame of reference moving with the DoT. To describe the

dynamics of morphogens we have used reaction-diffusion

equations with an added advection term to take into account the

DoT migration.

Basic model. The basic model is represented by two

equations: one – for the dynamics of the concentration of a non-

diffusible agent which we call A-mRNA and the second – for the

concentration dynamics of corresponding protein A. The

concentration of A-mRNA (denoted as u1) is equal to 1 (i.e.

constant) inside the DoT of fixed size, a, while outside is given by

the equation:

Lu1

Lt
~c

Lu1

Lx
{k1u1 ð1Þ

Parameter k1 defines the rate of A-mRNA decay while

parameter c defines the speed of DoT migration or the speed of

the frame of reference. The concentration of protein A (denoted as

u2) is defined by the equation:

Lu2

Lt
~D2

L2u2

Lx2
zc

Lu2

Lx
{k2u2zk3u1 ð2Þ

where parameter D2 defines its diffusion constant while k2 and k3 -

the rates of protein decay and production. Production of the

protein A is assumed to be proportional to the concentration of A-

mRNA while its decay is proportional to its own concentration.

The stationary solution of the system (1–2) can be found

analytically. One can check directly that the solution:

u1~

e
k1
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1 for 0ƒxƒa
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+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2z4k2D2

p
2D2

and a~
k1

c
ð5Þ

satisfies (2). Figure 2 shows typical concentration profiles given by

(3–4).

Since the DoT is moving, the maximum of the concentration of

protein A lags behind the middle of the DoT, i.e. xmax,0.5a where

xmax is the location of the maximum. For a slowly moving DoT the

maximum is located inside the DoT (0,xmax,0.5a) with its

coordinate defined by the condition that the derivative of the u2-

solution inside the DoT, 0#x#a see (4), is zero. This gives:

xmax~
D2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2z4k2D2

p l1az ln 1z
l2

a{l2

� �
 �
ð6Þ

This coordinate is a/2 when c = 0 and decreases with the increase

of c. When the DoT’s speed is too high the maximum lags behind

the DoT, i.e. xmax,0. The condition for this case can be given, for

example, by the following inequality:

l1avln 1{
l2

a

� �
ð7Þ

when xmax defined by (6) becomes negative. This condition is also

confirmed by consideration of the maximum for u2-solution

behind the DoT (x#0 in (4)).

Model for the regulation of the DoT size. In order to

consider the proliferation and differentiation of cells in the DoT we

extend the basic model by the assumption that the location of the

left side (or back side in respect to the direction of motion) of the

DoT is controlled by the signal provided by protein A. That is, the

maintenance of A-mRNA, whose concentration is constant inside

the DoT, is switched off (cells forming the DoT differentiate) when

the concentration of protein A achieves the threshold value TA. In

terms of the model (1–2) and its stationary solution (3–4) this gives:
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u2(0)~
k3

D2 l1{l2ð Þ
1

a{l2
z

1{e{l1a

l1

� �
~TA ð8Þ

and, therefore, the size of the DoT, a, is not a preset parameter but a

function of other model parameters, including TA:

a~{
1

l1
ln 1{l1

TAD2 l1{l2ð Þ
k3

{
1

a{l2

� �
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ð9Þ

Furthermore, the threshold value, TA, is generally achieved in

two points (on the either side of the maximum whose location is

given by (6)). As the concentration of u2 should not get above TA in

the DoT the differentiation should take place before the maximum

is achieved, i.e. condition (7) is to be held. Combining equation (9)

with the inequality (7) we define the condition when the stationary

solution to the stated problem exists:

a

a{l2
§1{l1

TAD2 l1{l2ð Þ
k3

{
1

a{l2

� �
ð10Þ

An important case to consider is when the concentration of the

protein A is low and doesn’t reach the threshold value, TA,

anywhere in the medium. In the simulations we presume for this

case that the size of the DoT is increasing over time (due to

proliferation of cells) and the coordinate of the DoT’s left border is

gradually decreasing (the degree of ‘‘graduality’’ represents the

proliferation rate). Simulations show that the size of the DoT is

fixed and stable under the condition given by the equation (10).

Furthermore, simulations show that if this condition does not hold

the size of the DoT oscillates over time (see Figure 3 and Movies

S2 and S3).

Four-variable models. Modeled protein A down-regulates

its own transcription while experimental results shown in Figure 4

indicate that FGF8 is not involved in the control of its own

transcription. Thus protein A does not correspond to FGF8 and we

need to analyze possible relationships between these two

morphogens. We have examined two possibilities:

1. Transcription of FGF8 is proportional to the concentration of

protein A (see Figure 5 A, B). This is expressed in the following

equation for the concentration (u3) of FGF8 mRNA:

Lu3

Lt
~c

Lu3

Lx
zk31u2{k32u3 ð11Þ

2. Transcription of FGF8 mRNA and A-mRNA take place in the

(nearly) same group of cells: they have been switched on

independently from each other but both switched off by the

signal provided by protein A. In this scenario the concentration

of FGF8 mRNA is calculated the same way as the

concentration of A-mRNA in the basic model (see above,

equation 1).

In both cases the concentration of FGF8 protein (u4) is given by

the equation:

Lu4

Lt
~D4

L2u4

Lx2
zc

Lu4

Lx
zk41u3{k42u4 ð12Þ

i.e. similarly to the concentration of protein A, u2, (see equation 2)

it is a diffusible agent and its production is proportional to the level

of its corresponding gene (FGF8 mRNA, equation 11) and decays

proportional to its own concentration.

Modeling chemotaxis. In this version of the model,

parameter c, defining the DoT migration speed, is calculated

with the assumption that the migration is taking place due to

chemotaxis, i.e. the speed is proportional to the gradient of the

chemotactic agent [42,43]. We have assumed that protein A acts

as a chemo-repellent on cells forming the DoT and the speed of

migration is defined either by its gradient in some specific point,

say on the front (right-side, x = a) of the DoT:

c~{c0
Lu2

Lx






x~a

, ð13Þ

(see Movie S6) or by the average gradient over the DoT,

c~{c0
u2(a){u2(0)

a
, ð14Þ

(see Movie S7).

The analysis of conditions when the DoT can migrate due to self-

repulsion is relatively simple when we consider the chemotactic

movement of a DoT of fixed size, a, i.e. consider solution (3–4)

remove condition (8) and add condition (14) which gives:

c~
k3c0

aD2 l1{l2ð Þ
a

(a{l2)l2
(1{el2a)z

1

l1
(1{e{l1a)

� �
ð15Þ

Where the right hand side is also function of c (l1, l2 and a are

functions of c, see the definitions given by (5)). When c = 0 the right

hand side of (15) is zero, i.e. one stationary solution (with c = 0)

exists for all sets of parameters. One can show that the right hand

side of (15) is positive and tends to zero when c tends to infinity.

Traveling solutions correspond to the points where c?0 and plots

of functions

y1~c and y2~
k3c0

aD2 l1{l2ð Þ
a

(a{l2)l2
(1{el2a)

�

z
1

l1
(1{e{l1a)

�

intersect. At least one such point exists, if the derivative of the

function y2 (the derivative of the RHS of (15)) is more than 1 at

c = 0. This condition can be expressed by the formula:

k3c0

2ak1

ffiffiffiffiffiffiffiffiffiffiffi
k2D2

p 1z
k1

k2
{ 1z

k1

k2
z

k1affiffiffiffiffiffiffiffiffiffiffi
k2D2

p
� �

e
{a

ffiffiffiffiffi
k2
D2

q0
@

1
A§1 ð16Þ

Therefore for sets of model parameters satisfying (16) (see

Figure 8A) we can expect the existence of a moving DoT, moving

with constant speed. Whether more than one such solution exists

and whether such solutions exist when condition (16) is violated

should be rigorously analyzed in a more detailed study. We have

plotted the function given by the RHS of (15) versus variable c for

various sets of model parameters. It looks that this function always

has only one maximum. Therefore we expect that inequality (16)

gives the condition for the Pitch-Fork bifurcation, i.e. we have only

one solution (corresponding to c = 0) when model parameters do

not satisfy (16) and two extra solutions appear (corresponding to
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the DoTs moving in opposite directions) when (16) is satisfied. But

indeed this conclusion should be verified by proper analysis.

Details of simulations and verification of parameters. For

simulations we used the explicit Euler’s method with central

differencing scheme for diffusion and alternating up- and down-wind

schemes for advection. Typical initial conditions: all concentrations are

equal to zero with the only exception: u1 = 1 in the DoT which has a

predefined location and size. Default values of the parameters: diffusion

coefficients D2 = D4 = 0.5; kinetics rates k1 = k31 = k41 = 0.0003,

k2 = 0.00025, k3 = 2k2, k32 = k42 = 2k31; speed c = 0.015, chemotaxis

c0 = 2.

Default values for the time and space steps ht = 1 and hx = 1 for

which we found the simulations to be fairly accurate: two-fold

reduction of space step together with four-fold reduction of time

step (ht = 0.25 and hx = 0.5) was altering measured quantities (such

as maximums in concentration profiles, the DoT size when

differentiation is on, and the DoT speed when it is drove by

chemotaxis) by less than 3%. Also the simulations were performed

in sufficiently large domain to reduce the influence of medium

boundaries (doubling the size of the medium has changed

measured quantities by less than 1%).

To scale the model parameters we estimate the DoT size to be

1 mm and its speed to be 0.1 mm/hour. Comparing this with the

simulations shown on Figure 3 where c = 0.015 (space units over

time units) and the DoT size is 40 (space units) we conclude that

the space unit corresponds to about 20 mm and the time unit - to

10 seconds. This means that D = 0.5 corresponds to 2?1027 sm2/

sec and kinetics coefficient k = 0.0003 – to 3?1023 sec.

A few words about justification of the parameter values used in

our simulations. Firstly, the analysis of the model represented by

equations (1) and (2) with extra conditions (8) and/or (14) indicates

that qualitatively the solution is the same for any set of parameters

represented by positive numbers. Furthermore, we can take three

arbitrary numbers to represent the values of three parameters

appropriate for scaling dimensions associated with time, distance

and concentration. In our case we decided that the concentration

of A-mRNA inside the DoT is 1, the DoT is represented by about

40 grid points (or its size is 40 space units if the grid size is 1) and

the speed of the DoT is something between 0.1 and 0.01. The

choices for the DoT size and speed are dictated by the accuracy

issue. We have checked that 40 grids for the DoT gave

considerably more accurate solutions than say 10 grids and, on

the other hand, approximately the same accuracy as 100 grids.

Similarly, if we assume that the time step is 1 then speed c should

be less than 0.1 (say 1/40) to provide enough accuracy in

numerical calculation of concentration profiles. Diffusion D = 0.5

is convenient when it comes to the numerical scheme (the highest

possible value when the explicit Euler scheme with time and space

steps ht = hx = 1 is still stable) and still in a range of diffusion

coefficients known for proteins. Kinetic rate k1 has been chosen in

a way that the space scale for the mRNA degradation is

comparable with the size of the DoT: this is done to fit with the

observations concerning the sizes of FGF8 mRNA transcription

and expression (Figures 1 and 4). Other kinetic constants have

been chosen to be of the same order as k1. And finally, concerning

k2 and k3: the ratio of these two constants is only important for the

choice of the threshold value TA: the ratio 2 has been chosen only

to bring concentrations of A-mRNA and protein A to the same

scale (Figures 2, 3, 5).

Glazier-Graner-Hogeweg Model
This is a computational individual-based model originally

developed by Graner and Glazier [26,27]. In this model we

consider the DoT as a group (25 by default) of cells, each, in turn,

is represented by a number of grid points (50 grid points per cell in

our simulations) on a regular (square-shaped 2D in our case) lattice

(see also Methods Section in [8]). Movement of a cell (or change in

its shape) means that the cell looses or gains some grid points on

the lattice. In terms of the underlying tissue this implies that the

grid points are associated with different cells at different times. To

calculate whether a particular grid point will be associated with a

different cell at next time step a variation principle is used to

minimize a quantity representing ‘‘the energy’’ of the system.

Contrary to the original implementation of the GGHM which

was based on Monte Carlo algorithm involving the random choice

of the pixel followed by the random choice of its neighbor and

following calculations of probability of change [26] we have

implemented a synchronous model: at each time step we calculate

the probability to change the state for all grid points. For each grid

point, we randomly select a neighbor (one out of the eight nearest)

and calculate how the energy of the system will change after

changing the state of the grid point to that of its neighbor. If this

change results in an energy decrease we allow the change to occur;

if the energy is increased we calculate the probability of that

change, p, using the Boltzmann function: p = exp(2DE/T) where

the parameter T can be referred to as the ‘‘temperature’’ of the

system.

The energy is defined in a way that its change accounts for the

work done by different forces acting upon moving or deforming

cells. The definition of energy used in our implementation of the

model takes into account three forces, the adhesive forces between

cells, the force associated with the incompressibility of cells

(pressure) and forces developed by chemotacticaly moving cells:

E~EadhesivezEpressurezEchemotaxis ð17Þ

The following definitions of the terms on the right hand side of

equation (17) are commonly used in various modifications of

GGHM [8,28]:

1. An adhesive energy associated with cell-to-cell contacts is

defined by the adhesion matrix Jk,l (Jk,l = Jl,k) which refers to an

interface between neighboring grid points which belong to

different cells (numbers k and l represent cell types of these

cells). The energy, Jk,l, characterizes the strength of a particular

cell’s adhesive contacts (stronger contacts correspond to smaller

energies). To consider adhesive contacts between cells and the

surroundings we treat the letter as a special cell of its own type.

In our simulations we, as a rule, consider 3 cell types: the

surrounding was considered as a cell of its own type – cell type

1; cell type 2 – cells which form the DoT; cell type 3 – cells

which form the DoT trail or the differentiated daughter cells.

The default adhesion matrix for adhesive bonds between each

pair of different cell types is:

J~

0 9 9

9 3 7

9 7 3

2
64

3
75:

2. To control the size of a cell (say kth cell), Ak(t), a target area (in

case of our 2D cells number of grid points forming the cell can

be considered as its area), Tk, is introduced. The kth cell is given

an energy Evol,k = a(Ak(t)2Tk)
2, where a is a positive constant

(a = 0.6 in all our simulations). Constant a represents the cell’s

resistance to compression and we can call it the ‘‘incompres-
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sibility’’ coefficient (it had different names such as ‘‘Lagrange

multiplier specifying the strength of the area constraint’’ in

[26], or ‘‘volume elasticity’’ in [44]) referring to another

approach when the motion of cells in a tissue is seen as a flow in

incompressible viscous liquid described by Navier-Stokes

equation [45,46] and where this term would correspond to

the gradient of pressure. The ‘‘incompressibility’’ energy

reaches its minimum (zero) when the cell’s actual and target

areas are equal. To take into account the growth of cells the

target area, Tk, is considered to be an increasing function of

time. To model cell proliferation we split big cells (which

contain 100 or more grid points) into two small cells. The split

is performed along a straight line (having a random orientation)

crossing the cell’s centre of mass.

3. To implement the chemotactic effect of the agent, whose

concentration is denoted as ‘u’, to a moving (or deforming) cell

we introduce the change in chemotactic energy DEch,k = bk (x
grad(u)), where bk is a constant describing the chemotactic

response of cells of type k to the chemotactic agent u and x is a

vector representing the local displacement of the given cell’s

boundary. This energy change refers to the work done by

chemotactic force DEch,k = Fch,k?x and therefore corresponds to

the chemotactic force, Fch,k = bkgrad(u), exerted by chemotac-

tically responding cell. The identical definition of the

chemotactic force was introduced and used earlier in the

hydrodynamic model of Dictyostelium development [47]. The

most common implementation of chemotaxis in our model:

bk = 0 if k?2 and bk = b (b?0) for k = 2 or for ‘‘red’’ cells

forming the DoT. This means that there is an energy gain or

loss in the system related to the relocation of the red cell’s

boundary which depends on the local gradient of chemotactic

agent. We note that a positive value for the parameter b
corresponds to the process of chemorepulsion while a negative

value for b - to chemoattraction.

Detailed description of the GGHM model and its modifications

and applications to various problems in developmental biology are

given in [28]. One of the greatest advantages of GGHM is that it

allows modeling the dynamics of biological tissue while being

focused on behavior of individual cells. The simplicity of the model

allows modeling of tissue which contains up to 105 cells on a single

PC. Parallel implementation of the software [44] allows an

increase in this number up to 107–108 which is close to the actual

number of cells in many real tissues. Furthermore, the GGHM

allows relatively simple modifications to address various problems

associated with mechanics and deformations of cells. For example

the GGHM allows consideration of cells of different shapes. Cells

in the version of the GGHM which we use here are predominantly

round-shaped. To model, for example, elongated cells the GGHM

can be extended by the introduction of the anisotropy in adhesive

properties of cells [48] or by the introduction of cellular subunits

which compose cells of desired shape and stiffness [49]. The

GGHM has also been extended to address three-dimensional

problems [50] and its simulation code is available publically (the

CompuCell3D package at http://www.compucell3d.org).

Details of simulations. We have implemented a synchronous

model: at each time step we calculate the probability to change the

state for all grid points. For each grid point, we randomly select a

neighbor (one out of the eight nearest) and calculate how the energy

of the system will change after changing the state of the grid point to

that of its neighbor. If this change results in an energy decrease we

allow the change to occur; if the energy is increased we calculate the

probability of that change, p, using the Boltzmann function:

p = exp(2DE/T) where the parameter T can be referred to as the

‘‘temperature’’ of the system (we set T = 6 in all our simulations).

All simulations start with a group of 25 cells (forming an

artificial square-shaped tissue) representing the DoT. In the

simulations where we do not consider cell proliferation, we assume

that all cells have a constant target volume (Tk~50,Vk) which

does not depend on the cell age. In the simulations where we take

into account cell growth and proliferation, we assume that the

initial target volumes of cells are randomly distributed among the

cells in the range (30–70) and then the target volume of each cell is

increased by one unit every 10 time steps with probability 1/3.

When the actual volume of a cell reaches 100, the cell divides

along a line crossing through the cell’s centre of mass with a

random direction of the cleavage plane. After division the target

volumes of both daughter cells are reset to 50 and they start to

increase again over time. This implies that the average time

required for a cell to double in size and proliferate is equal to 1500

time steps. One time step scales as 70 seconds (as it derived in the

next section) and therefore the effective proliferation rate in the

model is one division per 30 hours. In experimental conditions the

proliferation rate is much higher (one division per 6 hours) but on

the other hand,, in experimental conditions, many cells leave the

stem zone (and epiblast) and transform into mesenchyme cells.

Since in our model we don’t consider formation of mesenchyme

cells (this would require three-dimensional version of the model)

we have to reduce the proliferation rate of cells in the epiblast (to

compensate the mesenchyme formation). Furthermore we did not

consider the proliferation of differentiated (green) daughter cells as

this would not influence the phenomena which we are interested in

but add unnecessary details into simulations and graphical outputs

used in the figures.

Verification of parameter values in GGHM. Parameters

used in the GGHM can be split into two sets. One set is used for

the definition of energy in the system and is associated with

adhesiveness (entries Jk,l in the adhesion matrix), incompressibility

(parameter a defining incompressibility) and chemotactic

responses of cells (parameter b defining chemotactic response) as

well as temperature T in Boltzmann function. The second set of

parameters is used to define the dynamics of morphogen

concentrations (kinetics and diffusion of morphogens). The First

set of parameters forms a core of the GGHM and verification of

the parameter values used for this set can be found in the literature

([27,28] including more references in [28]). Here we can briefly

note that the most important point concerning the entries Jk,l in

the adhesion matrix is their ratios: Jk,1 = J1,k.2 Jk,k for cells to stay

together and form a tissue. Also Jk,l = Jl,k.2 Jk,k and Jk,l = Jl,k.2 Jl,l

for cells of types k and l to sort out or to stay sorted out. The values

of the entries Jk,l are scaled with the values of parameters a and b
in order to scale all three considered forces (associated with

adhesion, pressure and chemotaxis) relative to each other. The

value of parameter T defining the rate of the evolution in the

system is also scaled with the values of Jk,1, a and b. The ratio a/T

defines the amplitude of the cell shape fluctuations (or cell

membrane fluctuations). These fluctuations freeze at high values of

a as well as at low values of the Boltzmann temperature T. If we

will keep all parameters of the model constant and vary only the

temperature we will see that the rate of dynamics in the model will

be low at low temperatures, then the processes accelerate with the

increase of the temperature and eventually they slow down again

when the temperature becomes too high. We have measured the

speed of migrating group of cells as a function of the Boltzmann

temperature (keeping all other model parameters at their ‘‘default’’

values) and found that the highest speed is observed at T = 6 (see

Figure S1). It was noted in [51] that the Boltzmann temperature,
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T, defines the intrinsic cell motility in GGHM. Therefore T = 6

(which we have chosen for our simulations) corresponds to the

highest possible intrinsic cell motility for the given set of other

model parameter values.

It was shown on many occasions that the GGHM is robust:

small variations in the values of model parameters do not alter

qualitatively the outcome of simulations. Besides, it was shown that

the GGHM parameters can be rescaled so that the outcome of

simulations is absolutely the same. For example, the simulation of

the primitive streak progression was performed in [8] in tissues

containing 625 and 15000 cells without any notable difference in

the outcome.

The concentration fields of morphogens were calculated in a

way similar to that for the 1D model. The level of A-mRNA was

set equal to 1 in all (red) cells forming the DoT and was decaying

in differentiated (green) cells according to the equation:

_uu1~{k1u1 similar to what was in the 1D (compare with the

equation 1 where c = 0). The equation for protein A includes

diffusion, production and decay and is given by the equation 2 (see

above) where c = 0. There are no advection terms in the 2D model

as the events are considered in the laboratory frame of reference.

As the GGHM is considerably slower (as compared with our 1D

model) we have increased the speed of computations by ensuring

slightly faster processes (faster moving DoT and faster kinetics for

chemicals). For k1 = 0.001, k2 = 0.003 and b = 4.5 (see Figure 6) the

speed of the DoT is roughly 60 space steps per 1000 time steps

(should correspond to 0.1 mm/hour) and the DoT size is roughly

32 grid points (should correspond to 1 mm). This means that 1

space unit roughly corresponds to 30 mm, 1 time step to 70

seconds causing for dimensional diffusion and kinetic coefficients

to be slightly (2 to 3 times) less than for the set of parameters used

in the 1D model.

Experimental Methods
Stage Hamburger and Hamilton (HH) 9–10 chick embryos

were obtained from fertilized eggs (Granja Santa Isabel, Cordoba,

Spain) and dissected in L15 culture medium (Invitrogen).

Embryos were cultured in 4 well dishes on top of collagen beds

and with 0.2 ml of culture medium (Optimem (Invitrogen), fetal

calf serum, glutamax and gentamicine) containing 0.1% DMSO

(control) or PD173074 (10 mM in 0.1% DMSO, Sigma). Caudal

explants (including 3 embryonic layers) were cultured in collagen

as described in [52] in the presence of BSA (control) or hFGF4

(330 ng/ml, Sigma). For splitting the caudal domain into two,

embryos were prepared following the EC culture method [53], a

cut was performed caudal to the node with a microsurgical knife

and embryos where cultured for another 20 h.

Embryos and explants were fixed in 4% PFA and processed for

in situ hybridization with probes to detect either nascent [15] or

total FGF8 following standard methods.

Supporting Information

Figure S1 The effect of Boltzmann temperature, T, on
the speed of the migrating DoT. The plot is produced under

the set of assumptions used for the simulation shown in Figure 6

and Movie S4. At T = 0 the DoT does not migrate (cell shapes are

frozen). A temperature increase induces the DoT migration (allows

cell shape fluctuations) and the DoT’s speed increases until

reaching a maximum when T = 6. After this (for T.6) the speed

gradually decreases with the increase of the temperature,

indicating that the further amplification of the cell shape

fluctuations reduces cell’s motility. Therefore the Boltzmann

temperature can be seen as a parameter defining intrinsic motility

of cells with a maximum at T = 6 (when other model parameters

are fixed at values used in Figure 6).

(TIF)

Table S1 Summary of simulation results for both
models and all considered sets of model assumptions.
Using the continuous one-dimensional and individual-based two-

dimensional models we have considered migration of the domain

of transcription (DoT) under a few distinct sets of assumptions

concerning proliferation, differentiation and movement of cells

forming the DoT. The summary of mechanisms with the

references to the figures and supplementary movies demonstrating

simulation outcomes has been provided.

(TIF)

Movie S1 Formation of stationary concentration profiles in the

basic model (transition from the initial conditions to the stationary

solution (3–4) to the equations (1–2) in Materials and Methods

Section).

(MPEG)

Movie S2 Formation of stationary concentration profiles of gen

A-RNA and protein A in the model with the DoT size regulation

(see Materials and Methods Section). The regulation of the DoT

size is implemented the following way: if the concentration of the

protein A does not achieve the threshold level TA all over the

medium the DoT size increases with a constant rate (the DoT’s left

border shifts to the left with a constant rate), otherwise the DoT’s

left border is at the right-most point where the level of the protein

A is equal to the value of TA. To obtain a smooth dynamics the

size of the DoT was fixed (like in the basic model), i.e. the

regulation of the DoT size was switched off for the first 3000 time

steps.

(MPEG)

Movie S3 Oscillations in concentration profiles of A-RNA and

protein A in the model with the DoT size regulation (see Materials

and Methods Section). The model used here is the same as that

used to produce Movie S2 (and Figure 3). Model parameters are

the same as for Figure 2 except for the value of parameter k1:

k1 = 0.008.

(MPEG)

Movie S4 Concentration profiles of A-mRNA and protein A in

the model with the DoT speed defined by the chemotaxis (see

Materials and Methods Section). Chemotaxis is defined by the

gradient of protein A on the front (right border) of the DoT. All

other features of the model, except for k1 = 0.045, are the same as

in Movie S2 (and Figure 3A).

(MPEG)

Movie S5 Concentration profiles of A-mRNA and protein A in

the model with the DoT speed defined by the chemotaxis (see

Materials and Methods Section). Chemotaxis is defined by the

average gradient of protein A over the DoT. To initiate the

moving DoT we have used the following procedure: the size and

the speed of the DoT were fixed (exactly as in Movie S2) for the

first 3000 time steps and only after that the differentiation and

chemotaxis were switched on.

(MPEG)

Movie S6 The DoT migration in the GGHM. The DoT is

represented by group of red cells moving to the right side. Red

cells proliferate and differentiate, i.e. transform into the green cells

which do not move and where A-mRNA decays. Cell differenti-

ation is regulated by the level of protein A (as in Figure 3, and

Movies S2 and S3).

(MPEG)
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Movie S7 The DoT migration in the three-cell-types version of

the GGHM. The DoT is represented by group of red cells moving

right-wise. Red cells proliferate and differentiate, i.e. transform

into the green cells which do not move and where A-mRNA

decays. Cell differentiation is regulated by the level of protein A.

(MPEG)

Movie S8 When the kinetics of the protein is too slow the ‘‘self-

repelled’’ DoT meanders. The DOT is ‘‘forced’’ to move right-

wise (see about the DoT with preset motion in the Results Section)

for 2000 time steps to provide with the initial conditions. After this

the preset motion is switched off and the DoT is repelled by the

transcribed protein.

(MPEG)

Movie S9 When the kinetics of the protein is neither slow nor

fast the ‘‘self-repelled’’ DoT moves along a line (orientation of the

line is defined by the initial conditions). The DoT is ‘‘forced’’ to

move right-wise (see about the DoT with preset motion in the

Results Section) for 2000 time steps to provide with the initial

conditions. After this the preset motion is switched off and the

DoT is repelled by transcribed protein.

(MPEG)

Movie S10 When the kinetics of the protein is too fast the ‘‘self-

repelled’’ DoT moves and deforms. The DoT is ‘‘forced’’ to move

right-wise (see about the DoT with preset motion in the Results

Section) for 2000 time steps to provide with the initial conditions.

After this the preset motion is switched off and the DoT is repelled

by the transcribed protein.

(MPEG)

Movie S11 Chemotactic migration of the DoT when its

constituent cells grow, proliferate and differentiate.

(MPEG)

Movie S12 Simulation of the cutting experiment (see Figure 10).

(MPEG)
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